
IBExpert and Firebird Documentation

Version 2008.09.03
copyright IBExpert KG

Getting Started
Download and install Firebird

Server versions and differences
Configuring Firebird

Download and install InterBase
Download and install IBExpert

IBExpert Personal Edition
Registering a database
Working with a database
IBExpert screen
Where to go from here

IBExpert Database menu
Database Registration Info
Register Database
Unregister Database
Connect to an existing Database
Reconnect to Database
Disconnect from a Database
Create Database
Drop Database
Recreate Database
Recompute selectivity of all indices
Recompile all stored procedures and triggers
Database Security

Database objects
Domain
Table

Definitions
Keys
Table Editor

Field
Field definitions

View
Stored procedure
Trigger
Generator
Exception
User-defined function
Blob filter
Role
System objects
SQL Code Editor
Printing from the database object editors

IBExpert Edit menu
IBExpert Grid menu
IBExpert View menu
IBExpert Options menu

Environment Options
Editor Options
Visual Options
Keyboard Templates
General Templates
Object Editor Options

IBExpert Tools menu
SQL Editor
New SQL Editor
Query Builder
Data Analysis
Script Executive
IBEScript exe
IBEScript dll
Copy database object
SQL Monitor
Dependencies Viewer

1

SP/Triggers/Views Analyzer
Database Comparer
Table Data Comparer
Log Manager
Search in Metadata
Extract Metadata
Print Metadata
Generate HTML Documentation
User Manager
Grant Manager
SecondaryFiles Manager
To-do list
Localize IB Messages
Localize IBExpert
Report Manager
Blob Viewer / Editor
Database Designer
Test Data Generator
ODBC Viewer
IBExpert Command-Line Tools
InterBase and Firebird Command-Line Utilities

IBExpert Services menu
Database Monitoring
Backup Database
Restore Database
Server Properties/Log
Server ActivationCertificates
Database Validation
Database Statistics
Database Properties
Database Shutdown
Database Online
CommunicationDiagnostics
HK-Software Services Control Center

IBExpert PlugIns menu
IBExpert Windows menu
IBExpert Help menu

IBExpert Customer Area
What's New?
Contents
Additional Help Files
Product Home Page
Send bug reports to
Bug Track System
About
IBExpert Direct
Download Firebird / Purchase InterBase

FAQs
Addenda

Firebird License Agreement
IBExpert toolbars

Getting Started
In order to start working and developing with IBExpert, it is necessary to take the following steps:

1. Download and install Firebird (OpenSource database). Alternatively youmay also, of course, install InterBase®.
2. Download and install IBExpert (Personal, Trial or Customer edition)
3. Registering a database (the example uses the EMPLOYEE database supplied with Firebird and InterBase)
4. Working with a database (based on the EMPLOYEE sample database).
5. IBExpert Screen: get acquainted with IBExpert and how it's set up.
6. Where to go from here: if you're just starting out, take the time to read through the documentation sources listed in this section.

2

Download and install Firebird
1. Installation using

the Firebird Installer
1. Windows platforms
2. Posix platforms

2. ZIP installation
3. Performing a client-only install
4. Performing a minimum Firebird 1.5

client install
1. What you need
2. What you have to write to the

registry
3. What you have to do to the

Windows\System directory
4. What you have to do to your

code (Delphi, IBObjects)
5. Installing multiple

instances with the Firebird
Instance Manager

Download and install Firebird
Firebird is renowned for its ease of installationand administration. Even an inexperienced user can download and install Firebird using the Installer, with just a
number of mouse clicks. If you are totally new to Firebird, please first read the chapter, Server versions and differences to help you decide whichFirebird
version youneed.

The current Firebird version can be downloaded free of charge from http://firebirdsql.org subject to OpenSource conditions. Alternatively, use the IBExpert
Help menu item Download Firebird to directly access the download website.

Simply click the DOWNLOAD tab and select All Released Packages (Source Forge). The download packages come in a variety of options according to:
server type (Classic, SuperServer and Embedded), server version, platform, and incorporating the Installer or as a ZIP file.

Scroll down to the latest file releases and click DOWNLOAD to the right of the version for your platform, for example Firebird releases for Windows and Linux
(most current version in March2008 is Firebird 2.1 RC1 from January 23rd, 2008). Please refer to Posix Platforms and Windows Platforms for further
information for individual platforms with regard to download and installation.

If you are new to Firebird, then go for a versionusing the Installer. The Zip kit is for manual, custom installs of Classic or Superserver.

A new window appears:

3

http://firebirdsql.orgsubjecttoOpenSourceconditions.Alternatively,usetheIBExpert

Click on the greenDownload button to the right of the Firebird file you require. Select the file(s) youwish to download:

If required, select a download server:

Specify drive and path for the download file and save.

Before youproceed with the installation(either using the Firebird Installer or manually from the ZIP file), please ensure first that there is no Firebird server
already running on the machine you are about to install onto.

4

Installation using the Firebird Installer
Now double-click the downloaded firebird file to start the installation. Again, please refer to Windows Platforms and PosixPlatforms for installation details for
the various platforms.

Read and accept the Firebird License Agreement, before proceeding further.

Specify the drive and path where youwish the Firebird server to be installed. Please note that the Firebird server, along with any databases you create or
connect to, must reside on a hard drive that is physically connected to the host machine. It is not possible to locate components of the server or database on a
mapped drive, a file system share or a network file system.

The Firebird server must be installed on the target computer. In the case of the Embedded Server version the client library is embedded in the server, this
combination performing the work of both client and server for a single attached application.

Then select the components you wish to install. If youare still fairly new to Firebird, select the default option, Full installation of Server and development tools,
checking the Classic or SuperServer optionas wished.

After confirming or altering the Start Menu folder name (or checking the Don't create a Start Menu folder box), youarrive at the Check Additional Tasks
dialog:

5

The Firebird Guardian: The Firebird Guardian is a monitoring utility that does nothing other than check whether the Firebird server is running or not.
Nowadays it is not really necessary on modernWindows systems, as it is possible to restart the Firebird service, should it cease to run for any reason, using
the operating system. Use the Windows Services (Restore page) to specify that every time the Firebird service stops, it should be restarted. When the service
is halted, the restart can be viewed in the Windows Event Log.

However if the server does go down, it's important to find out what caused it. The logs need checking to trace page corruptionand an immediate decision
needs to be made right there and then, whether to regress backwards or move forwards. An automatic restart automatically leads to more crashes and more
corruption, until the problem is noticed and causes analyzed and repaired. So consider carefully, whether you wish to have the Guardian running in the
background on your database server or not.

Further parameter check options include the following:

Run the Firebird server as an application or service.
Start Firebird automatically every time you boot up: recommended.
"Install Control Panel Applet": Windows Vista CAUTION If you are installing onto Windows Vista, the installer option to install the Control Panel
applet must be DISABLED to avoid having it break the Control Panel on your Vista system.
Copy Firebird client library to <system> directory: care needs to be takenhere if there is more than one instance of Firebird running on the server.
If the fbclient.dll is simplyoverwritten, it can cause problems for the Firebird server that is already installed and running. Instead of copying to the
\system directory, simplymove it to your application directory.
Generate client library as GDS32.DLL for legacy app. support: Many programs, including for example older Delphi versions, relyon a direct
access using this file name. This optioncan be checked to copythe file under the old name.

Should problems be encountered during installation, please refer to the Firebird Information file.

Windows platforms

OnWindows server platforms - Windows NT, 2000 and XP, the Firebird service is started upon completion of the installation. It starts automaticallyevery time
the server is booted up.

The non-server Windows platforms, Windows 95, 98 and ME, do not support services. The installationstarts the Firebird server as an application, protected
by another application knownas the Guardian. Should the server application terminate abnormally, the Guardianwill attempt to restart it.

Posix platforms

As there maybe significant variations from release to release of anyPosix operating system, especially the open source one, it is important to read the
release notes pertaining to the Firebird version to be installed. These can be downloaded from the Download page at http://firebird.sourceforge.net.

Please consult the appropriate platform documentation, if youhave a Linux distribution supporting rpm installs, for instructions about using the RedHat
Package Manager. Most distributions offer the choice of performing the install from a command shell or through a GUI interface.

For Linux distributions that cannot process rpm programs, use the .tar.gz kit. Again instructions are included in the release notes (see above link).

Shell scripts have been provided, but in some cases, the release notes may advise modificationof the scripts as well as some manual adjustments.

ZIP installation

Another way to install Firebird is from a ZIP file. This method is more flexible for embedded installations. Download the appropiate ZIP file from the Firebird
Download site, following the directions at the beginning of this chapter. This ZIP file basically contains the complete installation structure.

6

http://firebird.sourceforge.net

It includes a prettymuch "pre-installed" server, whichyou can simplycopyto anydirectory as wished, and which youcan integrate into your installation by
simply calling batch files. Simply start the install_classic.bat or install_super.bat, depending uponwhich server you wish to install:

The instreg utility does all the work, making the necessary entries in the right places, and installs everything required in the Registration. It usually installs the
Firebird Guardian too, and finally starts the service.

This is the ideal solution for development applications whichare being passed onto customers: simply pack the complete Firebird ZIP directory in with your
application, so that when youcall your Installer, the only work necessary is to call the appropiate batch file.

Performing a client-only install
Each remote client machine needs the client library that matches the release version of the Firebird server: libgds.so on Posix clients; gds32.dll on
Windows clients.

Firebird versions from 1.5 onward require an additional client library, libfb.so or fb32.dll, which contains the full library. In these newer distributions, the
"gds"-named files are distributed to maintaincompatibility with third-partyproducts whichrequire these files. Internally, the libraries jump to the correct access
points in the renamed libraries.

Also needed for the client-only install:

Windows

If you want to run Windows clients to a Linux or other Posix Firebird server, youneed to download the full Windows installationkit corresponding to the version
of Firebird server installed on the Linux or other server machine.

7

Simply run the installationprogram, as if youwere going to install the server, selecting the CLIENT ONLY option in the Install menu.

Linux and some other Posix clients

Some Posix flavors, evenwithin the Linux constellation, have somewhat idiosyncratic requirements for file system locations. For these reasons, not all *x
distributions for Firebird evencontain a client-only install option.

For the majority, the following procedure is suggested for Firebird versions lower than 1.5. Log in as root for this.

1. Search for libgds.so.0 in /opt/interbase/lib on the machine where the Firebird server is installed, and copy it to /usr/lib on the client.
2. Create the symlink libgds.so or it, using the following command: ln -s /usr/lib/libgds.so.0 /usr/lib/libgds.so
3. Copy the interbase.msg file to /opt/interbase.
4. In the system-wide default shell profile, or using setenv() from a shell, create the INTERBASE environment variable and point it to /opt/interbase, to

enable the API routines to locate the messages.

Excerpts of this article have been taken from the IBPhoenix "Firebird Quick Start Guide". Many thanks to Paul Beach (http://www.ibphoenix.com)!

Performing a minimum Firebird 1.5 client install
ByStefan Heymann(April 11th 2004)

This article describes how to run Firebird 1.5 based applications with the absolute minimum client installationrequired.

What you need

Your application needs access to the Firebird client library, fbclient.dll. The easiest way to do this is to put fbclient.dll in the same directory as your
application's .exe file.

fbclient.dll needs access to two other DLLs: svcp60.dll and msvcrt.dll. Both are delivered together with the Windows installationof Firebird, so if you
have a Firebird server installed on your development machine, you'll find these DLLs in the bin directory of your Firebird installation.

msvcrt.dll (Microsoft Visual C/C++ RunTime) is a part of Windows and resides in the Windows\System directory on Win9x machines and in Windows
\System32 on NT-based machines (NT4, W2K, XP, 2003). On Windows 95 and Windows 98 machines, it's too old for the msvcp60.dll that fbclient.dll
uses. So you'll have to replace the msvcrt.dll by the one that comes with Firebird (or even a newer one).

msvcp60.dll can stay in your application directory.

Your application directorynow looks like this:

 <YourApp>.exe and other application files
 fbclient.dll
 msvcp60.dll

That's it. Easy!

What you have to write to the registry

Nothing - there's nothing you'll have to do to the registry.

What you have to do to the Windows\System directory

Onlyon Windows 95 and Windows 98 "First Edition" machines: you will need to replace msvcrt.dllwith the newer version that comes with Firebird 1.5 (if
there isn't already a new version installed).

Some version numbers of msvcrt.dll:

Windows 98 FE 5.00.7128 does NOT work

Windows 98 SE 6.00.8397.0 works

Firebird 1.5.0 6.00.8797.0 works

Windows XP SP1 7.0.2600.1106 works

What you have to do to your code (Delphi, IBObjects)

A "normal" InterBase access library uses gds32.dll as the client library. Firebird's client library is named fbclient.dll. If you use IBObjects (http://
www.ibobjects.com/), you can set another client library name.

Include IB_Constants.pas as the first unit in your USES clause.
Put the following line in the INITIALIZATION part of your Unit: IB_Constants.IB_GDS32 := 'fbclient.dll';
This line must be executed before the first database connect is performed.

Installing multiple instances with the Firebird Instance Manager
Pre-Firebird 2.1: If you already have a Firebird version installed on your machine, then youcan subsequently rename the installationusing the fbinst tool,
whichcan be downloaded from: http://www.ibexpert.com/download/firebirdinstancemanager/. For example, rename your existing Firebird to

8

http://www.ibphoenix.com
www.ibobjects.com/
http://www.ibexpert.com/download/firebirdinstancemanager/.Forexample,renameyourexistingFirebirdto

MyFirebirdVersion and then install the new Firebird version without any problems. The Firebird Instance Manager was developed by Simon Carter. It isn't an
IBExpert tool but it is extremely helpful if you find yourself in such a situation.

Since Firebird 2.1 the Installer offers the possibility to install multiple instances.

IBExpert introduced its ownIBExpertInstanceManager as one of the HK-Software Service Control Center services in version 2008.08.08.

See also:
Download Firebird / Purchase InterBase
Firebird License Agreement
Copy of Firebird Information File
FirebirdClassicServerVersusSuperServer
Firebird SQL
Installation and the various Firebird documentation and articles found here: Documentation

?

9

Server versions and differences
1. Classic server
2. SuperServer
3. Embedded server
4. Firebird 3.0 - the best of both worlds

Server versions and differences
Firebird is available for various platforms, the main ones are currently 32-bit Windows, Linux (i586 and higher, and x64 for Firebird 2.0 on Linux), Solaris
(Sparc and Intel), HP-UX (PA-Risc), FreeBSD and MacOS X. Main development is done on Windows and Linux, so all new releases are usually offered first
for these platforms, followed by other platforms after few days (or weeks).

There is also a choice of server architecture: Classic server or SuperServer. If you're not sure after reading this chapter, whether the Classic server or the
SuperServer better meets your needs, then install the SuperServer.

Classic server
The Firebird Classic server offers multiple processes per connection and SMP (Symmetric Multi-Processing) support. Each connection uses one process. It
supports multi-processor systems but no shared cache. I.e. eachuser connecting and requesting data, will have his/her data pages loaded into the cache,
regardless of whether other users' request have already caused the server to load these pages. Whichof course leads to a higher RAM necessity. However,
as RAM and cache requirements are relevant to the size of the database file and the drive on which it is stored, the effects of this cache connection
architecture doesn't necessarilyhave to be a bad thing.

The current Firebird 2.0.3 Classic Server is an excellent server. Should youhave sufficient working memory, we recommend youuse the Classic Server and
set the cache per user somewhat lower.

Further information regarding the Classic server can be found in the Classic Server versus SuperServer article, in the InterBase Classic architecture chapter.

SuperServer
The Firebird SuperServer has one process and multiple threads, but no SMP (Symmetric Multi-Processing), i.e. a dual-core machine. It serves many clients at
the same time using threads instead of separate server processes for eachclient. Multiple threads share access to a single server process, improving
database integritybecause only one server process has write access to the database. The main advantage is however that all connected users share the
database cache. If a data page has already been loaded for one user, if the second user needs to access data on the same page, it doesn't need to be
reloaded a second time into the cache. For further information regarding the SuperServer, please refer to the Classic Server versus SuperServer article, in
the InterBase SuperServer architecture chapter.

Embedded server
The Embedded server allows only one local process per database, whichof course means that it is unsuitable for a web server! The Firebird 2.1 Embedded
Server versionprovides a useful enhancement: the client library is embedded in the server, this combinationperforming the work of bothclient and server for a
single attached application. Only a few files are required without installation. It mainly consists of a slightly larger fbclient.dll, which is capable of providing
the database server service to all installations. It is not necessary to install or start anything. This is particularlyadvantageous, for example, in the following
situation:

You have an accounting application in the old 1997 version that youneed to start todayto view old data that was created and processed using this version.
Normallyyou would have to search for the old version, install it, and - if for whatever reason it doesn't work anymore (or maybe younever managed to find it in
the first place!) - you can't get to your data. Solution: pack your accounting application onto a DVD together with the correct Firebird embedded version. You
canthen start the application directly from the DVD without having to search and install anything. This is particularlyuseful when archiving data.

Firebird is, by the way, one of the few database systems that can read a database on a read-only medium.

Firebird 3.0 - the best of both worlds
Firebird 3.0 is intending to combine the advantages of both Classic and SuperServer: a SuperServer with SMP (Symmetric Multi-Processing) support. It will
offer the shared cache, at the same time using multiple CPUs.

See also:
Firebird Classic Server versus SuperServer
Installing on Linux

10

Configuring Firebird
1. aliases.conf

Resolving the XP Windows System Restore
problem

2. firebird.conf
1. RootDirectory
2. DatabaseAccess
3. ExternalFileAccess
4. UdfAccess
5. TempDirectories
6. DefaultDbCachePages
7. RemoteServiceName
8. RemoteServicePort
9. RemoteBindAddress

10. CpuAffinityMask

Configuring Firebird
Before we take a look at the two Firebird configuration files, we would like to point out that the most frequently asked question regarding these subjects is, "I've
changed the parameter in the firebird.conf/aliases.conf and nothing's happened!" The simple solution is: remove the hash(#)! It's the symbol used for
commenting.

aliases.conf
An alias is a pseudonym for the database connectionstring and database file name. The full connection string usually consists of the server name (or
localhost) followed by the drive and path to the database file, with the database file name concatenating on the end. This informs the client, where he needs to
send his data packets and access server data.

For security reasons it is not alway desirable for eachclient user to see the full connectionstring, and there are obvious problems whicharise when the
database is moved to another drive or machine, as eachclient has to be informed of the new connection string. For these reasons it is recommended to give
databases an alias name. All alias names are set in aliases.conf. There are no syntactical restrictions to the naming of aliases.

Using an alias, users are not able to see where the database really is and, should it be relocated, the new connection string only needs to altered once in the
aliases.conf. Let's look at an example:

The alias db1 should refer to the database name, db1.fdb.

 db1=c:\path\db1.fdb

This user alias has been specified for the database server. The client can also define such an alias connection when registering the database or subsequently
in the IBExpert's Database Registration Info. The connection string is:

 servername:aliasname

If the user wishes to connect to db1, he simplyneeds to enter

 localhost:db1

in the Database Alias field. The aliases.conf file shows the server whichdatabase the client wishes to connect to.

When working with IBExpert, a database alias canbe specified when registering the database. Refer to Register Database / Alias for further information.

Resolving the XP Windows System Restore problem

11

Windows XP has the unfortunate tendency to consider all files with the .GDB suffix to be a constituent of the Windows System Restore. This means that when
youtry to open your DB1.GDB, XP (default setting) first decides to make a copy of the file (just in case youneed to restore it at some point), not allowing you
access until it's completed. In the case of large database files, you can imagine how long this can take!

If youdon't want to rename your database files just to suit Microsoft, then simplycreate an alias:

 C:\db1.gdb = C:\db1.fdb

firebird.conf
Possible file locations are set in firebird.conf. The full set of firebird.conf parameters are described in detail in the firebird.conf file. The server needs
to be restarted following any changes made in the firebird.conf for them to become valid. The following describes briefly the most important parameters:

RootDirectory

If youare using several installations of Firebird servers, use the RootDirectory parameter to specify where the active Firebird server can be found.

DatabaseAccess

Analias entry needs to exist. If a path is entered here, database files may only be stored in this path or its subdirectories.

 DatabaseAccess = NONE

means that only file locations set in aliases.conf are available. The server can't access any other entries. This is a great security feature, because evenwhen
someone has a user name on the database server, he cannot create a database file, because it is not possible to specifyan alias remotely.

ExternalFileAccess

Firebird has a mechanism enabling a table to be created externally, (i.e. not in the database), using the command:

 create table external file

In order to allow such external files it is necessary to explicitlyactivate the ExternalFileAccess parameter. Options include: None, Full or Restrict. If you
choose Restrict, provide a ';'-separated trees list, where external files are stored. Default value None disables anyuse of external files on your site.

UdfAccess

User-defined functions are used in Firebird to complement and extend the Firebird server's language. This parameter specifies where UDFs canbe found.
Theyare usually to be found in the subdirectory /UDF, and should - if possible - remain there. UdfAccess maybe None, Full or Restrict. If youchoose
Restrict, provide a ';'-separated trees list, where UDF libraries are stored.

TempDirectories

Here you canspecify where temporary files should be created. When the Firebird server receives a query including ORDER BY or similar, without an index, then
Firebird has to sort the data somewhere. Firebird has a so-called Sort Buffer, which is principallya memory area where such sorting processes can be
performed. If however you have a sorting operation that is 10 GB, Firebird needs somewhere to do this. From a certain size, when the Sort Buffer is no longer
sufficient, it moves the job out into a temporary file, and you canspecify here where these temp files should be.

Because of the intense batting backwards and forwards, youneed to know where your temp file is in relation to your database. As soonas youneed a temp
file, it's because you don't have enough RAM or you've exceeded your internal limits. By its very nature, it's going to be reading things from the database cache
and wanting to put things in the temp directory. So keeping those on separate disks will make a big difference. And you want to know where they are, to see
how big they're getting.

What do youdo if your database crashes mit-sort file? The temp files just sit there. So if youyour system hangs and you need to reboot, you could suddenly
have a lot of temp files. While they're being used they have a handle on them, so if you are allowed to delete or rename them, then it's fine because they're
orphans.

The default value is determined using FIREBIRD_TMP, TEMP or TMP environment options. Everydirectory item mayhave optional size argument to limit its
storage, this argument follows the directory name and must be separated by at least one space character. If the size argument is omitted or invalid, thenall
available space in this directory will be used.

Examples

 TempDirectories = c:\temp;d:\temp

or

 TempDirectories = c:\temp 100000000;d:\temp 500000000;e:\temp

DefaultDbCachePages

This influences the cache by setting the number of pages from anyone database that can be held in the cache at once. Bydefault, the SuperServer allocates
2048 pages for each database and the Classic allocates 75 pages per client connection per database. Before altering either of these values please refer to
Page size and Memory configuration.

RemoteServiceName

12

This is the TCP Service name to be used for client database connections. It is only necessary to change either the RemoteServiceName or RemoteServicePort,
not both. The order of precendence is the RemoteServiceName (if an entry is found in the services. file) and thenthe RemoteServicePort.

You don't need to change this if it's your only install.

E.g. RemoteServiceName = gds_db

RemoteServicePort

This is the TCP Port number to be used for client database connections. It is only necessary to change either the RemoteServiceName or RemoteServicePort,
not both. The order of precendence is the RemoteServiceName (if an entry is found in the services. file) thenthe RemoteServicePort.

You don't need to change this if it's your only install.

E.g. RemoteServicePort = 3052

RemoteBindAddress

Allows incoming connections to be bound to the IP address of a specific network card. It enables rejectionof incoming connections through anyother network
interface except this one. Bydefault, connections from any available network interface are allowed.

CpuAffinityMask

This parameter only applies to SuperServer on Windows.

In an SMP (Symmetric Multi-Processing) system, this sets whichprocessors canbe used by the server. The value is taken from a bit map in whicheach bit
represents a CPU. Thus, to use only the first processor, the value is 1. To use both CPU 1 and CPU 2, the value is 3. To use CPU 2 and CPU 3, the value is 6.
The default value is 1. It doese make sense however to allow Firebird to use at least 2 CPUs, so that if the traffic on one of them gets halted due to, for
example, a querygoing wrong, all other traffic can use the second CPU.

 CpuAffinityMask = 1

13

Download and install InterBase®
This guide will lead you through the process of downloading and installing the free trial version of InterBase. For those having purchased InterBase®, the
installationroutine is the same (just skip the download instructions).

The current InterBase® trial version (at the time of writing this) was version2007. It is a full InterBase server versionand runs for 90 days. It canbe downloaded
free of charge from http://www.codegear.com/downloads.

Click on InterBase, and thenscroll down the list of Server versions and select the one you require.

Click the Download button and agree to complywith the Export Controls, to download the InterBase software to your hard drive.

14

http://www.codegear.com/downloads

You will then need to enter your name, email and basic company information to receive your activitationcertificate. You will need to activate InterBase 2007
Server Trial for Windows, otherwise it won't run. Fill out the online form and your activation information will be immediatelymailed to your inbox. If youalready
have the InterBase 2007 Server Trial for Windows on disc, you do not need to download it, but you will still need to request activation here.

You must save the emailed activation file to your InterBase /license directorybefore you canuse InterBase. If the server won't start, your activation file maynot
have been saved correctly. The email provides complete instructions.

Extract the downloaded ZIP file (for example in Windows to C:Program FilesInterbase) and start the relevant install_[platform].exe file.

To start the installationsimply double-click the install executable.

15

For those installing InterBase for the first time, we recommend first clicking the InterBase Setup Information button (or openIBSetup.html in the installation
package to open: Installation, Registration, and Licensing Information for Borland® InterBase® 2007.

The Install Borland InterBase Server button guides youthrough the installation: Check the software to be installed, and follow the prompts to accept the
license agreement. Confirm whether youwish to use Multi Instances; if you do, change the Instance Name and TCP Port from the default values, gds_db and
3050. Thenconfirm which options youwish to install, confirm the directory to be installed into or select a directory of your choice. After prompting a couple more
times, InterBase is then installed.

The Registration Wizard then automaticallystarts for those who have purchased InterBase. Users of the Trial versionshould follow the instructions in the
Product Registration email from CodeGear.

16

1. What is IBExpert?
2. Download and install IBExpert on Windows

1. Customer Version
2. Personal Edition
3. Trial Version

3. Installing IBExpert on Linux

What is IBExpert?
Visit our product site for further details.

Test IBExpert for yourself - simplydownload the Trial Version (setup_trial.exe). These files are fully functional versions in the last stable build. They run for 45
days without anyrestrictions.

Alternativelypurchase a full registered IBExpert version; againdetails can be found on our website.

Download and install IBExpert on Windows
Customer Version
IBExpert canbe downloaded from the IBExpert download pages. There are a number of versions - please refer to IBExpert licenses for further information.

If you are installing a new IBExpert version update (after December 2007) over an older IBExpert version (before December 2007) youwill need to uninstall
older versions first, as we have updated the IBExpert installer. You cando this simply and quickly by selecting all IBExpert products in the Windows Control
Center / Add or Remove Software.

All registered databases are stored in the directory, C:\Documents and Settings\\Applicationdata\HK-Software\IBExpert or, if used, in the User
Database. Please backup these files before uninstalling.

The download page on the IBExpert website offers a number of download options:

Registered customers should click on the Customer Download link. Enter your user name and the password supplied with the registrationconfirmation. The
Username is a combination of key A and keyB (for example 1234567887654321when key A is 12345678 and key B is 87654321). The Password is always
ibexpert.

17

The current IBExpert version can be found by scrolling down to setup_customer.exe: these files include the unlimited use of the full version. These setup_
customer.exe files comprise the full IBExpert Developer Studio versions, and replace the previous (before April 2006) executables.

For customers installing their first registered IBExpert customer version, you will be asked to register the product the first time you start the application. Please
check that the computer name and companyname which appears in the Registration window is the same as the computer name and company name quoted
on your license form. Thensimply enter Key A and Key B and click the Register button. You should receive a confirmation message stating that your IBExpert
versionhas been successfully registered. Customers with site or VAR licenses need to copythe license file into the IBExpert directorybefore starting IBExpert
for the first time, in order to avoid this keyrequest.

Personal Edition
Those wishing to download the free Personal Edition (for more information please refer to IBExpert Personal Edition), click on Download Free to register at
the IBExpert Download Center:

Once youhave registered youwill be sent a password by e-mail whichallows youaccess to the IBExpert Personal Editiondownload file. You simply need to
login, click the Download tab to switch to the Download page, and select the file required.

The Install Wizard offers those IBExpert Developer Studio Tools available in the Personal Edition:

18

Trial Version
For those wishing to download the IBExpert Trial Version, go to Download Trial and click Download to download the setup_trial.exe file.

The IBExpert Customer and Trial versions both offer the full selection of all IBExpert Developer Studio Tools:

Following confirmation of the License Agreement and confirmation or alteration of the installationdirectory, IBExpert is automatically installed and started.

19

To alter the IBExpert interface language, use the IBExpert menu Options / Environment Options. Use the drop-down list found under Interface Language to
select the language of your choice. This dialog also offers default options for the specificationof the database version and client library.

Should youencounter anyproblems whilst attempting to download IBExpert, please send an e-mail (in either the English or German language) to register@
ibexpert.biz, with a detailed error description.

To keep you informed of all new developments, we recommend you retain IBE Direct which is automatically activated in IBExpert. Further information
regarding IBE Direct and adjusting the default settings canbe found in the IBExpert Help Menu/ IBExpert Direct.

We also recommend yousubscribe to the IBExpert newsletter, which informs you of new developments and new versions (including documentation of all new
features). Simply send a mail to news@ibexpert.com entering SUBSCRIBE in the subject heading.

Installing IBExpert on Linux
For tips and tricks regarding the installation of IBExpert on a Linux platform, please refer to our database technologyarticle: Using IBExpert and Delphi
applications in a Linux environment, accessing Firebird.

See also:
Select interface language

20

mailto:.Simplysendamailtonews@ibexpert.comenteringSUBSCRIBEinthesubjectheading.

IBExpert Personal Edition
The IBExpert Personal Edition is a free version, offering new users the chance to get acquainted with IBExpert at their ownpace. It is however somewhat
limited in its functionality, and does not include the following features:

Data Analysis
Database Designer
SP/Triggers Debugger
Visual Query Builder
Report Manager
Test Data Generator
Blob Editor
Grant Manager
SP/Triggers/Views Analyzer
Database Comparer
Log Manager
Table Data Comparer
IBEScript and IBEBlock
some other features such as autogranting privileges, recomputing selectivity of all indices etc.

These features can be viewed and tested in the IBExpert Trial Version.

IBExpert version2006.06.18 introduced a new URL to download the IBExpert Personal Edition:

IBExpert Download Center: http://www.ibexpert.com/downloadcenter

You will need to enter a valid e-mail address to receive a personal password, allowing youaccess to the the IBExpert Download Center:

Simply follow the directions for new and existing users, as detailed in the dialog.

Please note that if you enter your full address on the right-hand side of the registration dialog, youcan attainaccess to the download PDF of the IBExpert Book
- Tools for Database Developers, with over 600 pages of documentation about IBExpert, Firebird and InterBase.

Once you have received your password youcan login into the IBExpert Download Center and download either the IBExpert Personal Edition, the IBExpert
Book PDF file or information regarding the new IBExpertWebForms:

21

http://www.ibexpert.com/downloadcenter

The IBExpert Download Center is the first real life application created with IBExpertWebForms, a new technology whichwas introduced as a full Trial Version
in IBExpert version 2007.06.05.

Further information regarding the free IBExpert Personal Editioncan be found in the IBExpert online documentation and in the IBExpert Book.

22

Registering a database (using the EMPLOYEE) example
In order to administrate a database using IBExpert, it is first necessary to register the database. For detailed information regarding database registration,
please refer to Register Database.

Here we will briefly show how to register a database, based on the sample EMPLOYEE database supplied with both Firebird and InterBase.

First open the Register Database dialog, using the IBExpert menu item Database / Register Database, right-clicking in the Database Explorer (left-hand
panel) and selecting the Register Database menu item, or using the key shortcut [Shift + Alt + R].

The Register Database dialog appears:

(1) Server: first the server storing the database needs to be specified. This can be local (localhost) or remote (see Create Database). Byspecifying a local
server, fields (2) and (3) are automaticallyblended out, as they are in this case irrelevant.

(2) Server name: must be known when accessing remotely. The standard port for InterBase and Firebird is 3050. However this is sometimes altered for
obvious reasons of security, or when other databases are already using this port. If a different port is to be used for the InterBase/Firebird connection, the port
number needs to be included as part of the server name (parameter is server/port). For example, if port number 3055 is to be used, the server name is
SERVER/3055. This is sometimes the case when a Firewall or a proxy server is used, or when another program uses the standard port. For using an alias path
for a remote connection, please refer to the article remote database connect using an alias.

(3) Protocol: a pull-down list of three options: TCP/IP, NetBEUIor SPX. TCP/IP is the worldwide standard (please refer to Register Database for more
information).

(4) Server versions: this enables a server version to be specified as standard/default from the pull-down list of options. This is necessary for various internal
lists. For example, possible key words can be limited this way.

(5) Database File: by clicking on the folder icon to the right of this field, the path caneasily be found and specified and the database name and physical path
entered. For example for Firebird:

C:ProgramsFirebirdFirebird_1_5examplesEMPLOYEE.FDB

for InterBase:

C:ProgramsInterbaseexamplesEMPLOYEE.GDB

If no database alias has beenspecified, the database name must always be specified with the drive and path. Please note that the database file for a
Windows server must be on a physical drive on the server, because InterBase/Firebird does not support databases on mapped drive letters.

(6) Database Alias: descriptive name for the database (does not have to conform to anynorms, but is rather a logical name). The actual database name and
server path and drive information are hidden behind this simple alias name - aiding security, as users only need to be informed of the alias name and not the
real location of the database. For example:

Employee

23

(7) User Name: the database owner (i.e. the creator of the database) or SYSDBA.

(8) Password: if this field is left empty, the password needs to be entered each time the database is opened. Please refer to Database Login for further
information. The default password for SYSDBA is masterkey. Althoughthis maybe used to create and register a database, it is recommended - for security
reasons - that this password be changed at the earliest opportunity.

(9) Role: an alternative to (7) and (8);can initially be left empty.

(10) Charset (abbreviation for Character Set): The default character set can be altered and specified as wished. This is useful when the database is
designed to be used for foreign languages, as this character set is applicable for all areas of the database unless overridden by the domain or field definition.
If not specified, the parameter defaults to NONE (the default character set of EMPLOYEE.FDB), i.e. values are stored exactly as typed. For more information
regarding this subject, please refer to Charset/Default Character Set. If a character set was not defined when creating the database, it should not be used
here.

(11) Additional connect parameters: input field for additional specifications. For example, system objects such as system tables and system-generated
domains and triggers canbe specified here. Theywill then automaticallybe loaded into the Database Explorer when opening the database alias.

(12) Path to ISC4.GDB: This can be found in the InterBase or Firebird maindirectory. This database holds a list of all registered users with their encrypted
passwords, who are allowed to access this SERVER. Whencreating new users in earlier InterBase versions (<6), IBExpert needs to be told where the ISC4.GDB
canbe found. Since InterBase version 6 or Firebird 1 there is a services API. So those working with newer versions mayignore this field!

(13) Always capitalize database objects' names (checkbox): this is important as in SQL Dialect 3 entries can be written in upper or lower case
(conforming to the SQL 92 standard). InterBase however accepts such words as written in lower case, but does not recognize them when written in upper
case. It is therefore recommended this always be activated.

(14) Font character set: this is only for the IBExpert interface display. It depends on the Windows language. If an ANSI-compatible language is being used,
thenthe ANSI_CHARSET should be specified.

(15) Test connect: the Comdiag dialog appears with a message stating that everything works fine, or an error message - please refer to the IBExpert
Services menu item, Communication Diagnostics for more details.

(16) Copy Alias Info: alias information from other existing registered databases can be used here as a basis for the current database. Simply click on the
button and select the registered database which is to be used as the alias.

(17) Register or Cancel: after working through these options, the database can be registered or cancelled.

Details of further options (listed in the left-hand panel in the Register Database dialog) may be found under Register Database (individual subjects are listed in
the upper gray panel in the online documentation). These are not compulsory, and may be altered at a later date, if wished, using the Database / Database
Registration Info menu item.

Following successful registrationof EMPLOYEE database, it will appear in the on the left-hand side. Simply double-click on the database name to connect to it.

24

Working with a database
A registered database can be connected simply by double-clicking on the database name in the DB Explorer.

Alternativelyuse the IBExpert menu item Database / Connect to Database, click the Connect Database icon in the toolbar, or use the keyshortcut [Shift + Ctrl
+ C]. The database and its objects appear in a tree form in the DB Explorer:

For information with regard to the details displayed in the DB Explorer, please refer to Register Database / Additional and the IBExpert Options menu,
Environment Options / Tools for alternatives regarding the DB Explorer.

The individual database objects maybe opened by double-clicking on the object name. For further information about the individual objects, please refer to
Database Objects.

For further information regarding IBExpert navigation, please refer to IBExpert Screen. Options and templates may be specified and adapted using the
IBExpert Options menu. Other important IBExpert features canbe found in the IBExpert Tools menuand IBExpert Services menu.

The IBExpert online documentation provides not only a comprehensive documentation for using IBExpert, but also offers many tips for those new to database
development. The online documentation canbe viewed under http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpert or alternatively individual subjects may be
viewed context-sensitively, using the [F1] key from anyIBExpert dialog or the DB Explorer. The documentation includes a search functionand a Recent
Changes function. Or you candownload the complete documentation files onto your hard drive.

And if youcan't find an answer to your problem there, please mail us at documentation@ibexpert.com.

See also:
Database Objects
IBExpert Screen
SQL Editor
IBExpert Help menu

25

http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpertoralternativelyindividualsubjectsmaybe
mailto:pleasemailusatdocumentation@ibexpert.com.

IBExpert Screen
1. IBExpert Splash screen
2. Title bar
3. Menu

1. Keyboard Shortcuts (Localizing Form)
4. Toolbars

1. Icons
5. Database Explorer

1. Drag 'n' Dropping Objects into Code Editors
2. Database Folder
3. Project View
4. Diagrams (Database Designer)
5. Windows Manager
6. Recent List
7. Scripts/Blocks
8. Inspector Page Mode

6. SQL Assistant
1. Dynamic Help
2. Model Navigator (Database Designer)

7. Windows bar
8. Status bar

1. 253 changes of table left
9. Exit

IBExpert screen
WhenIBExpert is started, the standard IBExpert screen appears as follows:

The standard IBExpert settings displaya large working window, with the menu (2) and toolbars (3) at the top of the screen, a windows bar (6) and status bar
(7) at the bottom, and the DB Explorer (4) on the left, divided from the SQL Assistant (lower left) (5) by a splitter.

The IBExpert View menucan be used to blend the DB Explorer, status bar, windows bar and toolbars in or out.

Further visual options canbe specified by the user in the IBExpert Options menu.

IBExpert Splash screen
The IBExpert splash screen appears when IBExpert is started. It displays the IBExpert logo and version number.

26

The splash screen may be disabled if wished, by checking the Don't ShowSplash Screen option, found under Options / Environment Options on the initial
Preferences page.

(1) Title bar
The title bar is the blue horizontal bar at the top of the main IBExpert screen, and at the top of all IBExpert editors. It displays the program or editor name on the
left, and in the right hand corner there are four small icons (from left to right):

1. Print (only on the IBExpert screen with the MDIInterface; with the SDI Interface it appears on the active window/editor)
2. Minimize IBExpert / Editor window
3. Maximize IBExpert / Editor window
4. Exit IBExpert / Exit Editor

(2) Menu
The IBExpert menubar can be found at the top of the screen:

The individual menuheadings conceal drop-down lists, opened simply by clicking on one of the words with the mouse or by using [Alt + {underlined letter}],
e.g. the Database menu canbe started by clicking with the mouse on the word database, or by using the keycombination [Alt + D].

The most frequently-used menu items can also be found in the toolbars, represented as icons, or using the right mouse button in either the DB Explorer or the
main editors. Alternativelykeyboard shortcuts can also be used.

Keyboard Shortcuts (Localizing Form)

Many menu items can also be executed using so-called keyboard shortcuts (a combination of keys). Where available, these are listed to the right of the menu
item name in the menus, and when the cursor is placed over a toolbar icon.

[Ctrl + Shift + Alt + L] works in almost all IBExpert forms and calls the Localizing Form, where you can refer to a complete list of all available shortcuts relevant
to the active dialog. It is possible to specifyyour ownshortcut for opening the Localizing Form in the IBExpert Options menu item, Environment Options, under
Localize form shortcut.

27

(3) Toolbars
The toolbar is a row of symbols (called icons), representing different menu items. By clicking on an icon with the mouse, a pre-defined menu item is executed.
This shortcut is ideal for those operations performed often, as theysave the necessityof repeatedlysearching through the main menus.

Toolbars canbe found in IBExpert in the mainwindow and in the maineditors. As with most Windows applications the toolbars are positioned as standard in
a horizontal row directlybelow the main menu in the upper part of the window, or in the upper part of the dialogs. They canhowever be positioned as wished
within the window (main or dialog) using drag 'n' drop.

Whenthe cursor is placed over an icon the respective menucommand and keyboard shortcut are displayed.

The user can specify which toolbars he wishes to be displayed in the main IBExpert window using the menu item View / Toolbars.

The individual icons canbe specified using the Customize... menuitem, opened by holding the mouse over the toolbar and right-clicking.

The Customize Tools page displays a list of the toolbar options available. User-defined toolbars can be created here if wished, or reset to the original
IBExpert toolbar.

28

The Command page enables the different menuoptions listed under Categories to be selected, and the icons (in the right-hand list) added or removed to
toolbars using drag 'n' drop.

The Options page allows certain menu and iconoptions to be checked if wished.

The Editor toolbars can be customized by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check
the relevant icons in the menu list, or using the above method by selecting the last menu item Customize...

Should you ever experience problems with anyof the toolbars in IBExpert, simply delete IBExpert.tb, found in Documents and Settings<user>Application
Data\HK-Software\IBExpert and thenrestart IBExpert.

The individual IBExpert toolbars are listed in more details in the Addenda.

Icons

Icons are a principal feature of graphical user interfaces. An icon is a small, square graphical symbol.

Each icon represents a menu item, the description of whichappears, when the mouse is held over it. Icons can be used as shortcuts by those users who work
mainly with a mouse (as opposed to the keyboard).

Icons are usually grouped together in a toolbar, whichoffers a series of symbols all relating to a certain subject, e.g. new database object, grants etc.

(4) Database Explorer
The IBExpert Database Explorer is a navigator whichconsiderablysimplifies the work with InterBase/Firebird databases and the database objects.

The Database Folder displays all registered databases at a glance. A database connectioncan be made simply by double-clicking on the database name.

?

29

Each connected database is displayed in a logical tree form, including a list of all the database objects created in this database. If the database contains
objects of some of these types, the name of the respective object branch appears in bold. The blue number in brackets behind the object caption shows the
number of objects already created for this database.

Detailed information regarding the highlighted database object canbe viewed in the SQL Assistant (below the DB Explorer).

The object tree branches canbe expanded or reduced by double-clicking the object heading or clicking the"+" or the "-" sign to the left of these headings
(alternatively use the "+" and "-" keys to open a highlighted object heading). The individual objects themselves can be opened with a double-click or by
pressing the [Enter] key.

The object description can be seen to the right of the object name, provided a description was inserted at the time of creation, and providing the DB Explorer
is opened wide enough (the width of the DB Explorer can be expanded or reduced by dragging the right-hand splitter (i.e. the divider between the DB Explorer
and the MainWindow) with the mouse).

Should youexperience anyproblems with double-click expanding, or your object descriptions are not displayed at all, please check the IBExpert Options
menu item Environment Options under the branch, DB Explorer, to ensure that these options have beenchecked. It is also possible to specify color display
here for system objects, the Database Folder and inactive triggers.

Whena database, the object captions or the objects themselves are highlighted, the DB Explorer menucan be opened by right-clicking the mouse. The
contents of the Database Explorer can be refreshed using [F5].

30

Using the control panel and right mouse button many basic metadata and data operations can be performed directly from the DB Explorer, such as creating,
editing and dropping a database and its objects. Since IBExpert version 2006.08.12 it is also possible to unregister more than one database at the same
time. In IBExpert version 2004.12.12.1 the option to activate/deactivate only selected procedures/triggers was added. Just select the required SP/triggers
holding the [Ctrl] or [Shift] keys and choose the Deactivate/Activate item in the DB Explorer context menu. A further optionwas added in IBExpert version
2005.06.07 to sort database/folder nodes in ascending or descending order. And IBExpert version 2006.12.11 introduced the possibility to autogrant
privileges for several selected objects at a time.

In IBExpert version2004.9.12.1 a separate node was added for database indices. It is also possible to displaysystem indices (indices for system tables). Use
the IBExpert menu item Database Registration Info / DB Explorer / Additional / Show System Indices to enable/disable the displayof system indices.

In IBExpert version2004.12.12.1 support for InterBase 7.5 embedded user authentication was added. There is now a separate node for embedded users in
the Database Explorer. It is possible to create, alter and delete embedded users using the DB Explorer context menu.

IBExpert version2008.02.19 introduced the new menu item, Apply IBEBlock to selected object(s). This feature is based on the IBEBlock functionality and
allows you to create your ownset of code blocks to process selected object(s). Inplace debugging is available.

Since IBExpert version 2006.01.29 it is possible to execute Firebird 2.0 blocks, IBEBlocks and IBEScripts stored in registered databases or in the User
Database from the DB Explorer, by using the relevant context-senstive menu item, when a script is highlighted, or by opening the script (double-click to open
the Block Editor) and executing with [F9].

The text input field at the top of the DB Explorer (directlyunderneath the tabs) can be used to filter object names, e.g. to search for an object, EMP, simply type
EMP. If EMP* or EMP% is typed, IBExpert displays all objects beginning with EMP; for an object ending in EMP, type *EMP or %EMP. To displayobjects which have a

31

substring in their name, it is necessary to type *EMP* or . It is also possible to use ? For example, to displayobjects whose names start with EMP and are exactly
6 symbols in length. In this case type EMP???. Regular expressions are, of course, also allowed.

Please note that this optiondoes not, however, search for individual fields - if this is required, use the IBExpert Tools menu item, Search in Metadata.

Certain displaydefault filters can also be defined, under Register Database / Explorer Filters. And under Database Registration Info or Register Database,
system tables , system generated domains and triggers and object details (fields, triggers etc. relating to a specific object) can be displayed or blended out
as wished, by clicking on the Additional / DB Explorer branches.

The DB Explorer includes the following tabs:

Database Folder (described above)
Project View
Diagrams (only visible when the Database Designer is in use)
Windows Manager
Recent List
Scripts/Blocks (new to IBExpert version 2005.12.04)
Inspector Page Mode

[F11] blends the DB Explorer in and out. And please also refer to the IBExpert Menu item View / Autohide DB Explorer. This optionnamely enables the DB
Explorer to disappear automatically when anyeditor is opened - allowing a larger working area. It is blended back into view simplyby holding the mouse over
the left-hand side of the IBExpert mainwindow.

Drag 'n' Dropping Objects into Code Editors

Objects maybe dragged 'n' dropped from the DB Explorer and SQL Assistant into many of the IBExpert Tools and Services code editor windows, for example,
the SQL Editor and Query Builder. Since version 2004.2.26.1 this has been greatly improved: when an object node(s) is dragged from the DB Explorer or
SQL Assistant, IBExpert will offer various relevant versions of text to be inserted into the code editor. And since IBExpert version 2006.03.06 the charcase of
keywords and identifiers specified under Options / Editor Options / Code Insight is taken into account.

Since IBExpert version 2004.8.5.1 it is possible to store server info (server type, server name, server version, connection protocol) and client library name for
database folders.

IBExpert version 2008.02.19 introduced the possibility to create your own sets of statements that will be composed when youdrag-n-drop object(s) from the
Database Explorer into any code editor. This feature is based on IBEBlock.

?

32

Database Folder

The DB Explorer Database Folder can be used to specifya selection of databases as wished, so that it is not necessary to search through all available
databases eachtime a specific database is required. The database folder allows a hierarchical classification of the Database Registration. This is for
example useful for system vendors with many customers and databases, and simplifies, for example, the logging in to customer databases via a router.

When a database is registered, it is automatically displayed here in the folder list. Connected databases are displayed in bold, disconnected in normal type.
Please note: it is possible to blend out all unconnected databases using the DB Explorer right-click menu item, Hide Disconnected Databases.

A new database folder can be created in the DB Explorer by highlighting the connected database for whicha folder is to be created, right-clicking and
selecting NewDatabase Folder ... (or [Ctrl + N]).

It is thenpossible to rename the database folder, by selecting the folder and using the right-click context-sensitive menuor [Ctrl + O]:

Since IBExpert version 2004.8.5.1 it is also possible to store server information (server type, server name, server version, connection protocol) and client
library name for database folders.

A folder canalso be deleted (again, using the right-click menuor [Ctrl + Del]). Please be careful when using this delete command, as IBExpert does not ask for
confirmation before deleting the folder!

Project View

In the DB Explorer, projects can be defined to streamline the overview of database objects currently being worked with.

33

Database objects withina database can be hierarchically classified (user-specified) as wished. For example, for an Accounts project, only those objects
necessary for all accounting processes are included, a Sales project would include certain objects used in Accounts and also, in addition, sales-specific
objects.

This is ideal for large software projects in an enterprise.

The first time a folder or object is inserted in the project tab, IBExpert asks for confirmationwhether it should create certain system tables for the project page.

This only needs to be confirmed once. Following this, folders and objects can be inserted as wished using the right mouse button menu, [Shift + Ctrl + F] or
drag 'n' drop in the Inspector Page Mode, to organize databases individually and personally.

The context-sensitive right-click menu offers a number of further options:

34

These menu options allow new folders to be created, objects to be added to or deleted from a project (and searched for within the Explorer tree). User items
may be created and copied; and the visual displaycustomized (ShowSQL Assistant, Inspector Page Mode, Hide Disconnected Databases). Since IBExpert
version 2004.2.26.1 there is also the added option to sort items in alphabetical order, using the menu item Sort child nodes alphabetically.

Diagrams (Database Designer)

The Diagrams page was added in IBExpert version2004.9.12.1. It provides a Model Navigator to navigate models in the Database Designer quickly and
easily.

%

Simply click on an object in the DB Explorer, and it is immediately marked in the main Database Designer window. Double-clicking on a selected object
automatically opens the Model Options page in the Database Designer.

Please also refer to the Model Navigator in the SQL Assistant.

Windows Manager

The Windows Manager can be opened using the IBExpert Windows menu item Windows Manager, the keycombination [Alt + O], or - of course - by simply
clicking on the Windows tab heading directly in the DB Explorer.

In the DB Explorer, the Windows page displays a list of all open windows, and allows the user to change quickly and easily from one window to the next by
simply clicking on the object name in the list.

35

The right mouse button can be used to close individual or all windows, or to find the selected object in the DB Explorer database tree.

A floating Windows Manager has been implemented since IBExpert version 2005.08.08. It is now possible to float the Windows tree using the right-click
context menu. The floating Window can be returned to the DB Explorer by unchecking the context menu-item Floating Windows Manager.

The openwindows can also be viewed and selected in the windows bar, directlyabove the status bar at the bottom of the IBExpert Screen.

Recent List

Byclicking on the Recent tab in the DB Explorer, a list of the most recent objects worked uponappears.

36

This list can be sorted by object name, date or count in ascending or descending order, by simplyclicking on the columnheader. The object can be reopened
by double-clicking.

Scripts/Blocks

This page is new to IBExpert version 2005.12.04. It displays all existing IBEScripts and IBEBlocks saved locally in the database.

37

There are two ways to store the blocks and scripts: (i) in a registered database or (ii) in the IBExpert User Database, whichcan be activated using the
IBExpert Options Menu/ Environment Options / User Database.

To create a new script in a registered database, click on the Scripts node in the connected database, and use the context-sensitive (right-click) menuto
create a new script. You can also create IBEBlocks and Firebird 2 blocks (EXECUTE BLOCK) in this way within your database. Each script or block must have a
unique name (up to 100 characters) within the database.

To create a new script in the User Database, first enable the option in the IBExpert Options menu/ Environment Options / User Database and restart IBExpert.
You should now see a new table in the Database Explorer: Scripts/Blocks. This allows youto create scripts and blocks using the context-sensitive menufrom
the Scripts/Blocks tree and also organize them in folders.

We stronglyrecommend using the IBExpert User Database as a mainstorage for IBExpert, even if youdo not need the scripts/blocks feature.

Since IBExpert version 2006.01.29 it is possible to execute Firebird 2.0 blocks, IBEBlocks and IBEScripts stored in registered databases or in the IBExpert
User Database directly from the DB Explorer. Simply use the DB Explorer right-click context menuor open the script in the Block Editor and execute using [F9]
. IBExpert version2008.08.08 introduced the possibility to recreate selected views based on IBEBlock and the ibec_GetViewRecreateScript functionusing
the DB Explorer context-sensitive menu, Apply Block.

Please refer to IBEBlock and IBEScripts for further information concerning the many possibilities of these comprehensive features. Refer to BlockEditor for
information regarding the creation, alterationand execution of blocks and scripts.

Inspector Page Mode

Wheneither the Database Page or the Project Page in the IBExpert DB Explorer is active (i.e. visible in the foreground), it is possible to compare the two to
eachother by switching on the Inspector Page Mode.

38

This canbe done using the right-click menuand selecting Inspector Page Mode, to produce two adjacent windows:

Objects can be dragged 'n' dropped from one window to the other, allowing a quick and easy selection of those objects necessary for a project.

To return to a single window display in the DB Explorer, simplyright-click and the select the menu item Inspector Page Mode again.

(5) SQL Assistant
The IBExpert SQL Assistant offers additional detailed information regarding the highlighted database, object or group of objects in the DB Explorer. It can be
found in the lower left-hand part of the screen, directlybelow the DB Explorer.

When a database in the DB Explorer is highlighted, the Properties page displays the actual server versionof InterBase or Firebird (this can be subsequently
corrected in the Database Registration if specified wrongly or previouslyunknown). The Active Users page shows which users are currently logged on to the
database.

Selecting an object group in the DB Explorer displays a list of the corresponding objects. Selecting a single object displays detailed object information and
content in the SQL Assistant.

New to IBExpert version 2006.10.14:

When a database node is selected in the DB Explorer, the SQL Assistant displays the full path to a client library that is used while working with the
database.
the SQL Assistant displays the client library version number for an active database node.

39

Whena table is selected in the DB Explorer, the fields are not only displayed in the SQL Assistant, but can also be selected and incorporated into any of the
SQL Editors using drag 'n' drop. Since version 2004.2.26.1 this has been greatly improved. Whenan object node(s) is dragged from the DB Explorer or SQL
Assistant, IBExpert will offer various relevant versions of text to be inserted into the Code Editor.

The SQL Assistant can be blended in and out as wished using [Ctrl + A] or the DB Explorer right-click menu item ShowSQL Assistant.

Dynamic Help

The Dynamic Help page canbe found in the SQL Assistant (underneath the DB Explorer) and offers context-sensitive help.

Since IBExpert version 2004.2.26.1, this has been replaced by a new context-sensitive dynamic help system. Pressing [F1] in anyof the IBExpert forms now
opens a new web-based Help page. It is also possible to download all Help files from http://www.ibexpert.info/documentation/documentation.zip and unzip this
in the IBExpert main directory with subdirectories (there must be a new subdirectory called documentation).

If a local Help document is available, it will be opened in the browser. Otherwise the browser will open the page from our web server.

Model Navigator (Database Designer)

The Model Navigator page was added in IBExpert version2004.9.12.1. It provides a visual orientation to aid navigation of models in the Database Designer.

The red rectangle indicates whichpart of the database model is currently being displayed in the main Database Designer window. It is possible to move this
rectangle by drag 'n' dropping with the mouse - much quicker and easier thanmoving about in the mainDatabase Designer window.

Please also refer to the Diagrams page in the DB Explorer which lists all model objects in the usual DB Explorer tree form.

(6) Windows bar
The IBExpert windows bar is a horizontal bar and can be found in the lower area of the screen, directly above the status bar:

This displays the number and type of open windows in IBExpert; the symbols indicating the editor type (e.g. Table Editor, Procedure Editor, etc.), followed by
the object name or editor type.

(7) Status bar
The IBExpert status bar is a horizontal bar found in the lower area of the screen, directlybelow the windows bar:

40

http://www.ibexpert.info/documentation/documentation.zipandunzipthis

This displays information concerning the current status of, for example, the connected database, the IBExpert window contents and memory.

253 changes of table left

Each table in an InterBase/Firebird database has its ownmetadata changes counter. The metadata of each table can be altered 255 times (add or remove
columns, change field type etc.). This limitation is because Firebird/InterBase sets an internal 1 byte flag, which is stored alongside eachdata set,
representing the so-called record structure version. For example, you have 1,000 data sets in a table with five fields. You extend the table to six fields, and then
add a further 1,000 data sets. The old first 1,000 data sets are not revised at all, but are still stored with the old data structure, unless you have instructed the
server to set the data content of the sixth field for these old data sets at NULL or a specified default value. If this new field is created with a NOT NULL constraint,
these old fields will all need to be updated. The internal flag simply ensures that a maximum of 255 such changes are possible.

When anyof these counters reaches the value of 255 it is not possible to alter anytables anyfurther, and a database backup and restore is necessary. The
backup and restore ensure that all data sets are now stored with the current single valid record structure, and youcan continue to make further table
alterations.

IBExpert indicates in the status bar how many changes may be made in the table with the lowest value (253 changes of table [table_name] left) in the
database before being forced to perform a database backup and restore. This message maybe deactivated if wished, using the IBExpert menu item,
Database / Register Database or Database / Database Registration Info, and checking the optionDon't display metadata changes counter info on the
Additional page.

Exit
Exit is the command used to close IBExpert. The program canbe closed by using either the menu item Database / Exit, or clicking the black X button in the
top right-hand corner of the screen. Alternatively the keycombination [Alt + F4] maybe used.

IBExpert requires confirmation that you really wish to exit the program - either click on Yes or press the Return/Enter key. Should you wish to eliminate this
default setting, uncheck the Confirm Exit box found in the IBExpert Options / Environment Options menuunder Confirmations.

Any editors left open at the time of exiting, will automaticallybe loaded the next time that IBExpert is started, unless the following default setting is switched off:
Options / Environment Options / Preferences - uncheck Restore Desktop after Connect.

All connected databases are automatically disconnected when IBExpert is shut down.

See also:
Environment Options
IBExpert Toolbars
Toolbar options SQL Editor
Database Objects

Where to go from here
If you're just starting out, take the time to read through these documentation sources intended for beginners:

Firebird Administration using IBExpert - an introduction for DBAs using Firebird or InterBase together with IBExpert.
Firebird 2 Administration Handbook - an introduction for DBAs using Firebird and its command-line tools.
Firebird Development using IBExpert - an introduction for developers using Firebird or InterBase together with IBExpert.
Firebird 2 Cheat Sheet - this provides a summaryof the most common definitions and functions
Definitions and Field Definitions are IBExpert's owndefinitions and explanations of database basics
Glossary - definitions of many terms that maybe new to you.

41

IBExpert Database menu
A relational database is a collectionof tables related to each other, each storing a specific set of data. A database also contains indices, business rules and
processes, for the database administration. It can be considered to be a collection of pages, eachpage being of a pre-defined size, which is determined when
the database is created.

The data itself maycontain any information, be it for business accounts, sales, scientific measurement logging or personal addresses and finances. The
information stored in a database may be shared by more than one application.

Available databases canbe viewed in IBExpert in the left-hand panel, the DB Explorer. Connected registered databases are displayed in bold type.

The relational system assumes the following:

1. The physical storage model and the logical data storage in files are independent of each other.
2. All data is stored in tables.
3. Users do not need to know which files are stored how and where. Access occurs via tables, whichrepresent a logical view of data.
4. A data set's physical position in the database is irrelevant to the user.
5. The relational database administrates all information necessary for internal access optimization internally, using indices.
6. The relational database undertakes the data integrity checks independently.

InterBase/Firebird administrates data in database objects. Within the database, the following database objects (database metadata) can be created and
maintained:

1. Domains
2. Tables
3. Generators
4. Constraints
5. Indices
6. Views
7. Triggers
8. Stored Procedures
9. Exceptions

10. Blob Filters
11. User-Defined Functions (UDFs)

See also:
Database toolbar

42

RDBMS
Register Database

43

Database Registration Info
Information appertaining to any of the registered databases can be viewed in IBExpert in the Database Properties dialog, started using the menu item
Database / Database Registration Info... or the DB Explorer right-click menu:

The information displayed here is that which was entered, when the database was originally registered (please refer to Register Database for details).

The tree in the left panel shows the various registration options available. Certain items maybe amended here. Again please refer to Register Database for
further information.

New in version 2.5.0.47: it is possible to automatically connect to a database when starting IBExpert. Use the following menu: Database Registration Info /
Additional and check: Opendatabase when IBExpert starts.

New in version 2004.04.01.1: under Database Registration Info / Additional there are now two additional options:

Disable plan request in SQL Editor
Disable performance analysis.

New to version 2003.12.18.1: the added possibility to execute SQL scripts before and after connecting to the database and before and after disconnecting
from the database. And under Database Registration Info / Additional there is now the additional option - Always prompt for a user name and password. If this
option is activated, IBExpert will displaya loginprompt dialog eachtime youtry to connect to the database.

See also:
Register Database
Default character set

44

Register Database
1. General
2. Additional

a. Additional/DB Explorer
b. Additional/SQL Editor
c. Additional/Extract Metadata

3. Log Files
4. Backup/Restore
5. Default paths
6. Explorer Filters
7. Scripts
8. Transactions
9. Comparative Database

Register Database
Database registration is necessary, in order for IBExpert to recognize the presence of a database. It is possible to specify certain options, settings and
defaults here. The Database RegistrationEditor canbe opened using the IBExpert menu item Database / Register Database, or keycombination [Shift + Alt +
R]. It is automatically generated when the Register Database After Creating checkbox is flagged in the Create Database dialog.

The Database Registrationdialog is split into two sections: on the left-hand side a tree overview of the various registration options is displayed; the right input
panel shows the information and setting options available for eachtree subject.

General
The following entry fields allow the user to specify certain general properties and defaults for the database to be registered.

45

(1) Server: firstly the server storing the database needs to be specified. This can be local or remote (see Create Database). Byspecifying a local server,
fields (2) and (3) are automatically blended out, as theyare in this case irrelevant.

(2) Server name: must be knownwhen accessing remotely. The syntax is as follows:

Windows SERVER_NAME:C:pathdatabase.gdb
Linux SERVER_NAME:/path/database.gdb

The standard port for InterBase and Firebird is 3050. However this is sometimes altered for obvious reasons of security, or when other databases are already
using this port. If a different port is to be used for the InterBase/Firebird connection, the port number needs to be included as part of the server name. For
example, if port number 3055 is to be used, the server name is SERVER/3055.

(3) Protocol: a pull-down list of three options: TCP/IP, NetBEUI or SPX. TCP/IP is the worldwide standard.

(4) Server versions: this enables a server version to be specified as standard/default from the pull-down list of options. To specifya default server version,
use the IBExpert Options menu item / Environment Options / Preferences to select your preferred server version.

(5) Database File: by clicking on the folder iconto the right of this field, the path can easily be found and specified and the database name and physical path
entered. The database name must always be specified with the drive and path when registering a database. Please note that the database file for a Windows
server must be on a physical drive on the server, because InterBase/Firebird does not support databases on mapped drive letters.

For example for Firebird:

C:ProgramsFirebirdFirebird_1_5examplesEMPLOYEE.FDB

for InterBase:

C:ProgramsInterbaseexamplesEMPLOYEE.GDB

(6) Database Alias: descriptive name for the database (does not have to conform to any norms, but is rather a logical name). The actual database name and
server path and drive information are hidden behind this simple alias name - aiding security, as users only need to be informed of the alias name and not the
real locationof the database. The connection string usually consists of the server name (or localhost) followed by the drive and path to the database file, with
the database file name concatenating on the end. If an alias and its string are already specified in the aliases.conf on the server, the client can, with the
newer Firebird versions, use the connection string, servername:aliasname. The alias.conf shows the server where the client wants to go.

Please refer to the Firebird Administration chapter, Alias, files and paths for detailed information about database aliases.

(7) User Name: the database owner (i.e. the creator of the database) or SYSDBA.

To the right of the user name a checkbox optionhas been introduced for Firebird 2.1 database registrations, Trusted Authentication.

(8) Password: if this field is left empty, the password needs to be entered each time the database is opened. Please refer to Database Login for further
information. The default password for SYSDBA is masterkey. Although this may be used to create and register a database, it is recommended - for security
reasons - this password be changed at the earliest opportunity.

46

(9) Role: an alternative to (7) and (8); can initially be left empty.

(10) Charset (abbreviation for Character Set): Here the default character set can be specified. This is useful, when the database is created to be used for
foreign languages, as this character set is applicable for all areas of the database unless overriddenby the domain or field definition. If not specified, the
parameter defaults to NONE, i.e. values are stored exactly as typed. For more information regarding this subject, please refer to Charset/Default Character Set.
If a character set was not defined when creating the database, it should not be used here.

(11) Additional connect parameters: input field for additional specifications. For example, system objects such as system tables and system generated
domains and triggers can be specified here. They will thenautomatically be loaded into the DB Explorer when opening the database alias.

(12) Path to ISC4.GDB: This canbe found in the InterBase or Firebird main directory. This database holds a list of all registered users with their encrypted
passwords, who are allowed to access this SERVER.

When creating new users in earlier InterBase versions (<6), IBExpert needs to be told where the ISC4.GDB can be found. Since InterBase version6 or Firebird
1 there is a services API. So those working with newer versions may ignore this field!

(13) Always capitalize database objects'' names (checkbox): this is important as in SQL Dialect 3 as entries can be written in upper or lower case
(conforming to the SQL 92 standard). InterBase however accepts such words as written in lower case, but does not recognize them when written in upper
case. It is therefore recommended this always be activated.

(14) Font character set: this is only for the IBExpert interface display. It depends on the Windows language. If an ANSI-compatible language is being used,
then the ANSI_CHARSET should be specified.

(15) Test connect: the Comdiag dialog appears with a message stating that everything works fine, or an error message - please refer to the IBExpert
Services menu item, CommunicationDiagnostics for more details.

(16) Copy Alias Info: here alias information from other existing registered databases can be used as a basis for the current database. Simply click on the
button and select the registered database which is to be used as the alias.

(17) Register or Cancel: after working through all the options listed in the tree view on the left, the database can be registered or cancelled.

Additional
The Database Registration / Additional options are as follows:

(1) Show System tables into Performance Analysis: the developer canchoose whether he also wishes to have the database system tables (in addition to
the user-defined objects) included in the Performance Analysis found in the SQL Editor, Stored Procedure Editor and Visual Query Builder.

(2) Trim Char Fields in Grids: adapts field length to ideal length in all grids (see Table Editor / Data and SQL Editor / Results as well as the IBExpert Grid
menu).

47

(3) Autocommit Transactions: This allows all transactions to be committed immediately (i.e. IBExpert no longer asks for confirmation of a commit command
and there is NO option to rollback). This is an EXTREMELY dangerous option! For example, if an irreversible DROP command has been wrongly entered (e.g.
instead of typing a FIELD_NAME the DATABASE_NAME is mistakenlyentered), it is still automatically committed.

(4) Open database when IBExpert starts: New in version 2.5.0.47: checking this optionautomatically connects this database when IBExpert is started.

(5) Always prompt for a user name and password: New in version 2003.12.18.1: if this option is activated, IBExpert will display a loginprompt dialog each
time you try to connect to the database.

(6) Use Metadata cache: e.g. when accessing remotely using a modem line, the InterBase server can only be accessed at a limited speed. IBExpert needs
to know which information it needs to fetch, and this maytake some time. If the metadata cache is checked, IBExpert does not download the complete
database eachtime, only the information that it really needs.

(7) Disable plan request in SQL Editor: New option in version 2004.04.01.1: this deactivates the queryplan displayed in the lower panel of the Results
page in the SQL Editor.

(8) Disable performance analysis: New option in version2004.04.01.1: this deactivates the Performance Analysis page in the SQL Editor. This may be
desirable, when working remotelyon a slow modem connection.

(9) Disable object description in hints: These hints appear when youmove the mouse cursor over the columncaptions in the Data Grid. If descriptions in
these hints are not disabled IBExpert executes some SELECTs to get them from the database. If you''re working with the database using a slow modem
connection this decrease the performance dramatically.

(10) Dont display metadata changes counter info; This deactivates the message 253 changes to [TABLE] left'', which is displayed in the status bar.

Additional/DB Explorer

(1) Show System Tables: tables generated by InterBase/Firebird are displayed in the IBExpert DB Explorer in red.

(2) Show System Generated Domains: domains generated by InterBase/Firebird are displayed in the IBExpert DB Explorer in red.

(3) Show System Generated Triggers: triggers generated by InterBase/Firebird are displayed in the IBExpert DB Explorer in red.

(4) Show System Indices: indices generated by InterBase/Firebird are displayed in the IBExpert DB Explorer in red.

(5) Show objects details: (fields, indices etc.)

For database development it is wise to have all these items visible in the DB Explorer.

?

48

Additional/SQL Editor

%

The SQL Editor History Count determines the number of SQLs that are saved and displayed in the IBExpert SQL Editor. Here the default value of 100 canbe
adjusted as wished.

Additional/Extract Metadata

New to IBExpert version 2005.04.24.1: this optionallows you to check the new IBExpert feature "Extract Metadata"-"Use UPDATE instead of DESCRIBE" on
the Options page in the Extract Metadata dialog. If it is enabled, IBExpert will generate an UPDATE RDB$xxx SET RDB$DESCRPTION ... statement instead of
DESCRIBE while extracting metadata.

49

Log Files
If youwould like IBExpert to protocol all statements that change metadata and/or are executed from the SQL Editor, use this section to enter path and file
names. This is useful for keeping a record of whichchanges were made to the data structure in IBExpert.

Write Timestamp into logs: the timestamp option is useful for noting date and time on logs.

IBExpert version 2008.02.19 introduced the possibility to include a date part into log file names. This allows youto create daily/monthly logs automatically.

50

The following substrings in a log file name will be replaced with a current date:

=date=yyyy-mm-dd
=date=yyyy-mm-dd%=<date format string>%
=date=yyyy-mm-dd is a short form of the date template and is equal to =date=yyyy-mm-dd%=yyyy-mm-dd%.

Examples

D:\MyLogs\TestDB\=date=yyyy-mm-dd.sql - file name for a simple daily log. D:\MyLogs\TestDB\=date=yyyy-mm-dd%=mmmm of yyyy%\=date=yyyy-mm-dd%
=yyyy.mm.dd%.sql - a separate directory('January 2008' etc.) will be created for eachmonth.

Log Files - Metadata changes

Enable Logging Metadata Changes: allows all changes to metadata to be logged, in order to follow all alterations to the data structure.

Log Files - SQL Editor

51

Enable Logging SQL Editor: Allows all SQL Editor work to be logged - a useful option, which should be checked. Should the log files become too large, older
logs can always be deleted at regular intervals.

Log Files - Script Executive'

ttp://ibexpert.net/ibe/img/img_2607_Debi0006.gif

Enable Logging Metadata Changes: checkbox to specifywhether all alterations to metadata should be logged or not.

Backup/Restore
Files

52

Backup and restore file names and options can be specified for eachdatabase alias. This makes it easier to backup a database with a single mouse click
from the IBExpert Services menu.

Using the first iconon the left a file name can be specified as the default file for backups. When left empty, the backup file name must be specified for each
backup. For versions since Firebird 1.0 or InterBase 6.5 the file size is irrelevant (64B file system). Secondary backup files can also be specified here.

Backup Options

(1) Ignore check sums: ignores anycheck sum errors and continues to backup the database. This option should be selected if a backup is being performed
because database errors are suspected. If this option is not checked, the backup is aborted if a check sum error is found. This is one possibility to force a
backup for a corrupt database. Please note that checksums are not maintained in UNIX versions.

53

(2) Ignore Transactions in Limbo: in limbo transactions are those whichare supposed to run across two or more databases and have been started, but
neither finallycommitted nor rolled back at the time of the database backup. This optionbacks up only the most recent, committed transactions. It allows you to
back up a database before recovering corrupted transactions. Generally, youshould recover in limbo transactions before performing a backup.

(3) Backup Metadata only: results in an empty copyof the database, as only the database definition (metadata) is saved, not the data itself. This option is
similar to using Windows ISQL to extract a database to a file.

(4) Garbage collection: checks every row, removing outdated versions, empty pages and parts of them.

Because eachpage is carefully examined, the backup takes longer. Should a backup need to be executed rapidly, the garbage collection can be switched off
here. Only the deleted and NOT the older versions of updated data sets are dumped. The distribution of page occupation can be viewed in the database
statistics. The garbage collection in InterBase/Firebird canalso be started using the SELECT command.

(5) Old Metadata Description: this enables a backup and restore to older InterBase versions.

(6) Convert to Tables: this concerns so-called external files. Following a backup the external files are also incorporated, and thenrestored as tables.

(7) Format: the options transportable or non-transportable are offered here. As a rule always choose "transportable", so that the database can be easily
transported to other platforms such as Linux.

(8) Verbose Output: Writes step-by-step status information to the output log. This option is useful if the backup is failing, and the reasons need to be tracked
down.

(9) The output log options: on-screen or into file are offered here.

(10) File name, path and drive; canbe specified here, if the into file output option has been chosen.

Restore Options

(1) Deactivate indexes: This option does not restore indices as part of the restore process. It is used to improve restore performance. If this option is not
checked, InterBase/Firebird updates indices after all tables have beenfilled with the restored rows. This optioncan also be used if duplicate values are
suspected in indices that are flagged as unique. After the duplicate values have been found and corrected, the indices can be reactivated.

(2) Don''t recreate shadow files: this optiondeletes the database shadow definition. This option is required if the destination database does not support
shadows, if youare migrating from an earlier version of InterBase where shadows were not supported, or if the machine where the shadow resides is not
available.

(3) Don't enforce validity conditions: this optiondoes not restore constraints, i.e. it deletes the validity constraints from the database's metadata definition.
It is important to save a copybefore a restore is performed with this optionchecked.

This option is necessary if the validity constraints were changed after data had already been entered into the database. Whena database is restored,
InterBase/Firebird compares each row with the metadata; an error message is received if incompatible data is found. Once the offending data has been
corrected, the constraints can be added back.

54

(4) Commit after each table: this optionrestores metadata and data for eachtable in turn as a single transaction, and then commits the transaction. This
option is recommended, so that should a problem occur during the restore, at least all correct tables are restored. It is particularly useful, if corrupt data is
suspected in the backup, or if the backup is not running to completion. Normally, InterBase/Firebird first restores all metadata and then the data.

(5) Replace existing database: this should. as a rule, be toggled, as it makes no difference if there is no database present as yet. Although leaving this
optionunchecked provides a measure of protection from accidentally overwriting an existing database file that maystill be needed.

(6) Use all space: only relevant if restoring the database to a CD. In this case 100% space of each page is used, and not, as is usual, 80%.

(7) Page size: Changes the default size of each page. There are numerous reasons for wanting to change the database page size (please refer to page size)
.

(8) Verbose Output: Writes step-by-step status information to the output log. This option is useful if the backup is failing, and youneed to track down the
reason.

(9) The output log options: on-screen or into file are offered here.

(10) File name, path and drive: can be specified here, if the into file output optionhas been chosen.

Default paths

Here standard default drives, paths and files may be specified, if wished, for the following:

Metadata Extract File
Metadata Extract Directory (for Separate Files Mode)
Export Path
Quick Save Path
Parameters Path
HTML Report Directory

Explorer Filters

55

This is only of interest for extremely large and complexdatabases with multiple registrations. It refines the selection of database objects displayed in the
IBExpert DB Explorer. The database object names displayed can be filtered according to one or more of the conditions listed.

Scripts
Since IBExpert version 2003.12.18.1 there is the added possibility to execute SQL scripts before and after connecting to the database and before and after
disconnecting from the database:

56

Transactions
New to IBExpert version 2005.06.07: this page allows youto specify different transaction isolation levels for registered databases.

Comparative Database
This optionwas introduced in IBExpert version 2006.03.06 and allows youto compare an object with one in another (comparative) database.

See also:
Database toolbar

57

CommunicationDiagnostics
Default character set
Remote database connect using an alias
Create Database
Script Executive
Backup Database
Restore Database
SecondaryFiles Manager

58

Unregister Database
It may be desirable to unregister one or more databases in IBExpert, for example when a remote link to a customer database will never be needed again.
Unregistering a database does not delete the database; it merely deletes the registrationnecessary for working with IBExpert.

If you are unsure whether a registered database will ever be needed again, but are tired of having it displayed in the DB Explorer every time work is started, it
is possible to blend out unconnected databases using the DB Explorer right-click menu item Hide Disconnected Databases.

A database can be unregistered using the IBExpert menu item Database / Unregister Database, the DB Explorer right-click menu, or the keycombination
[Shift + Alt + U].

IBExpert asks for confirmation:

before finallyunregistering the database.

Alternativelyyou can use the IBExpert Database Explorer to unregister more than one database at a time (this feature was introduced in IBExpert version
2006.08.12).

See also:
Database toolbar

59

Connect to an existing Database
1. Accessing a Firebird embedded database

with Win1252 (or other character set)
2. Database login
3. Remote database connect using an alias

Connect to an existing Database
After starting IBExpert, you will see the Database Explorer on the left side. Before a database connectioncan be made, the database must be registered
(please refer to Register Database).

A database connectioncan be made to a registered database simplyby double-clicking on the database alias name, displayed in the DB Explorer. There are
also a number of menuoptions: either using the IBExpert menu item Database / Connect to Database, or the following icon:

in the Database toolbar. Alternatively the DB Explorer right-click menumay be used, or the keycombination [Shift + Ctrl + C].

Since version 2.5.0.47 it is possible to automatically connect to a database when starting IBExpert. Use the following menu: Database Registration Info /
Additional / and check: Open database when IBExpert starts.

Should there be anyproblems connecting to the database, use the IBExpert Services menu item Communication Diagnostics.

Anexample connecting to a remote database using the IBExpert Database menu item Database Registration Info:

Server = RemoteServer Name = <network name of the server or its ip address> e.g. OUR_SERVER Protocol = TCP/IPDB File Name = <path to
the db file on the server PC> e.g. "D:DataMyDB.fdb"

Of course Firebird/InterBase should be installed properly on the server PC (where your database is placed) and the Firebird/InterBase client (fbclient.dll
or gds32.dll) on your local PC.

Accessing a Firebird embedded database with Win1252 (or other character set)
This tip comes from Gerhard Knapp.

In order to connect to a Firebird embedded database with WIN1252 (or other character set) using IBExpert:

1. Rename fbembed.dll to fbclient.dll (always recommendable; not just in this case!).
2. Define this fbclient.dll including drive and path in the IBExpert Database Registration.
3. Specify WIN1252 in IBExpert.
4. Copy the subdirectory intl from the Program Files directory, where fbclient.dll is installed, into the directory C:Program FilesHK-

SoftwareIBExpert 2.0!!

You should then have no further access problems.

Further information:

Whenfbembed.dll is renamed fbclient.dll, it is also a fully-fledged client, i.e. if an application needs to access an embedded database on a Firebird
server, the fbclient.dll is more thansufficient.

Database login
If a password is not entered at the time of registering the database (see Register Database), it needs to be logged into eachtime the database is opened.

Specify a username and associated password. If the user is not authorized or the password is not correct, an error message appears.

60

Optionally, a role maybe specified. If the role has previouslybeen GRANTed to the username, all access privileges assigned to that role for the duration of the
current session apply for that user.

If the user is an authorized user for that server, and if the password is correct, access is granted to the database.

Remote database connect using an alias
This article was written by Claudio Valderrama (http://www.cvalde.net/ - The InterBase Unofficial Site), February 2002

Many developers wish to avoid the client having to give the engine the full path of the database in the same machine (node) where the engine runs? It is not
only inconvenient when the database's location is changed, it is also a low level that the client shouldnt be concerned about. Finally, many developers have
concerns with the security. Ideally, the physical location of the engine and the databases shouldnt be disclosed to the client. Only an Alias should be visible.

It's incredible that for years, a built-in solution in the engine (that works whenever the server is a NT machine) has been lying in the heart of the code and
nobody made it public, less evendocumented in some help file. Perhaps because it unfortunately is a Win32 only solution, nothing that can be used on Linux,
so the location of a gdb is not truly transparent.

The syntax is verysimple. It has the form:

 \server!share_name!database.gdb@@

or the form

 server:!share_name!database.gdb

It's not a true alias, since you still know the name of the database and of course, the server machine should be known. But it helps if youneed to move the
database around NT servers, without having to change configuration files or recompiling programs. Here, "server" is the NetBEUIname of the NT machine,
followed by the pseudo-UNC paths that IB/FB uses. Alternatively, "server" is the TCP/IP name of the NT machine, but followed by backslashes, not the typical
slashes the IBs TCP syntax uses. (Really, using slashes or backslashes is not important in a typical full path, since the engine makes the adjustments, but
in this case, the syntax to recognize the share demands backslashes.) The difference is that instead of a full path inside the server, a shares name in the
server is used, surrounded by exclamationmarks.

This share points in turn to the full path of the database, so youonly have to append the database's name. It has nothing do to with client-side mappings.

How it works: the client library recognizes a UNC-like path and knows it's NetBEUI. Otherwise, it recognizes a TCP-like syntax thanks to the colon. Then it
connects to the required server with the right network protocol and passes the remnant of the path, stripping the server's name. A routine inside the engine,
named expand_share_name, will look for the backslash followed by the exclamationmark, then if a matching "!" occurs, it takes the name inside the two pairs
("!" and "!") and will openthe registry (RegOpenKeyEx) at

 SYSTEM\CurrentControlSet\Services\LanmanServer\Shares

to extract the data (RegQueryValueEx) in the value <share_name>, that's supposedly the name of a registered share in the server machine. It proceeds to
decode the data and gets the "Path" component inside the multi-string data thats the physical path. It loads this path in its argument and returns to the caller
that will continue testing to see finally if the databases name is valid and exists.

For example, given a share''s name "myshare", the registry keyshown above contains a list of values that denote shares. You can find there the implicit ones
such as IAS1$ (verybad, get rid of it since it points to the IIS admindir), the NETLOGON share and "myshare". Reading the data in the value "myshare", the
following can be seen:

 MaxUses=4294967295.Path=H:PROY.Permissions=127.Remark=for fb.Type=0..

The dots denote the NULL ASCII value, since this is a multi-string. The engine looks for "path" and gets the string that follows, namelyH:PROY, then appends
the backlash if missing. Hence, the engine uses information in the server itself to decode the full path. This pathwill prefix the database name when the
functionexpand_share_name returns to the caller.

An advantage is that youdont need to grant permissions on this share. You can deny anyone any right (even if NT prompts if you are sure) and you can go
further: you can stop the service responsible for handling requests of NetBEUI shares. The engine reads the registry directly, so it doesnt query the network
layer. It's a true hack, a commodity to avoid the inclusion of hard-coded paths in the client. If you want to change it, just change the share''s information, without
granting anyone anyright on the share. Since the engine reads that registry location eachtime a connection string should be analyzed, it will get the changed
name in the next attachment request. If you disabled some networks services, so that changing the share is not possible through high level interfaces, you can
edit the registry directly and change the path. Beware that the each dot represents a NULL ASCII value in the example shownabove, so your path should end
with that value. Aneven nicer feature is that this works:

 H:ibdevfbbuildinterbasejrd>isql \atenea!myshare!g
 Database: \atenea!myshare!g
 SQL> Ẑ

but it's not restricted to NetBEUI. Indeed, as noted before, you canuse TCP syntax:

 H:ibdevfbbuildinterbasejrd>isql localhost:!myshare!g
 Database: localhost:!myshare!g
 SQL> Ẑ

(Remember that there's no restriction to the name of a gdb other than the file name conventions in the platform where the engine resides. In this case, it's
simply named "g", although an extension helps the database admin.)

There are a couple of drawbacks: first, this hack is tied to Win32. (Furthermore, I don't have a way to test it on XP, but I''ve been informed of success with
Windows 2000.) Second, when Iread that internal functionexpand_share_name(), I found a possible buffer overrun and closed it. Revisiting the code when I

61

http://www.cvalde.net/-TheInterBaseUnofficialSite

wrote this article, I found a registry key handle that wasn't closed if the functiongives up prematurely for lack of RAM. (Isolved this second glitch in Firebird at
the time I was finishing this article.)

Hence, Ibelieve the lack of documentation comes from the untested nature of the facility.

See also:
Database toolbar
CommunicationDiagnostics

Reconnect to Database
This menu item is useful should a database connection have accidentally been disconnected (this mayhappen sometimes with a remote connection).

The reconnectioncan be simply made either using the MenuDatabase / Reconnect Database, or the following icon:

in the Database toolbar. Alternatively the DB Explorer right-click menumay be used.

Should there be anyproblems reconnecting to the database, go to the Database Registration Info and perform a Test Connect.

Disconnect from a Database
Whenyou have finished working with a database it can be disconnected using the IBExpert menu item Database / Disconnect from Database, or the following
icon:

in the Database toolbar. Alternatively the DB Explorer right-click menumay be used, or the keycombination [Shift + Ctrl + D].

It is not necessary to disconnect all databases manually when you have finished working with IBExpert. IBExpert does this automatically when it closes down.

See also:
Database toolbar
Exit

62

Create Database
1. Charset / Default Character Set
2. Page size

Create Database
A new database can be created by simplyusing the IBExpert menu item Database / Create Database... or using the respective icon in the Database toolbar.
The Create Database dialog appears:

(1) Server: first the server which is to store the database needs to be specified. This can be local or remote.

Remote: the remote connection needs to be defined by specifying (2) Server name and (3) Protocol. The pull-down list shows all servers previously
connected to/from this workstation/PC.
Local: LOCALHOST (ownServer). To create a new database on the same machine where IBExpert is in use, you do not need to enter a server name.

We recommend always referencing a server, even if your database is sitting locally on your machine. Going directlyusing the local specificationcan cause
problems (refer to (3) Protocol below), particularly with Windows Vista, so always use the Remote and LOCALHOST options.

The DOS PING LOCAL HOST or PING SRVNAME command shows the path if unknown (it is not necessary to know whichoperating system is running or where this
server is). By specifying a local server, fields (2) and (3) are automaticallyblended out, as they are in this case irrelevant.

(2) Server name: must be known when accessing remotely. The following syntaxshould be used:

Windows SERVER_NAME:C:pathdatabase.gdb
Linux SERVER_NAME:/path/database.gdb

The standard port for InterBase and Firebird is 3050. However this is sometimes altered for obvious reasons of security, or when other databases/Firebird
versions are already using this port. If a different port is to be used for the InterBase/Firebird connection, the port number needs to be included as part of the
server name. For example, if port number 3055 is to be used, the server name is SERVER/3055. If youuse multiple Firebird versions and have a database, db1,
sitting locally on C:\ root using the Firebird version on port 3052 (which has beenspecified in the firebird.config), the database connection path would be:

 localhost3052:C:\db1.fdb

(3) Protocol: a pull-down list of three options: TCP/IP, NetBEUIor SPX. As a rule we recommend youalways use TCP/IP (worldwide standard).

SPX used to be used by Novell; now evenNovell supports TCP/IP.
NetBEUI - is not really a network protocol, it simplyaccesses the line. It is slow as it makes everything available everywhere and anyone can access
the information. This is also purely a Windows protocol. Note: in DOS the TRACERT command lists the protocol route. TCP/IP intelligently takes another
direction, if one or part of the lines on the quickest route is blocked or down.

As the local protocol should only be used if really necessary on machines that are isolated and not part of anynetwork, specify the database server connection
if possible using Remote and LOCALHOST and selecting one of the above protocols.

(4) Database: by clicking on the folder icon to the right of this field, the pathcan easily found and specified, the database name entered, and the suffix
selected from the pull-down list. The database name must always be specified with the drive and path when creating a database. Please note that the
database file for a Windows server must be on a physical drive on the server, because InterBase/Firebird does not support databases on mapped drive
letters. The database suffixes do not have to adhere to the forms offered in the list.

63

(5) User Name: Only those names may be entered when creating a database, which already exist in the server securitydatabase ISC4.GDB, security.fdb or
since Firebird 2.0 the newsecurity2.fdb (which stores server rights; user rights for the database objects are stored in the database itself). The person
creating the database becomes the database owner. Only the database owner and the SYSDBA (System Database Administrator) are allowed to perform
certain operations upon the database (such as a database shutdown). Therefore if the database owner is defined as the SYSDBA, this is the only person
entitled to perform these operations. Note: when a role with the name SYSDBA is created, no other users (not eventhe SYSDBA) can access the database.
Therefore ensure the database is created by another user already registered in the securitydatabase and not the SYSDBA. This way there are at least two
users able to perform key administrative tasks.

(6) Password: The passwords are encrypted in the ISC4.GDB. If you insist upon using the SYSDBA name as the database owner, at least change the standard
password (masterkey) to ensure at least some degree of security! The masterkey password should be changed as soon as possible after creating the
database.

InterBase verifies only the first 8 characters of a password, even if a longer word is entered, i.e. in the case of the masterkey password only "masterke" is
verified. All characters following the 8th are ignored.

(7) SQL Dialect: Here Dialect 1 (up to and including InterBase 5) or 3 (InterBase 6/Firebird) needs to be specified. For more information regarding this
subject, please refer to SQL Dialect.

(8) Page size: Specifies the database page size in bytes. For more information regarding this subject, please refer to Page Size.

(9) Charset: Here the default character set can be defined for the database. (A default character set can be specified as default for all new databases in the
IBExpert Options menu item, Environment Options, under Default character set.) This character set is useful, when the database created is to be used for
foreign languages as it is applicable for all areas of the database unless overriddenby the domain or field definition. If not specified, the parameter defaults to
NONE, i.e. values are stored exactly as typed. For more information regarding this subject, please refer to Charset/Default Character Set.

(10) Register Database After Creating: This checkbox automatically generates the Database Registration dialog so that the database can be registered.
Registration is necessary, so that IBExpert recognizes that a database is present. The Register Database dialog however offers many further options. We
recommend clicking this checkbox (the default setting), so that the database is registered immediatelyafter creation. If the database is not registered at the
time of creation, it cannot be seen in the DB Explorer of the left of the IBExpert screen. This means that the user must know exactly where the new database
canbe found (i.e. whichserver, path, name etc.) when registering at a later date.

Tip: IBExpert recommends creating a User Database - please refer to Environment Options / IBExpert User Database for further information.

For those preferring SQL, the syntax is as follows:

 CREATE {DATABASE | SCHEMA} 'filespec'
 [USER 'username' [PASSWORD 'password']]
 [PAGE_SIZE] int]
 [LENGTH [int [PAGE[S]]]
 [DEFAULT CHARACTER SET charset]
 [secondary_file];
 <secondary_file> = FILE 'filespec' [fileinfo] [secondary_file]
 <fileinfo> = [LENGTH [=] int [PAGE[S]] | STARTING [AT [PAGE]] int }
 [fileinfo]

For example:

 CREATE DATABASE 'C:DATABASEFILESemployee.gdb'
 DEFAULT CHARACTER SET ISO8859_1
 FILE 'employee2.gdb' STARTING AT PAGE 10001;

Charset / Default Character Set
The default character set is the character set defined when creating the database, and applicable for all areas of the database unless overridden by the
domain or field definition. It controls not only the available characters that can be stored and displayed, but also the collation order. If not specified, the
parameter defaults to NONE, i.e. values are stored exactly as typed.

64

InterBase/Firebird supports multiple character sets for use around the world. If no special character set is specified for individual columns, the database
default character set is assumed. The default character set is defined in IBExpert in the Create Database dialog:

If a character set is defined as the default character set when creating the database, it is not necessary to define this again for individual columns.

InterBase/Firebird supports more that 20 different character sets directly. The chosen character set is also of importance when importing and exporting data
with different character sets. This needs to be taken into considerationwhen applications are developed with multiple language versions.

The ASCII character set is not synonymous with a non-defined character set. If no character set is defined, Firebird/InterBase chooses the character set NONE.
The character set NONE does not translate characters. Umlauts and accents are not sorted correctly. Whenthe ASCII character set is specified, all characters
are translated into the ASCII equivalents from the character set under which theywere input.

The character set WIN 1252 is recommended for Europeancountries, as it includes all characters and collation orders of the most important European
languages.

Generally this default character set cannot be altered at a later date (only using the command line tools IBExtract and IBEScript). Alternate character sets can
however be defined for individual domains and tables, whichoverride the default character set.

For more information about character sets, please refer to: Charset / Character Set, Overviewof the maincharacter sets and Declaring character sets in XML
and HTML (IANA charset definitions).

See also:
SET NAMES
Character Set

Page size
This is the specificationof the database page size in bytes.

Firebird/InterBase databases are saved in blocks. Each of these blocks is called a page. A database page is the smallest adminstrative unit in the database
file. Database administrationoccurs basically by accessing the hard drive block by block. The more data per access fetched by a single database page, the
less often it is necessary to load a new page, at least theoretically. Practically, depending uponthe operating system and server hardware, access to larger
database pages caneven influence the performance negatively, as 1024 bytes canbe loaded quicker than8192 bytes.

Page sizes permitted are 1024, 2048, 4096, 8192 and 16384. Up to and including Firebird version 1.5 page sizes up to 8192 should be used. The current
largest page size of 16384 should be reserved for Firebird 2.0 and higher.

65

A large page size has certain advantages in the following situations:

1. Many index-based operations (indices work quicker if the index depth is minimized).
2. Wide records, because with verywide data structures, i.e. with very many and/or very long columns, reading a data set is more efficient. With data sets

that do not fit onto one page, several pages have to be read to fetcha single data set. The same applies to writing; ie. fetches across several pages
are necessary.

3. Large blob fields, as data is stored and retrieved more efficiently if fewer pages need to be fetched. With larger blobs the writing and reading
processes are also more effective, as, for example, 100 accesses are necessary for a 100K blob columnwith a 1K page size. However with an 8K
page size only 13 accesses are required.

A small page size is sufficient if many transactions return only a small number of rows. Slim table structures with small database pages can be accessed more
quickly for reading and writing as less memory is required, and more database pages can be held in the cache. However a database with a page size less
than4096 is not recommended on Windows, as this is the Windows block size. Therefore smaller page sizes do not bring anyadvantages, as Windows will
still fetch4K blocks.

The database page size has a direct influence on the amount of database cache, which influences all of the above points. If a 16 KB page size is specified
and the Firebird server's database cache defined in the firebird.conf at its maximum of 128,000 pages, a total of 2 GB cache is made available for holding
data pages. The same cache specificationwith a page size of 1 KB only provides 180 MB cache. Please refer to Memory configuration for details of cache
specification for the Firebird SuperServer and Classic server.

Althoughyou maybe wasting a certain amount of space with a large page size, at today's hardware prices this should not be a serious problem, and it can
offer more performance advantages.

The only way to subsequently alter a database page size, is to perform a database backup followed by a restore (IBExpert menu item, Services / Restore
Database) where the database page size canbe redefined.

66

See also:
CREATE statement
Register Database
Database Designer
Memory configuration

67

Drop Database
Databases can be dropped in IBExpert using the menu item Database / Drop Database. When an InterBase/Firebird database is dropped, all the metadata
and data for this database are also deleted, along with all its secondary, shadow and log files ...permanently!

IBExpert asks for confirmation:

before finally dropping the database. Once dropped, it cannot be retrieved, so be extremely careful when using this command.

For those users preferring direct SQL input, the syntax is:

 DROP DATABASE;

A database mayonly be dropped by its creator or the SYSDBA.

See also:
DROP statement

Recreate Database
This new IBExpert menu item, Recreate Database was introduced in IBExpert version 2004.9.12.1. This drops the database, along with all its contents, and
creates it again without the metadata and data content (after confirmation, of course) using the parameters of the database just dropped. The parameters are:

 server name, protocol, user name, password, page size, SQL dialect, default character set

See also:
Drop Database
Create Database

68

Recompute selectivity of all indices
Indices statistics are used by the InterBase/Firebird Optimizer, to determine which index is the most efficient. All statistics are recalculated only when a
database is restored after backing up, or when this is explicitly requested by the developer.

When an index is initially created, its statistical value is 0. Therefore it is extremely important, particularly with new databases where the first data sets are
being entered, to regularlyexplicitly recompute the selectivity, so that the optimizer can recognize the most efficient indices. This is not so important with
databases, where little data manipulationoccurs, as the selectivity will change very little.

To recompute the selectivity of all indices use the IBExpert menu item Recompute Selectivity of all Indices. This can be found in the IBExpert Database menu
or using the right mouse button in the DB Explorer.

v

Individual indices can be recomputed directly in the SQL Editor using the command:

 SET STATISTICS INDEX <index_name>;

Single or multiple indices can also be recomputed directly in the Table Editor / Indices page, using the right-click menu.

The same Recomputing Selectivity dialog as above is thendisplayed.

The new statistical values canbe viewed for individual tables in the Table Editor on the Indices page (providing the statistics are blended in using the right-
click menu item ShowStatistics).

See also:
Index SQL Editor / Plan Analyzer
SQL Editor / Performance Analysis
Database Statistics / Indices
Firebird for the database expert: Episode 1 - Indexes
Firebird 2.0.4 Release Notes: Enhancements to indexing

Recompile all stored procedures and triggers
Stored procedures and triggers use indices internally. The Recompile command ensures that the most up-to-date indices are used. Using this command it is
also possible to recognize when one procedure or trigger calls another.

This is also useful, for example, when backing up an older InterBase version (e.g. v5) and restoring in a newer version, such as InterBase 6 or Firebird 1.5, as
InterBase/Firebird simplycopies the data and metadata into the new versionwhen restoring. Unfortunately this means that if a variable name that is a keyword

69

in the stored procedure is wrong, it is not recognized, as the compiler does not recognize variable names as such. When however procedures and triggers
are recompiled, anysuch problems are discovered.

The menu items, Recompile all Stored Procedures and Recompile all Triggers can be found in the IBExpert Database menuor using the right-click menu in
the DB Explorer.

See also:
Firebird 2.0.4 Release Notes: Enhancements to indexing

Database security
Please refer to the following subjects, for further information regarding database security:

User Manager
Grant Manager

70

Database objects
InterBase/Firebird administrates the database data in database objects. These are the fundamental building blocks of the database and include the following:

Domains
Tables
Generators
Constraints
Indices
Views
Triggers
Stored Procedures
Exceptions
Blob Filters
User-defined functions (UDFs)

The database objects can be viewed, created, edited and deleted using the IBExpert DB Explorer.

Alterations to database objects (online operation) are limited to 255 alterations per object (see status bar for more details). At this stage a backup and restore
is necessary, in order to perform further alterations. This limitation is due to the fact that InterBase stores eachdata structure every time a record is inserted.

The IBExpert object editors all contain detailed dialogs for inserting, altering and dropping individual objects. The majorityof editors displaya number of tabs,
comprising multiple input and displaypages.

Certain typical windows recur in several object editors:

Dependencies: all objects, which depend on other objects or where other objects are depending on this object, canbe viewed on the object editor's
Dependencies page.
DDL: the SQL code, resulting from the user input, is displayed.
Performance Analysis: for stored procedures and the SQL Editor, the result set can be started with [F9]. The performance result is displayed on a
new page.
Description: shows the description field from the InterBase/Firebird database. Since IBExpert version2005.09.25 IBExpert will now use the COMMENT
ON statement (Firebird 2) when updating object descriptions, if it is possible.
Grants: this page allows user rights to be granted for the active object directly in the object editor dialog, without having to leave and start the Grant
Manager each time a new object is created. It is even possible to switch to other objects (i.e. views, triggers, procedures and roles), without having to
leave the editor.
Comparison: was added in IBExpert version2006.03.06 and allows you to compare an object with the one in another (comparative) database. The
comparative database can be specified in Database Registration Info / Comparative Database.

71

To-Do: this feature was introduced in IBExpert version 2007.12.01 and can be used to organize your database development. You canadd ToDo items
for eachobject in the database.

These pages are explained in more detail in the Table Editor (except Performance Analysis - details under SQL Editor / Performance Analysis).

72

Domain
1. Domain integrity
2. New Domain / Domain Editor
3. Alter domain
4. Drop domain/delete domain
5. Duplicate domain

Duplicating domains from one database to another

Domain
A domain is a user-defined custom datatype global to the database. It is used for defining the format and range of columns, uponwhich actual column
definitions in tables maybe based.

This is useful if columns in one or several database tables have the same properties, as it is much simpler to describe such a column type and its behavior as
a domain. The columns can thensimply be defined by specifying the domain name in the columndefinition. The column properties (e.g. field length, type, Not
Null, constraints, arrays etc.) only need to be defined once in the domain. Domains help you create a uniform structure for your regular fields (e.g. ID, address
and currencyfields) and add more understanding to your database structure.

Certain attributes specified in the domain canbe overwritten in the table field definition, i.e. a columncan be based upona domain; however small changes
may still possibly be made for this column.

In addition to the datatype, a number of conditions and checks can be defined.

A domain is a database object and is part of the database's metadata, and can be created, modified and dropped as all other InterBase/Firebird objects in
the IBExpert DB Explorer.

When developing a normalized database, the question arises in how far domains are necessary (multiple fields, multiple data etc.).

However, it does make life easier, should column alterations be necessary; e.g. zip code alteration from 4 to 5 digits (as was the case in Germany after the
reunion), change of currency(e.g. from DM or Lire to Euro). In such cases, only the domain needs to be altered, and not each relevant column in each table
individually throughout the database.

It should also be noted, that if user-defined domains are not explicitly defined and used for table column definitions, InterBase/Firebird generates a new
domain for every single table column created! All domains are stored in the system table RDB$FIELDS.

Domain integrity
Domain integrityensures that a column is kept within its allowable limits. This is achieved by keys and constraints.

New domain / Domain Editor
A new domain canbe created for a connected database, either by using the menu item Database / New Domain, or using the DB Explorer right-click menu(or
key combination [Ctrl + N], when the domain heading of the relevant connected database is highlighted), or the New Domain iconon the New Database
Object toolbar.

A NewDomain dialog appears, with its owntoolbar, and a pull-down menu(domain button). The toolbar offers the following options:

Enable direct modifying of system tables
Compile
Duplicate the selected domain
Navigational buttons
Group by either Type or Charset
Display all domains

73

For those users preferring to use the old IBExpert Modal Editor, check the Use old-style Modal Editor option in the IBExpert Options menu: Object Editor
Options / Domains Editor.

A domain can also be created or selected and edited, when a new field is created or an existing field edited in a table, using IBExpert's Table Editor. (Please
refer to Insert Field for further information).

The following illustrates the creation of a new domain using the DomainEditor: initially a domain name is specified (1) in the first columnon the first page
Domains:

(Illustrationdisplays the default Domain Editor.)

(2) Field Type: Here the datatype can be specified.
(3) Size: Specifies the field size.
(4) Scale: Here the number of decimal places can be specified for all numerical fields.
(5) Not Null: This check box canbe marked by double-clicking or using the space bar. NOT NULL forces data to be entered in this field (i.e. the field
maynot be left empty).
(6) Subtype: A subtype should be specified for blob fields.
(7) Charset: A character set maybe specified for individual domains. This overrides the database default character set. Although this is seldom used,
it maybe necessary should, for example, Asian, Russian or Arabic addresses need to be input and collated in a database with a Europeandefault
character set.
(8) Collate: Determines collation for a character set specified for a domain.
(9) Default Source: Here a default data entry (text or numeric, depending uponthe specified datatype) canbe specified, e.g. the text NOT KNOWN
canbe specified as a default source, if an address field cannot be input by the user, because the information is unavailable.
(10) Check: Each data set is examined for validity according to an expression defined in brackets. Certain conditions canbe specified (see Check
Constraint) causing an automatic database examinationduring data input, to ensure data consistency in the tables and among eachother.
(11) Array: Although arrays contradict all the rules of database normalization, there are certain situations (for example storing measurement data),
when theyare necessary.
(12) Description: Useful for database documentation. The Description page should be used to describe the domain; the Description field for
describing the field.

Several domains canbe created simultaneously in the New Domain Editor. After creating the new domain(s), including all necessary parameters, don´t forget
to compile (using [Ctrl + F9] or the respective icon):

and finallycommitting, or should amendments be necessary, rolling back.

Tip: by clicking on the column headers (i.e. PK, FK, Field Name etc.), the fields can be sorted into ascending or descending order based uponthat column.
Double-clicking on the right edge of the column header adjusts the columnwidth to the ideal width.

74

In addition to the Domains page, there are also Description, Used By, DDL, Comparison and To-Do pages:

Description: this displays the description for the highlighted domain (i.e. the domain, where the cursor is currently standing).
Used By: this displays those database objects whichuse or depend uponthis domain.
DDL: the DDL page displays the SQL statement created by IBExpert to create all specifications made by the user on the Domains page.
Comparison: introduced in IBExpert version 2006.03.06, this feature allows youto compare a domain in the maindatabase with a domain in a
comparative database (for further information please refer to Comparison).
To-Do: this feature was introduced in IBExpert version2007.12.01 and can be used to organize your database development. You can add ToDo items
for each object in the database.

Domains can also be created and edited directly from the New Field Editor (please refer to Insert Field).

Domains can, of course, also be created using DDL directly in the SQL Editor, using the following syntax:

 CREATE DOMAIN domain_name [AS] <data_type>
 [DEFAULT {expression | NULL | USER}]
 [NOT NULL] [CHECK (<domain_such_expression>)]
 [COLLATE collation];

For example:

 CREATE DOMAIN MATCHCODE
 AS INTEGER
 DEFAULT 999999
 NOT NULL
 CHECK (VALUE > 100000);

Alter domain
A domain can be altered in the Domain Editor, opened by double-clicking on the domain name in the DB Explorer. Alternativelyuse the DB Explorer´s right
mouse-click menu item Edit Domain or key combination [Ctrl + O].

CHECK instructions and default values maybe added, altered or deleted. However it is not possible to alter the basic datatype (for example, from NUMERIC to
VARCHAR). Neither is it possible to drop a NOT NULL constraint. To alter these the domain has to be dropped and recreated (see Drop Domain/Delete Domain).

Please note that if you want to change the CHECK constraint for a domain that already has a constraint defined, the existing constraint must first be dropped and
then the new one added. ADD CHECK does not replace the current constraint with the new one. It is also important to realize that altering a CHECK constraint does
not cause existing database rows to be revalidated; CHECK constraints are only validated when an INSERT or UPDATE is performed. One way of overcoming this
limitation is to perform an UPDATE queryusing a dummy operation. If existing rows violate the newCHECK constraint, the query fails. These rows canthen be
extracted by performing a SELECT.

Any changes made apply immediately to all columns using the domain definition, unless, of course, the column´s (field) definitionoverrides these.

The SQL syntax for this command is:

 ALTER DOMAIN <domain_name>
 SET DEFAULT <default_value> | NULL | USER
 DROP DEFAULT
 ADD CHECK <domain_search_condition>
 DROP CONSTRAINT;

Drop domain/delete domain
A domain may only be dropped if it is not currently being used by anyof the database tables. The DomainEditor´s Used By page shows which database
objects use this domain. The dependent objects may also be directlydropped here, if wished, using the right-click menuon the selected object, and choosing
the menu item Drop Object or [Ctrl + Del].

75

To drop a domain use the DB Explorer right-click and select the menu item Drop Domain or [Ctrl + Del].

Alternatively, a domain can be dropped directly from the Domain Editor using the pull-down menu Domains or the "-" icon in the Domain Editor toolbar.
IBExpert asks for confirmation:

before finally dropping the domain. Once dropped it cannot be retrieved; the domain has to be recreated if a mistake has been made!

Using SQL the syntax is:

 DROP DOMAIN <domain_name>;

A domain can only be dropped by its creator or the SYSDBA.

Duplicate domain
It is possible to create a new domain, based on an existing domain, using the DomainEditor´s menu item Duplicate Domain, or the

76

icon in the Domain Editor toolbar.

An exact copyof the selected domain is made, and can thenbe adapted as wished. For example a new domain, SUPPNO could be based on the CUSTNO
domain in the EMPLOYEE database, by duplicating it and then, for example, renaming it and altering the CHECK VALUE to > 5000.

This saves time creating several similar domains; all you need to do is copy a domain, perform anyminor alterations necessary, compile and finally commit.

The Domain Editor´s DDL page displays the actual statement used to create the new domain:

Duplicating domains from one database to another

If you have already created a wide range of domains in one database, and would like to duplicate them in another new database, simply take the following
steps in IBExpert:

1. Copy the domain DDL (Data Definition Language) into the SQL Editor and execute it.
2. Drag ´ń drop the domain from the source database into the DomainEditor of the target database.

See also:
DDL - Data Definition Language
Field

77

Table
1. New table
2. Alter table
3. Drop table/delete table
4. Create SIUD procedures

Table
A table is a data storage object consisting of a two-dimensional matrix or grid of columns and rows, theoretically knownas a mathematical relation. It is a
fundamental element for data storage.

Relational databases store all their data in tables. A table consists of an unordered set of horizontal rows (tuples). Each of these rows contains the same
number of vertical columns for the individual singular information types.

The intersectionof an individual row and column is a field containing a specific, indivisible atomic piece of information. I.e. columns list the names of individual
fields and rows are the data sets containing the input data. Each database columnmay be assigned a different datatype.

A table is a database object that is part of the database's metadata.

Tables of connected databases can be viewed and manipulated in the IBExpert DB Explorer:

We recommend restricting a table name to no more than14 characters, so that foreign keynames (which are limited to 32 characters up until InterBase 6 and
Firebird 1.5; InterBase 7 allows 64 characters) can include bothrelated table names in its name:

PrefixFK plus two separators plus both table names, e.g.

 FK_Table1_Table2

Please note however that this is not an InterBase/Firebird restriction, but purely an IBExpert recommendation to enable a clear and logical naming convention
for foreignkeys.

New table
A new table can be created in a connected database, either by using the menu item Database / New Table, the respective icon in the New Database Object
toolbar, or using the DB Explorer right-click menu(or keycombination [Ctrl + N]), when the table heading of the relevant connected database is highlighted. A
NewTable dialog appears, with its owntoolbar (Table Editor toolbar), and a pull-down menu (Table button).

Whencreating a table it is necessary to define a table name that is unique in the database. At least one columnmust be specified in order to create the table
successfully.

Initiallya table name is specified (1) in the upper row:

78

All data manipulation operations such as SELECT, INSERT, UPDATE and DELETE are carried out using this name.

Fields:

Furthermore, fields can be defined in the Table Editor. At least one field must be defined, so that the table can be committed and registered as an object in
the database [Ctrl + F9]. This enables additional table definitions to be made.

An overview of the various input fields is listed below.

Since IBExpert version 2.5.0.61 it is also possible to drag 'n' drop fields from the Database Explorer tree and SQL Assistant into the Table Editor's field list,
allowing field definitions to be quickly and easily copied from one table to another.

(2) Primary & Foreign Key: In the first columnPK one or more fields can be defined as a primary key (double click). A primary key (PK) serves to uniquely
identify a data set, and also acts as an index.

(3) Field Name: Each field should be given a logical name.

(4) Field Type: Here the datatype canbe specified.

(5) Domain: Fields canalso be based upondomains. If no domain is specified, InterBase/Firebird generates a system domain for the field as specified.

(6) Size: Specifies the field size.

(7) Scale: Here the number of decimal places can be specified here for all numerical fields.

(8) Subtype: A subtype should be specified for blob fields.

(9) Array: Although arrays contradict all the rules of normalization, there are certain situations (for example storing measurement data), when theyare
necessary. For more information, please refer to arrays.

(10) Not Null: This check box can be marked by double-clicking or using the space bar. NOT NULL forces data to be entered in this field (i.e. the field maynot
be left empty).

(11) Charset: A character set may be specified for individual fields. This overrides the database default character set. Although this is seldom used, it may be
necessary should, for example, Asian, Russian or Arabic addresses need to be input and collated in a database with a Europeandefault character set.

(12) Collate: This determines the collation for a character set specified for a field.

(13) Description: Useful for database documentation. The Descriptionpage should be used to describe the table; the Description field for describing the
field.

(14) Autoinc: Using the space bar or double-click, a new dialog appears, allowing autoincrements (generator, trigger or stored procedure) to be defined.

79

(15) Check: Each data set is examined according to an expression defined in brackets for validity. Here certain conditions can be specified (see check
constraint) causing an automatic database examinationduring data input, to ensure data consistency in the tables and among eachother.

(16) Computed Source: SQL input window for calculations. This can be used for fields containing the results of calculations performed on other fields in the
same or other tables in the database.

(17) Default Source: Here a default data entry (text or numeric, depending uponthe specified datatype) can be specified, e.g. the text NOT KNOWN canbe
entered as a default source, so that if an address field cannot be input by the user because the information is unavailable, the entry NOT KNOWN is automatically
entered. It is important to note here, that once a default source has been defined for a field, InterBase/Firebird cannot subsequently alter it (nor subsequently
add a default source). The field needs to be dropped, and a new field created.

However, since version2003.11.6.1 IBExpert has found a way around this. Because the server itself doesn't allow the default value of a field to be altered using
ALTER TABLE we have implemented a kind of workaround:

First, IBExpert creates the temporary field with the newDEFAULT value:

 ALTER table ADD IBE$$TEMP_COLUMN column_type DEFAULT new_default

Secondly, IBExpert copies the RDB$DEFAULT_SOURCE and RDB$DEFAULT_VALUE values of the newly created temporary field into RDB$DEFAULT_SOURCE and RB$
DEFAULT_VALUE of the field whichshould be altered:

 UPDATE RDB$RELATION_FIELDS F1
 SET
 F1.RDB$DEFAULT_VALUE = (SELECT F2.RDB$DEFAULT_VALUE
 FROM RDB$RELATION_FIELDS F2
 WHERE (F2.RDB$RELATION_NAME = 'table')
 (F2.RDB$FIELD_NAME ='IBE$$TEMP_COLUMN')),
 F1.RDB$DEFAULT_SOURCE = (SELECT F3.RDB$DEFAULT_SOURCE
 FROM RDB$RELATION_FIELDS F3
 WHERE (F3.RDB$RELATION_NAME = 'table')
 (F3.RDB$FIELD_NAME =#IBE$$TEMP_COLUMN'))
 WHERE (F1.RDB$RELATION_NAME = 'table')
 (F1.RDB$FIELD_NAME = 'column')

After that IBExpert drops the temporary field:

 ALTER TABLE table DROP IBE$$TEMP_COLUMN

Tables can, of course, also be created using DDL directly in the SQL Editor, using the following syntax:

 CREATE TABLE TABLE_NAME (
 COLUMN_NAME1 <COLUMN_DEFINITION>,
 COLUMN_NAME2 <COLUMN_DEFINITION>,
 ...
 COLUMN_NAMEn <COLUMN_DEFINITION>;
 TABLE_CONSTRAINT1,TABLE_CONSTRAINT2,
 ...
 TABLE_CONSTRAINTn);

Once the table has been created do not forget to commit.

Alter table
A table can be altered to change its defined structure. It is evenpossible to perform multiple changes simultaneously.

Alterations can be made in the Table Editor, opened by double-clicking on the table name in the DB Explorer. Alternatively use the DB Explorer's right mouse-
click menu item Edit Table or key combination [Ctrl + O].

The following operations maybe performed when altering a table:

80

Add fields
Add table level constraints
Drop fields
Drop table level constraints
Modify fields

When dropping fields, it is important to note that the column maynot be part of the table's primary key, have a foreignkeyrelationship with another table,
contain a unique constraint, be part of a table constraint or part of another column's CHECK constraint.

For further details please refer to Table Editor.

The Constraints page in the Table Editor lists all such fields, so that the developer can quickly ascertain whether constraint alterations/deletions are
necessary, before dropping the field in question(or whether, in fact, the field should be dropped at all!).

Using SQL the syntax is:

 ALTER TABLE <table_name>
 ADD <field_name> <field_definition>
 ADD CONSTRAINT <constraint_name> <constraint_definition>
 DROP CONSTRAINT <constraint_name>
 DROP <field_name>;

See also:
Firebird 2.0.4 Release Notes: SET/DROP DEFAULT clauses for ALTER TABLE

Drop table/delete table
When a table is dropped, all data, metadata and indices in this table are also deleted from the database.

A table canonly be dropped, if it is not being used at the time of execution of the DROP command and is not referenced by any other database object, such as
in a foreignkey relationship, a computed source column or a CHECK constraint for another table, or is a part of the definition of a view or a stored procedure or
trigger.

Any existent dependencies can be easily viewed on the Table Editor / Dependencies page. Most database objects can be dropped here directly from the
Dependencies page or the Dependencies Viewer by right-clicking on the selected object, and choosing the menu item Drop Object or [Ctrl + Del].

To drop a table use the DB Explorer, right-click and select the menu item Drop Table or [Ctrl + Del].

IBExpert asks for confirmation:

before finallydropping the table. Once dropped, it cannot be retrieved; the table has to be recreated, if a mistake has been made!

Using SQL the syntax is:

 DROP TABLE <table_name>;

Create SIUD procedures
Byright-clicking on a table in the DB Explorer, you will find a menu item called Create SIUD Procedures. SIUD is the abbreviation for SELECT, INSERT, UPDATE
and DELETE.

If you want to prevent database users from directlymanipulating data with INSERT, UPDATE and DELETE statements, youcan use these procedures, which can be
executed.

Please refer to Create Procedure from Table for details.

See also:
SQL Language Reference
Data Definition Language (DDL)
Data ManipulationLanguage (DML)
INSERTEX
New Database Object toolbar
Table Editor toolbar
Table Editor
Keys
Definitions

81

82

Definitions
1. Data
2. Data set
3. Column
4. Row
5. Constraints
6. Check constraint
7. Index/indices

1. Index statistics
Automating maintenance
operations

2. Ascending index
3. Descending index
4. Alter index
5. Drop index/delete index

Definitions
Data
Data is the quantityof facts or information input, processed and stored in a computer. Data can consist of one single entry in one field, a data set comprises a
series of fields or in fact, any data quantity.

Data set
A data set is one complete data record, which is none other than a table row (whichcan be viewed on the IBExpert Table Editor / Data page). It encompasses
a single set of information, such as, for example, one customer address or one employee record.

In a relational database the physical sequence of data sets is irrelevant.

Duplicate data sets or records (i.e. double rows) are not allowed in a relational database, as this is, in effect, storage of redundant information (see Database
Normalization).

Column
A column is part of a database table, and is also knownas an attribute or field. Columns list the names of the individual fields in a table.

A column describes an atomic or indivisible basic piece of information in the database, clearlydifferentiated from other data, e.g. zip code (and not zip code +
city). Each column is assigned a certain datatype, e.g. text, numeric, date or blob. The data can also be assigned properties, such as unique, contain check
constraints, autoincrements, computed values, restricted to minimum and maximum values etc. etc.

83

Columns are defined under the Field Definition in the Create Table dialog or Table Editor, or their definition canbe based on domains. Theycan, of course,
also be defined directly in the SQL Editor. Each defined columnhas the following syntax:

 ColumnName <data_type>
 DEFAULT < Default value > | NULL | USER NOT NULL
 CONSTRAINT <constraint name> <constraint def>
 COLLATE <collation sequence>;

In a relational database the physical sequence of rows and columns is irrelevant.

Row
A row is also called a tuple, record or data set. Each row represents an instance of data, belonging together, composed of different columns. It encompasses
a single set of information, such as, for example, one customer address or one employee record.

84

In a relational database the physical sequence of rows and columns is irrelevant.

Double rows (i.e. duplicate data sets or records) are not allowed in a relational table, as this is, in effect, storage of redundant information (see Database
Normalization).

Constraints
A constraint is a database examination, which ensures data consistency in the tables and among each other.

The constraint determines the range of acceptable values for a column (or columns) or data set in a database or application. This constraint canbe executed
automatically and so ensures that data contents are kept consistent by testing them as they are input.

A constraint can be specified for each column(or columns) in a table, to guarantee the mechanism described above. Constraints can be domain- or column-
based and the specified conditions must be met when new data sets are inserted, or existing data sets are modified. Theyare used to verify data integrity. If a
condition is not met, an exception is raised.

InterBase/Firebird internally generates a trigger for eachcheck condition. Constraints can be defined as follows:

1. Primary Key/Unique: Specification of the unique option forces a unique entry in this column(these columns) for eachdata set (i.e. duplicate field
entries are not allowed).

2. Foreign Key: The foreignkeyoption determines that the column(s) is/are linked by a referential integrity relationship to the primary keyof another
table (i.e. the input data is only accepted if it already exists in the primary keycolumn(s) in the referenced table).

85

3. CHECK: the check optionenables eachdata set to be examined for validation of an expression specified in brackets. Check constraints in tables are
identical to check constraints in domains.

Onlyone constraint is permitted per column. If the columnincluding a constraint is based on a domain also containing a constraint, bothconstraints are active.

The specificationof the keyword CONSTRAINT and the name are optional for all constraints. If no name is specified, InterBase/Firebird generates a name
automatically. All constraint names are stored in a system table called DB$RELATION_CONSTRAINTS.

It is only necessary to name constraints, if theyare to be deactivated at a later date using the ALTER TABLE DROP statement.

From InterBase 5 onwards, cascading referential integrity is also supported.

Check constraint
A check is a database examination, whichensures data consistency in the tables among eachother. It can be executed automatically and so ensures that
data contents are kept consistent by testing them before theyare stored in the database.

The check constraint optionenables eachdata set to be examined for validation of the expression in brackets following the check constraint. Check
constraints in tables are identical to check constraints in domains.

A check constraint can be specified for eachcolumn in a table, to guarantee the mechanism described above. It includes an expression that must be true, so
that the data set following an insert or update can be written. The field contents must be included in the permissible values, whichcan be specified in a list. It is
also possible to test the value for a minimum and maximum value. Furthermore the value can be compared to values in other columns, in order to test
dependencies.

A check constraint can only examine the values in the current data set. When simultaneously inserting or altering multiple data sets, a check constraint can
only guarantee one data integrityat a time at data set level.

86

If other data sets are referenced in the check, these could have been modified by another user at the time of entry, and therefore possibly have become
invalid, even though the check constraint's test approved the data set. At the time of a check constraint validation, other data is only read for the check. For this
reason, the values for the current operating sequence remain constant, even if another user has modified one of the values already referenced for validation.

A check constraint can be created directlywhen creating a table. When creating a check constraint, the following criteria should be taken into consideration:

A check constraint cannot reference a domain.
A table columncan only contain one check constraint.
A check constraint defined by a domain cannot be overriddenby a local check constraint. However additional constraints can be specified.

In a check definition the VALUE keyword represents the value of the respective table column. The value examination is generally performed when inserting or
updating this table column. The Check Value options permit diverse operations (please refer to Comparison Operators for a full list of possible operators).

Referential integritydeclarations and primary key definitions are special check constraint compositions.

Only one constraint is permitted per column. If the column is based on a domain containing a constraint, both check constraints are active.

The specificationof the keyword CONSTRAINT and the name are optional for all constraints. If no name is specified, InterBase/Firebird generates a name
automatically. All constraint names are stored in a system table called DB$RELATION_CONSTRAINTS.

It is only necessary to name constraints, if they are to be deactivated at a later date using the ALTER TABLE DROP statement.

Please note that if you want to change the CHECK constraint for a domain that already has a constraint defined, the existing constraint must first be dropped and
then the new one added. ADD CHECK does not replace the current constraint with the new one. It is also important to realize that altering a CHECK constraint does
not cause existing database rows to be revalidated; CHECK constraints are only validated when an INSERT or UPDATE is performed. One way of overcoming this
limitation is to perform an UPDATE queryusing a dummy operation. If existing rows violate the newCHECK constraint, the query fails. These rows canthen be
extracted by performing a SELECT.

Index/indices
An index can be compared to a book index enabling rapid search capabilities.

Indices are a sorted list of pointers into tables, to speed data access. Theycan be best described as an alphabetical directory with internal pointers, where
what can be found. If the indexed field is unique there is only one pointer.

An index can be ascending or descending, and can also be defined as unique if wished.

Indices should not be confused with keys. In the relational model, a key is used to organize data logically, so that specific rows can be identified. An index,
however, is part of the table's physical structure on-disk, and is used to increase the performance of tables during queries. Indices are therefore not a part of
the relational model. In spite of this indices are extremely important for relational database systems.

For columns defined with a primary key or a foreignkey in a table, InterBase/Firebird automatically generates a corresponding ascending index and enforces
the uniqueness constraint demanded by the relational model.

An index can be defined in the IBExpert Table Editor (started from the DB Explorer):

87

Up to and including Firebird 1.5 up to 64 indices can be defined for each table. Since Firebird 2.0 this number has risen to 255.

Indices are updated every time a new data set is inserted, or rather, the index-referenced field is updated. InterBase/Firebird writes an additional second mini
versionof the data set in each index table.

An index has a sequence e.g. when an ascending index is assigned to a field (default), and a descending select on this field is requested, InterBase/Firebird
does not sort using the ascending index. For this a second descending index needs to be specified for the same field.

An index can be named as wished; consecutive numbers can evenbe used, as it is extremely rare that an index is named in SQL.

An index on two fields simultaneously only makes sense when both fields are to be sorted using ORDER BY, and this should only be used on relatively small
quantities of results.

InterBase/Firebird decides automatically which index it uses to carryout SELECT requests. On the Table Editor / Indices page under Statistics, it can be seen
that the index with the lowest value has a higher uniqueness, and is therefore preferred by InterBase/Firebird instead of other indices with a lower level of
uniqueness. This is knownas selectivity.

An index should only be used on fields whichare really used frequently as sorting criteria (e.g. fields such as STREET and MALE/FEMALE are generally
unimportant) or in a WHERE condition. If a field is often used as a sorting criterion, a descending index should also be considered, e.g. in particular on DATE or
TIMESTAMP fields. Care should also be takenthat indexed CHAR fields are not larger than approximately 80 characters in length (with Firebird 1.5 the limit is
somewhat higher).

Indices can always be set after the database is actually in use, based on the performance requirements. For further details and examples please refer to
Performance Analysis.

88

Using the IBExpert menu Services / Database Statistics the index statistics can be viewed.

Index statistics and index selectivity

When a query is sent to the server, the Optimizer does not intuitively know how to process it. It needs further information to help it decide how to go about
executing the query. For this it uses indices, and to decide which index is the best to use first, it relies on the index selectivity. The selectivity of an index is the
best clue that the queryplan has whether it should use a certain index or not. And when more than one index is available, it helps the Firebird server decide,
which index to use first.

So the first thing the Optimizer does when it receives a query, is to prepare the execution. It makes decisions regarding indices based solely upontheir
selectivity.

If you have an index on a field with only two distinct values (e.g. yes or no) in it, it will have a selectivity of 0.5. If your indexed field has 10 values, it will have a
selectivity of 0.1. The higher the number of different values, the lower the selectivity number and the more suitable it is to be used as an index. Your benchmark
is always your ID - the primary key, because that will always have complete unique values in it, and therefore the lowest selectivity.

The selectivity is only computed at the time of creation, or when the IBExpert menu item Recompute Selectivity or Recompute All is used (found directly in the
IBExpert Services menu item, Database Statistics dialog, in the Database menu, or in the right-click DB Explorer menu). Alternatively the

 SET STATISTIC INDEX {INDEX_NAME}

command canbe used in the SQL Editor to recompute individual indices. To automate regular recalculation of all indices, please refer to the next chapter,
Automating maintenance operations.

This is automatically performed during a database backup and restore, as it is not the index, but its definition that is saved, and so the index is therefore
reconstructed when the database is restored.

89

The SQL planused by the InterBase/Firebird Optimizer merely shows how the server plans to execute the query.

If the developer wishes to override InterBase/Firebird's automatic index selection, and determine the index search sequence himself, this must be specified in
SQL.

For example, an index is created in the EMPLOYEE database:

 CREATE INDEX EMPLOYEE_IDX1 ON EMPLOYEE(PHONE_EXT);

Then:

 SELECT * FROM EMPLOYEE
 WHERE EMPLOYEE.PHONE_EXT='250'
 PLAN (EMPLOYEE INDEX (EMPLOYEE_IDX1));

Each index needs to be named and entered individually.

To eliminate an index from the plan+0 can be added in the query to the field where you wish the index to be ignored, thus denying the optimizer the ability to
use that index for that particular query. This is much more powerful and flexible than deleting the index altogether, which prevents any use of it by the Optimizer
in the future.

Indices should be prudently defined in a data structure, as not every index automatically leads to an acceleration in queryperformance. If in a table, for
example, a column comprises data only with the value 0 or 1, an index could evenslow performance down. A complex index structure can however have a
huge influence upon insertionand alteration processes in the long run.

Please also refer to the Firebird 2.0.4 Release Notes chapter, Enhancements to indexing for improvements and new features in Firebird 2.0, and to the
following subjects for further general information regarding indices.

See also:
Index

SQL Editor / Plan Analyzer
SQL Editor / Performance Analysis
IBExpert Table Editor / Indices
Firebird 2.0.4 Release Notes: Enhancements to Indexing
Recompute selectivity of all indices
Firebird for the database expert: Episode 1 - Indexes
Recreating Indices 1
Recreating Indices 2

Automating maintenance operations

To calculate statistics for all indices, without anyuser intervention, simply run the following:

 CREATE PROCEDURE REINDEX
 AS
 declare variable SQL VARCHAR(200);
 BEGIN
 FOR
 select trim(rdb$index_name) from rdb$indices
 INTO :SQL
 DO
 BEGIN
 execute statement 'SET STATISTICS INDEX '||:sql;
 END
 END

90

This should be executed regularly, particularlywith databases undergoing a lot of manipulation (INSERTS, UPDATES, DELETES).

Ascending index

An ascending index searches according to an ascending letter or numeric sequence, depending upon the defined character set (or, if no character set has
been specified for the indexed field, the default character set).

Descending index

A descending index searches according to a descending letter or numeric sequence, depending upon the defined character set (or, if no character set has
been specified for the indexed field, default character set).

Alter index

Once an index has beendefined it is not possible to alter the following: indexed columns, sort direction or uniqueness constraints. The only way to change any
of this information is to drop the index and then to recreate it (see Drop Index).

However the status of an index maybe altered to active or inactive. An index should be deactivated when, for example, a large number of data sets are to be
added, as an active index would recompute the index eachtime a data set is input. Bydeactivating the index, and thenreactivating after all the data has been
input, the index is only recomputed once.

This canbe done simply and directlyon the Table Editor / Indices page, by checking or unchecking the relevant boxes in the Status column, then compiling,
using the respective Editor iconor [Ctrl + F9], and finallycommitting.

The SQL syntax is:

 ALTER INDEX <index_name> ACTIVE | INACTIVE

An index can only be altered by the database creator or by the SYSDBA.

Drop index/Delete index

91

Onlyuser-defined indices can be dropped. As the only alterations permitted on indices are activation and deactivation, indices oftenneed to be dropped and
thensubsequently recreated, in order to alter certain index information such as indexed columns, sort direction or uniqueness constraints.

Indices can be dropped simply in IBExpert using the Table Editor / Indices page. Mark the index to be dropped and thenright-click and select the menu item
Drop Index <INDEXNAME> or use the [DEL] key:

Finallycommit or roll back.

Using SQL the syntax is:

 DROP INDEX Index_Name

DROP INDEX cannot be used for system-generated indices on primary or foreignkeys, or on columns with a uniqueness constraint in the table definition.

An index can only be dropped by the database creator or by the SYSDBA.

See also:
Indices
Indexed reads/non-indexed reads
Database Statistics / Indices
Recompute selectivity of all indices
Firebird 2.0.4. Release Notes: Enhancements to indexing
Firebird for the database expert: Episode 1 - Indexes
Recreating Indices 1
Recreating Indices 2

92

Keys
1. Primary key

Adding primary keys to existing tables
2. Foreign key
3. Candidate key
4. Simple key
5. Composite key/compound key
6. Unique
7. Artfiical key/surrogate key /alias key
8. Key violation
9. Referential integrity

10. Cascading referential integrity

Keys
In the relational model, key is used to organize data logically, so that a specific row can be uniquely identified. A key should not be confused with an index. An
index is part of the table's physical structure on-disk. It is used to speed data access when queries are performed. Indices are therefore not a part of the
relational model.

InterBase/Firebird automatically generates an index for primary and foreign keycolumns. On primary key columns, the index actually enforces the unique
constraint required by the relational model. Links between tables usually occur on primary and foreignkeys, so having an index on these columns ensures
maximum performance.

Primary key
A primary key is a column(= simple key) or group of columns (= composite key/compound key) used to uniquely define a data set/row in the table. A primary
key should always be defined at the time of defining a new table for eachtable. If youhave a database that does not contain primary keys in all tables, and
need to add these subsequently, please refer to Adding primary keys to existing tables below.

Relational theory states that a primary keyshould be designated for every table. It must be unique, and therefore cannot be NULL. It provides automatic
protection against storing multiple values. In fact, without a primary key it is impossible to delete just one of two identical data sets. Each table can have only
one designated primary key, although it can have other columns that are defined as UNIQUE and NOT NULL.

A primary key columnis nothing other than a unique constraint complemented by a system index and the check constraint NOT NULL. Primary keys are always
the preferred index of the InterBase/Firebird Optimizer.

When a data set is created or changed, Firebird/InterBase immediatelychecks the validity of the primary key. If the number already exists, a key violation
results, and the storage process is immediately cancelled. Unfortunately InterBase/Firebird allows tables to be created without a primary key, which is a
mistake. Data tables should always be keyed.

Existing primary keys and their system names can be viewed on the IBExpert Table Editor / Constraints page.

It is wise to keep the primary key as short as possible to minimize the amount of disk space required, and to improve performance. IBExpert recommends the
use of an autoincrement generator ID number used as an internal primary keyfor all tables. For example, a simple BIGINT datatype generator not influenced in
any way by anyactual data. Theydo not need to be visible to the user as theyare merely a tool to help the database work more efficiently and increase
database integrity. One generator can be used as a source for all primary keys in a database, as the numbers do not need to be consecutive but merely
unique. Each time a new data set is inserted, the generator automaticallygenerates an ID number, regardless of the table name, for example, newcustomer_
id = 1, neworder_id = 2, new orderline_id = 3, new orderline_id = 4, new customer_id = 5, etc. A further advantage of such a single autoincrement
generator primary key is that the database is perfectly prepared for replication; two or more servers can be connected and their data easily swapped, as the
primary keys canbe simplydefined on bothservers, e.g. server 1's generator should start at the value 1000000000 and server 2's at 2000000000 thus
avoiding anyconflict.

Although this method is unfortunately seldom used in the real world, it should be. Each primary keywill only ever appear once in the database, whichcan be
quite important in an OO (object-oriented) framework where there are so many objects floating around. Theyand youboth need some unique identifier for the
system to tell you what is behind the number, product, order etc.

Composite keys are not recommended, as these always slow performance and the sequence of the fields concerned must be identical in all referenced
tables.

Adding primary keys to existing tables

This article was written by MelvinCox, and provides a method of defining primary keys on existing tables using IBExpert:

Here is a viable workaround for those of us who do not wish to spend an eternity exporting data, dropping and recreating multiple tables, and finally import the
data back into those tables. Working with a Firebird 1.5 database (dialect 1) created via ODBC export from a Microsoft Access database, I have successfully
defined primary keys on tables by taking the following steps:

1. Bring up the table within the IBExpert interface's Table Editor window (double-click on the respective table in the DB Explorer or use [Ctrl. + O]). The
Fields page should be active.

93

2. Double click in the NOT NULL box corresponding to the field that you wish to designate as the primary key. This will call up the Edit Field dialog.
3. Check the NOT NULL optionand select an existing or create a new domain.

4. Press OK and then, after checking the script produced by IBExpert, the Commit button. The field is now set to NOT NULL.
5. Bring up the SQL Editor: Tools / SQL Editor (or press [F12]).
6. Enter the following command:

ALTER TABLE table_name ADD PRIMARY KEY (field_name);

For example, to define a primary keyon the EVENTS table enter:

ALTER TABLE events ADD PRIMARY KEY (event_id);

7. Press the Execute Buttonor [F9].
8. Close the SQL Editor. This will call up the Active Transaction Found dialog. Select Commit.
9. Close the Table Editor window.

10. Reopenthe Table Editor window [Ctrl. + O]. The newlydefined primary key will now be visible.

Foreign key
A foreignkey is composed of one or more columns that reference a primary key. Reference means here that when a value is entered in a foreignkey,
Firebird/InterBase checks that the value also exists in the referenced primary key. This is used to maintaindomain integrity.

A foreignkey is vital for defining relationships in the database. It can be specified in the IBExpert Table Editor (started from the DB Explorer) on the
Constraints page.

94

Foreign keys are used mainly for so-called reference tables. In a table storing, for example, employees, it needs to be determined whichdepartment each
employee belongs to. Possible entries for the department number of eachEMPLOYEE data set are contained in the DEPARTMENT table. As the EMPLOYEE table
refers to the DEPT_NO as the primary keyfor the DEPARTMENT table, there is a foreignkey relationship between the EMPLOYEE table and the DEPARTMENT table.
Foreign keyrelationships are automaticallychecked in Firebird/InterBase, and data sets with a non-existent department number cannot be saved.

When a primary key:foreignkey relationship links to a single row in another table, what is known as a virtual row is created. The columns in that second table
provide additional description about the primary keyof the first table. This is also know as a 1:1 relationship.

A foreignkey can also point to itself. Firebird enables you to reference recursive data and even represent tree structures in this way.

Foreign keys and their system names can be defined and viewed on the IBExpert Table Editor / Constraints page.

A primary key does not have to reference a foreignkey. However a unique index is insufficient; a unique constraint needs to be defined (this definition also
causes a unique index to be automatically generated).

When defining a foreignkey, it is necessary to specify update and delete rules. Please refer to Referential integrity and Cascading referential integrity for
further information.

SQL syntax:

 ALTER TABLE MASTER
 ADD CONSTRAINT UNQ_MASTER UNIQUE (FIELD_FOR_FK);

Foreign keynames are limited to 32 characters up until InterBase 6 and Firebird 1.5; InterBase 7 allows 64 characters. IBExpert therefore recommends
limiting table names to 14 characters, so that the foreignkey name can include both related table names: prefixFK plus two separators plus both table names,
e.g. FK_Table1_Table2.

Please note however that this is not an InterBase/Firebird restriction, but purely an IBExpert recommendation to enable a clear and logical naming convention
for foreign keys.

Note: if data has already been input in a table which is to subsequentlybe assigned a foreignkey, this will not be allowed by InterBase/Firebird, as it violates
the principle of referential integrity. It is however possible to filter and delete the old data (where no reference to a primary key has beenmade) using a SELECT
statement and committing. It is important to thendisconnect and reconnect the database in IBExpert, for this to work.

New to Firebird 2.0: Creating foreignkey constraints no longer requires exclusive access - Now it is possible to create foreignkeyconstraints without
needing to get an exclusive lock on the whole database.

95

Candidate key
Any columnor group of columns whichcan uniquely identify a data set, and can therefore be considered for use as a primary key. It is always NOT NULL (i.e.
must not be left undefined), and unique.

Simple key
A simple key is composed of one column only, i.e. a single columnis designated as a table's primary key.

Composite key/compound key
A composite keyconsists of two or more columns , designated together as a table's primary key. Multiple-column primary keys can be defined only as table-
level constraints:

Single-column primary keys can be defined at either the column or the table level (but not both). For example, the following code states that the table's primary
keyconsists of three columns, JOB_CODE, JOB_GRADE, and JOB_COUNTRY. Neither of these columns is required to be unique by itself, but their combined value
must be unique (and NOT NULL).

 CREATE TABLE
 COLUMN_defs ...
 PRIMARY KEY (JOB_CODE,JOB_GRADE,JOB_COUNTRY);

Unfortunatelysuch keys have two huge disadvantages: firstly theyslow the database performance considerably, as InterBase/Firebird needs to check all
contents of all columns designated in such a composite key; secondly the sequence of the fields concerned must be identical in all referenced tables.

Basically composite keys should be avoided! It is much preferable to use an internal ID key(so-called artificial key) as the primary key for each table.

Unique
Unique fields are unequivocal, unambiguous, one-of-a-kind (i.e. there is no duplicate information allowed in the data sets of a unique field). Such fields must
therefore also be NOT NULL.

Unique fields are given a unique index. Each unique field is a candidate key.

Artficial key/surrogate key/alias key
Anartificial or alias or surrogate key is created by the database designer/developer if there is no candidate key, i.e. no logical, simple field to be the primary
key. Anartificial key is a short ID number used to uniquely identify a record.

Suchan internal primary keyID is recommended for all tables. Theyshould always be invisible to the user, to prevent anypotential external influence regarding
their appearance and composition.

It is always wise to keep the primary keyas short as possible to minimize the amount of disk space required, and to improve performance; therefore artificial
keys should also be as short as possible. An ideal solution for the generation of an artificial key is the use of an autoincrement generator ID number.

96

IBExpert recommends this solutionbe used as an internal primary keyfor all tables.

Usually such an artificial/alias/surrogate key is just an autoincrement integer field so that each record has it's own unique integer identifier. For example:

 CREATE TABLE CUSTOMERS (
 CUSTOMER_ID INTEGER NOT NULL,
 FIRST_NAME VARCHAR(20),
 MIDDLE.NAME VARCHAR(20),
 LAST_NAME VARCHAR(20);
 ...);

In this case CUSTOMER_ID the artificial or surrogate key.

Key violation
When a data set is created or changed, InterBase/Firebird immediatelychecks the validity of the primary key. If the number already exists, or the field has
been left blank, a key violation results, and the storage process is immediatelycancelled.

InterBase/Firebird immediatelysends an error message referring to the violation of a unique or primary key constraint.

Referential integrity
The relationship betweena foreignkey and its referenced primary key is the mechanism for maintaining data consistency and integrity. Referential integrity
ensures data integritybetween tables connected by foreign keys. A foreignkey is one or more columns that reference a primary key, i.e. when a value is
entered in the foreignkey, InterBase/Firebird checks that this value also exists in the referenced primary key, so maintaining referential integrity.

Referential integritycan occur in the following three cases:

1. In the master table a data set is deleted. For example, the deletion of a customer, for whom there are still existing orders could lead to order data sets
without a valid customer number. This could falsify analyses and lists, as the internal relationships no longer appear. The prevention of data set
deletion in the master table, when data sets still exist in the detail table, is called prohibited deletion. The relayof deletions to all detail tables is called
cascading deletion.

2. The primary key is changed in the master table. For example a customer is given a new customer number, so that all orders relating to this customer
need to also relate to the new customer number. This is knownas a cascading update.

3. A new data set is created, and the foreignkeydoes not exist in the master table. For example an order is input with a customer number not yet
allocated in the master table. A possible solutioncould be the automatic generationof a new customer. This is called a cascading insert.

Referential integrity is supported natively in InterBase/Firebird, i.e. all foreignkeybasic relationships are automatically taken into considerationduring data
alterations. Since Version5, InterBase supports declarative referential integritywith cascading deletes and updates. In older versions, this could be
implemented with triggers.

Cascading referential integrity
Since InterBase v5/Firebird, cascading referential integrity is also supported.

97

Whena foreignkey relationship is specified, the user candefine whichaction should be taken following changes to, or deletion of its referenced primary key.
ON UPDATE defines what happens when the primary keychanges and ON DELETE specifies the action to be takenwhen the referenced primary key is deleted.
In bothcases the following options are available:

1. NO ACTION: throws an exception if there is a existing relationship somewhere in another table:

1. CASCADE: the foreignkey columnis set to the new primary key value. A very handy functionwhen it comes to updating, as all referenced foreignkey
fields are automatically updated. When deleting the CASCADE option also deletes the foreignkey row when the primary key is deleted. Be extremely
careful when using CASCADE ON DELETE; when you delete a customer, youdelete his orders, order lines, address, everything where there is a defined
keyrelationship. It is safer to write a procedure that ensures just those data sets necessary are deleted in the right order.

2. SET NULL: if the foreignkeyvalue is allowed to be NULL, when a primary key value is deleted, it will set the relevant foreignkeyfields referencing this
primary keyvalue also to NULL.

3. SET DEFAULT: the foreignkey columnis set to its default value when a primary keyfield is deleted.

98

Table Editor
1. (1) Fields

Table Editor menu
2. (2) Constraints
3. (3) Indices
4. (4) Dependencies
5. (5) Triggers
6. (6) Data Grid

1. Export Data
2. Export Data into Script

7. (7) Master/Detail View
8. (8) Description
9. (9) DDL

10. (10) Grants
11. (11) Logging
12. (12) Comparison
13. (13) To-Do
14. Create View from Table (Updatable View)
15. Create Procedure from Table
16. Print Table

1. Print Preview and Print Design
2. Printing Options

Table Editor
The Table Editor can be used to analyze existing tables and their specifications, or to add new fields, specifications etc, in fact, perform all sorts of table
alterations. It can be started directly from the DB Explorer by simplydouble-clicking on the relevant table in the IBExpert DB Explorer, or using the DB Explorer
right-click menuEdit Table ... (keycombination [Ctrl + O]).

The Table Editor comprises a number of pages, opened by clicking the corresponding tab heading, eachdisplaying those properties already specified, and
allowing certain specifications to be added, altered or deleted.

Note: the IBExpert status bar shows how many remaining changes may be made to the table before a backup and restore is necessary. (A total of 255
changes maybe made to a database object before InterBase/Firebird demands a backup and restore).

The Get Record Count button at the right of the Table Editor toolbar, displays the number of records in the table. To the right of this the table name is
displayed. Byclicking on the drop-down list, all tables for the connected database can be viewed and selected.

Alternatively for those competent in SQL - the SQL Editor [F12] canbe used directly for making table alterations using SQL code.

Support for the InterBase 7.5 temporary tables feature was added in IBExpert version 2004.12.12.1.

(1) Fields

99

The many possible field specifications are listed on the Fields page. The individual columns are explained in detail under New Table. Fields can be amended
by simplyoverwriting the existing specificationwhere allowed. Please note that it is not always possible to alter certain fields once data has beenentered, e.g.
a field cannot be altered to NOT NULL, if data has already beenentered whichdoes not conform to the NOT NULL property (i.e. the field has been left undefined).
Similarlya primary keycannot be specified following data entries with duplicate values.

Since IBExpert version 2005.08.08 the NOT NULL checkbox is now checked when a field itself has not a NOT NULL flag and is based on a NOT NULL domain.

New in IBExpert version 2.5.0.61: It is possible to drag 'n' drop fields from the Database Explorer tree and SQL Assistant into the Table Editor's field list,
allowing youto quickly and easilycopy field definitions from one table to another.

The contents of text blob fields caneven be read in the IBExpert Table Editor; simply hold the mouse over the text field, and the full text appears.

Tip: as with all IBExpert dialogs, the fields can be sorted into ascending or descending order based upon the columnwhere the mouse is, simplyby clicking
on the columnheaders (i.e. PK, FK, Field Name etc.).Bydouble-clicking on the right edge of the column header, the columnwidth can be adjusted to the ideal
width.

Since IBExpert version 2003.11.6.1 the new Grid menuoffers a number of options when working in the Table Editor's Field and Data pages.

Table Editor right-click menu

The Table Editor Fields page has its owncontext-sensitive menuusing the right mouse button:

This can be used to add a New Field, or edit or drop an existing highlighted field. Fields can also be reordered using drag 'n' drop:

?

100

or keycombinations [Shift + Ctrl + Up] and [Shift + Ctrl + Down] in the Reorder Fields window, or directly on the Fields page in Table Editor using the field
navigator icons in the Navigation toolbar or previously mentioned key combinations.

A field list can also be copied to clipboard, and the pop-up Description Editor blended in or out.

New fields can be added using the

icon (or [Ins] key), to openthe Adding NewField Editor (please refer to Insert Field for details).

Important! Do not forget to commit the transaction following creation, alterationor deletionof a field on the Fields page, otherwise the field alterations will not
be displayed on the Data page, or anyother Table Editor page for that matter.

In the lower part of the Table Editor the individual Field Descriptions and Field Dependencies can be viewed. Since IBExpert version 2003.11.6.1, the field
dependencies list also includes indices, primary and foreignkeys. This new versionalso enables youto alter the default value of a field.

(2) Constraints
Constraints are used to ensure data integrity. Constraints give out database the extra integrity it needs. Each constraint has its own context-sensitive right
mouse button menu, and a new toolbar is displayed offering the most common operations as shortcuts.

The right-click menufor the Foreign Key page offers, for example, NewForeign Key [Ins], Drop Foreign Key [Del], Open foreign table ... and Autowidth.
Autowidth automatically adjusts the columnwidths to fit into the visible dialog width.

The following can be viewed, added or edited in the Table Editor under the Constraints tab:

Primary keys: A primary keycan officially only be defined at the time of defining a new table. There is however a workaround in IBExpert, should you
ever find yourself in the situation, where you need to add a primary keys to existing tables (please refer to Adding primary keys to existing tables).
Foreign keys: A foreignkey is a link to another table and stores the primary keyof another table. When defining a foreignkey relationship, it is
necessary to specify what should happen to the foreign key, if the primary key is updated or deleted. Please refer to Referential integrity and
Cascading referential integrity for further information.
Checks: Further conditions canbe specified by the user (check constraint). Checks allows youto add a simple piece of logic to that every time you
change that table, it's checked for validity. It's a way to be able to associate values on the same row. It is possible to define field constraints, e.g. the

101

value in the PRICE field must be larger than 0 and smaller than 10,000. It is also possible to define table constraints in this way (e.g. deliverydate >
order date).

Uniques: All fields defined as unique are also candidate keys. To define a field as unique in IBExpert, right-click on the Constraints / Unique page,
and specifyNewunique constraint. Either accept or alter the default name UNQ_TABLENAME, and thenclick the drop-down list in the On Field columnto
select the field(s) youwish to specify as unique.

New to IBExpert version 2003.11.6.1 is the added support for the Firebird feature - user-defined constraint index names. And since IBExpert version
2005.01.12.1 the maximum constraint name length was expanded from 27 to 31.

(3) Indices
Indices already defined for the table can be viewed on the Indices page.

Information displayed includes key status, index name, uponwhich field the index has been set, whether it is unique, the status (i.e. whether active or inactive),
whichsorting order (Ascending or Descending) and the Statistics (displayed in older versions under the columnheading Selectivity). Since IBExpert version
2007.05.03 it is also possible to define an index description. Those indices beginning with RDB$, are InterBase/Firebird system indices.

102

Indices canbe added or deleted using the right-click menu or [Ins] or [Del]. However, instead of deleting indices, we recommend deactivating them (simply
uncheck the Deactivate box by double-clicking) - younever know when you mayneed them againat a future date. System indices cannot be deleted.

Further options offered in the right mouse button menuare:

Recompute Selectivity
Recompute All
Show Statistics (blends the selectivity statistics in and out)
Copy index name

Expression indexes are also possible since Firebird 2.0. Arbitraryexpressions applied to values in a row in dynamic DDL can now be indexed, allowing
indexed access paths to be available for search predicates that are based on expressions.

Syntax

 CREATE [UNIQUE] [ASC[ENDING] | DESC[ENDING]] INDEX <index name>
 ON <table name>
 COMPUTED BY (<value expression>)

Example

 CREATE INDEX IDX1 ON T1
 COMPUTED BY (UPPER(COL1 COLLATE PXW_CYRL));
 COMMIT;
 /**/
 SELECT * FROM T1
 WHERE UPPER(COL1 COLLATE PXW_CYRL) = 'ÔÛÂÀ'
 -- PLAN (T1 INDEX (IDX1))

Please refer to the Firebird 2.0.4. Release Notes chapter, Enhancements to indexing for further index improvements in Firebird 2.0.

Although it is possible to set an index on multiple columns, this is not recommended, as an index on two fields simultaneously only makes sense when both
fields are to be sorted using ORDER BY, and this should only be used on relativelysmall quantities of results as theycan actually worsen performance rather than
improve it.

See also:
Index
Alter index
Drop index
Firebird 2.0.4 Release Notes: Enhancements to indexing

(4) Dependencies
Here the dependencies between database objects can be viewed.

103

This summarycan, for example, be useful if a database table should need to be deleted or table structures altered, or for assigning user rights to foreign key
referenced tables. It displays both those objects that are dependent upon the table (left side), and those objects that the table depends upon(right side).

The object tree can be expanded or collapsed by using the mouse or [+] or [-] keys, or using the context-sensitive right-click menu items Expand All or
Collapse All.

It evenshows the actions (when blended in using the right mouse button menu item ShowActions) - S (=SELECT), U (=UPDATE), I (=INSERT) or D (=DROP).

The object code canbe viewed and edited in the Table Editor lower panel, provided the Inplace Objects' Editors optionhas been checked in the IBExpert
Options menu item Environment Options / Tools. If this option is not checked, thenthe code mayonly be viewed in the lower panel, and the object editor must
be opened by double-clicking on the respective object name, in order to make any changes to it. This also applies to all triggers listed on the Triggers page.

(5) Triggers
Triggers are SQL scripts, which are executed automatically in the database when certain events occur.

104

Similar to dependencies, the triggers are listed in a tree structure according to the following events:

BEFORE INSERT
AFTER INSERT
BEFORE UPDATE
AFTER UPDATE
BEFORE DELETE
AFTER DELETE

The object tree canbe expanded or collapsed by using the mouse or [+] or [-] keys (or using the right-click menu).

When a trigger is highlighted, the right mouse button menuoffers options to create a new trigger, edit or drop the highlighted trigger, or set the marked trigger
to inactive/active.

IBExpert version2007.12.01 introduced the option to set more thanone trigger simultaneously as active/inactive.

The trigger code canbe viewed and edited in the Table Editor lower panel, provided the Inplace Objects' Editors optionhas been checked in the IBExpert
Options menu item Environment Options / Tools. If this option is not checked, then the code may only be viewed in the lower panel, and the Trigger Editor must
be opened by double-clicking on the respective trigger name, in order to make any changes to the trigger.

This also applies to all objects listed on the Dependencies page.

(6) Data Grid
Here the data in the database table can be manipulated (i.e. inserted, altered or deleted) directly.

There are three modes of view:

1. Grid View - all data is displayed in a grid (or table form).

105

The data sets can be sorted according to any field in either ascending or descending order by simply clicking on the column header. New data sets can also
be added, altered and deleted here. And all operations, as with any operations performed anywhere in IBExpert, may be monitored by the SQL Monitor
(started from the IBExpert Tools menu), particularlyuseful, should problems be encountered with SIUD operations.

The contents of blob and memo fields canbe read by simplyholding the cursor over the respective field. IBExpert displays them as a Blob value; it is also
possible to view and edit them in the Blob Editor (HEX format).

A new feature in IBExpert version 2004.10.30.1 is the OLAP and data warehouse tool, Data Analysis, opened using the Data Analysis icon (highlighted in red
in the above illustration).

There are many options to be found under Options / Environment Options / 6. Grid, whichallow the user to customize this grid. Under the IBExpert menu item
Register Database or Database Registration Info there are additional options, for example, Trim Char Fields in Grids.

Since IBExpert version 2003.11.6.1 the new Grid menuoffers a number of options when working in the Table Editor's Field and Data pages.

The Data page Grid Viewalso has its own context-sensitive menu, opened by right-clicking with the mouse.

This includes the following options:

Cut, Copy and Paste functions.
Incremental Search [Ctrl + F] allows a quick search for individual entries by simply marking the desired column header, clicking the right mouse
button menu item Incremental Search [Ctrl + F] and thentyping the relevant digits/letters, until the required dataset(s) is/are found.

106

Adjust Columns widths (or [Ctrl + "+" NUMBLOCK] adjusts all column widths in the grid view to the ideal width.
SET commands: set field as NULL, empty or NOW.
Copying operations: copies all or one or more selected records to clipboard, as INSERT or as UPDATE. Multiple records mayonly be selected if the
AllowMultiselect optionhas beenchecked in the Options menu: Environment Options / Grid.
Duplicate record option.
Reset fields order: returns the field order to the original (not available in SQL Editor / Results).
Reorder grid columns: simply using drag 'n' drop.
Group/Ungroup Fields: offers an alternative visual option, allowing grid columns to be grouped, which is sometimes useful, for example, if you need
to execute a complex querywith joins of many tables. The Grouping feature is displayed as a dark gray bar labelled Drag a column header here to
group by that column, displayed directly above the columnheaders over the grid. Should this not be visible, go to the IBExpert Options menu item
Environment Options / Grid, and ensure that the Allowrecords grouping option is checked. The column header simply needs to be dragged and
dropped onto the gray bar, to group by that column. A reorganized data view appears, where the group contents canbe revealed or hidden, by clicking
on the + or - buttons (see illustrationbelow).
Filter options: these can also be found in the data page toolbar (see below).

Both the Grid and Form Views offer a Navigation toolbar, allowing the data to be moved, inserted, altered and deleted. Furthermore data can be filtered using
the Filter Panel toolbar. (Please refer to Filter Panel for further information.)

Since IBExpert version 2004.8.5.1 there is the added option to calculate aggregate functions (COUNT, SUM, MIN, MAX, AVG) on numeric and datetime columns.
Simply click Showsummary footer button on the toolbar of the data view to display the summary footer:

107

It is then possible to select an aggregate function for each numeric/datetime columnseparately.

IMPORTANT: this feature performs all calculations on the client side, so do not use this functionon huge datasets with millions of records because IBExpert
will fetchall records from the server before calculating.

Since IBExpert version 2004.8.26.1 it is possible to display data as Unicode. Simply click the relevant icon in the Navigation toolbar or use [F3]. It is not
possible to edit the data directly in the grid. To edit data in Unicode, use the Form Viewor modal editor connected with string cell.

2. Form View - one data set is displayed at a time in a form.

108

New to version 2004.8.26.1: The Form Viewhas been completely redesigned. It now also displays field descriptions. It is also possible to select alternative
layouts (classic or compact), the compact alternative for those who prefer a more condensed and faster interface. Visual options now also include
specificationof Memo Height and Memo Word Wrap.

3. Print Data - displays data in WYSIWYG mode (the status bar showing which page number is currently visible and how many pages the data covers
altogether). The data can be either saved to file or printed.

The Print Data view also has its ownright-click menu, enabling size adjustments (2 pages, whole page, page width, and scaling from 10% to 200%), this being
also available as a pull-down list of options in the Print Previewtoolbar. Further toolbar options include saving the information to file, printing directly, and
specifying the page set up. There is evena check option to specify whether BLOB and MEMO values should be printed or not.

109

IBExpert also offers a Test Data Generator (IBExpert Tools menu), should test data be required for comparing query times etc.

Note that when deleting data, the InterBase/Firebird database becomes larger, as the data is merely flagged as deleted, due to the rollback option, which is
available until the drop commands are committed.

Export Data

Data can be exported from the Data page in the Table Editor and from the Results page in the SQL Editor, by simply clicking the

iconor using the keycombination [Ctrl + E] to open the Data Export window.

The first page in the Export Data dialog, Export Type, offers a wide range of formats, including Excel, MS Word, RTF, HTML, Text, CSV, DIF, SYLK, LaTex,
SML, Clipboard and DBF, which canbe simplyand quickly specified per mouse click (or using the directional keys).

110

The destination file name must also be specified, and check options allow you to specify whether the resulting export file should be opened following the data
export or not, and - for certain export formats - whether columnheadings should be omitted or not, and whether text BLOB values should also be exported.

Should you encounter problems when exporting text BLOB values, please check that the Showtext blobs as memo option is checked on the Grid page found
unter the IBExpert menu item Options / Environment Options.

Depending on the format, further options can be specified on the second or third pages, Formats and Options, specific to the export type. The Formats page
is available for all export types, with the exception of XML.

Here it is possible to specifya range of numerical formats, including currency, float, integer, date, time or date and time. Please note that not all of these
options may be altered for all export types (for example when exporting to DBF it is only possible to specify the formats for date/time and time).

Depending upon which format has beenspecified, additional options maybe offered on the third page, for example:

Excel - specificationof page header and footer.
HTML - template selection and preview, title, header and footer text as well as a wide range of advanced options.
CSV - Quote String check option, and user specification of CSV separator.
XML - Encoding format maybe selected from a pull-down list. There are also check options to export String, Memo and DateTime fields as text.
DBF - check options to export strings to DOS, long strings to Memo, and to extract DateTime as Date.

The export is thenfinallystarted using the Start Export button in the bottom right-hand corner. Following a successful export, a message appears informing of
the total number of records exported.

Using the right-hand icon in the or Table Editor toolbar (Export data into script) the data can be exported into an insert SQL script (without the blob fields).

Export Data into Script

The Export Data into Script dialog can be started using the

111

on the Data page in the Table Editor or the Results page in the SQL Editor.

The following options may be selected before starting the export:

Export into: File, Clipboard or Script Executive.
Export as: INSERT statements, UPDATE statements or since version 2003.12.18.1 there is also the added possibility to export data as a set of EXECUTE
PROCEDURE statements.

Specify the file name if exporting to file and the table name from which the data is to be exported. The Fields page allows the table fields to be selected.

The Options page:

offers a number of options including replacement of non-print characters in strings with spaces, removal of trailing spaces and control characters from string
values, date and time specificationand whether the CREATE TABLE statement should be added into the script.

The Additional page allows additional definitions for query to be made, for example, ORDER BY or WHERE clauses.

After completing all specifications as wished, simply click the Export button to perform the data export.

Please note that since IBExpert version 2007.09.25 IBExpert can work with scripts larger than 2 GB. With older IBExpert versions, should the script exceed 2
GB, youwill need to split it into two or more smaller ones. This can be done using the IBExpert Tools menu item Extract Metadata, where it is possible to
specify the optionseparate files and eventhe maximum file size limit.

(7) Master/Detail View
The Master/Detail Viewwas added to the object editors in IBExpert version 2006.06.05. This allows youto view data of tables that reference (or are
referenced by) the current table by a foreignkey.

112

Since IBExpert version 2006.08.12 it is possible to edit Master/Detail data. Use the Commit and Rollback toolbar buttons to commit or rollback anychanges.

(8) Description
As with the majorityof the IBExpert Editors, the Table Editor's Description page can be used to insert, edit and delete text by the user as wished. It enables the
database to be simplyand quickly documented.

(9) DDL
This displays the database table definition as SQL script.

113

This DDL text cannot be edited here, but it canbe copied to the clipboard.

(10) Grants
Here individual users can be assigned rights to SELECT, UPDATE, DELETE and INSERT for the current table. In some cases rights can also be assigned to
individual fields.

Using the pull-down list, grants canalso be assigned for not just users and roles, but also for views, triggers and procedures in the same database, without
having to leave the Table Editor.

For more details regarding this subject, please refer to Grant Manager.

114

(11) Logging
Data manipulationcan be documented here in system tables generated by IBExpert. When this page is opened for the first time, IBExpert asks whether it
should generate certain system tables:

After confirming and committing, you will need to prepare all tables for logging using the respective menu item found in the Log Manager, which is located in
the IBExpert Tools menu. Once the preparation has beensuccessfully committed, youcan specifywhether youwish to log insert, update and/or delete actions.

After generating the script (using the green arrow iconor [F9]), triggers are created for the table, and from now on, regardless of whichprogramm or user
makes any changes, all specified alterations are now logged.

Log to script by clicking the respective button:

The log file name, how often should be committed and which fields should be logged can be stipulated on the Options page. And the beginning and end of
script may be specified under Script Details if wished. The script can then simplybe generated using the respective icon or [F9].

In order to integrate the prepared database object and individual fields into the Logging file, youwill need to use the IBExpert Tools menu item Log Manager.

115

(12) Comparison
This new feature was introduced in IBExpert version 2006.03.06.

The Comparison page allows you to compare a selected database object with one in another (comparative) database. The comparative database must first
be specified in the IBExpert Database Registration Info (Comparative Database).

To perform a comparison simply openthe object to be compared, click the Comparison tab and specify the comparative database:

Uncheck the Ignore Blanks checkbox if desired and then click the top left icon(Compare Again) to perform the object comparison. The status bar displays
the color key, so that the type of alterations made are immediately apparent, as well as the number of changes made.

Below the status bar, there are a further two pages: Script: This to comparative DB and Script: and Script: Comparative DB to This. Both scripts are
supplemented with comments, so that it is quick and simple to detect which alterations need to be made where, in order to update the object either in the main
or the comparative database.

116

(13) To-Do
This feature was introduced in IBExpert version 2007.12.01 and can be used to organize your database development. You canadd ToDo items for each
object in the database.

Create View from Table (Updatable View)
It is possible to create a view directly from a table, using the Table Editor's Create Viewicon:

Select the trigger type simplyby activating/deactivating the relevant trigger type checkbox (BEFORE INSERT, BEFORE UPDATE, BEFORE DELETE).

The list of fields to be included in the view may be specified by simply clicking on the check boxes to the left of the field names, or by double-clicking or using
the space bar on a selected field.

The view code is displayed in the lower window and may also be amended as wished.

As with the view default name, the trigger default name is automaticallygenerated by IBExpert, comprising the prefixVW_ followed by the table name and
ending with the trigger type suffix (_BI = Before Insert, _BU = Before Update, _BD = Before Delete). This can of course be overwritten if wished.

One or more trigger types may be specified - wherebyfurther tabs appear in the lower area, allowing the pre-defined trigger code to be simply amended as
wished, automatically creating an updatable view - this is, in fact, an extremely quick and simple way to create a view that is updatable, and which can
otherwise only be realized with considerable manual labor! These triggers are already prepared, and require little work in order to create an updatable view.

Finally compile and commit to create the new view or updatable view.

Create Procedure from Table
A procedure can be created directly from a table, using the Table Editor's Create Procedure icon:

The sort of procedure to be created can be specified by checking/unchecking the boxes in the upper area.

117

Options include:

SELECT
INSERT
UPDATE
DELETE
INSERT/UPDATE

with a further checkbox option to:

Grant execute to PUBLIC after creating.

A procedure default name is automatically generated by IBExpert, comprising the table name followed by one of the following suffixes:

S = SELECT
I = INSERT
U = UPDATE
D = DELETE
IU = INSERT/UPDATE

This name canof course be overwritten or altered directly in the code if wished.

The list of fields to be included in the procedure maybe specified as wished by simplyclicking on the check boxes to the left of the field names, or by double-
clicking or using the space bar on a selected field.

The procedure text is displayed in the lower window and may also be altered if wished. Switch from one page to the next by clicking on the tabs (displayed
above the fields lists).

Finallycompile and commit to create the new procedure.

Print Table

118

Please refer to the IBExpert Edit Menu item Print and the Table Editor Menu item Printing Options.

Print Preview and Print Design

Please refer to the IBExpert Report Manager for further information.

Printing Options

The Printing Options dialog can be started using the Print Table Metadata iconor [Shift + Ctrl + P]. The Printing Options dialog offers different options
depending uponwhich Editor it is started from. For example, when started from the Table Editor:

the View Editor:

the Procedure Editor:

the Trigger Editor:

These options include the following:

Fields
Constraints
Indices
Dependent Objects
Depend On Objects
Parameters
DDL
Description

Simply check as wished, and thenclick Preview(to view the report as it will be printed - see Print Preview for further information), Design (to customize the
report - refer to Report Manager for further information) or Print to proceed to the standard Windows Print dialog.

See also:
Grant Manager
Log Manager
Database Registration Info
DCL-DataControlLanguage
DDL-DataDefinitionLanguage
DML-DataManipulationLanguage

119

Field
1. Adding new field (insert field)

using the Field Editor
2. Alter field
3. Drop field/delete field

Field
A field can be defined as the intersection in a table where a row meets a column, containing a clearlydifferentiated atomic piece of information. Each data
field should be unique and represent and indivisible quantityof information.

Each database field has a name, whichenables the data to be accessed. A database field can be based on a domain definition or defined individually in the
IBExpert Create Table or Table Editors, in whichcase InterBase/Firebird automatically creates a system domain for the field definition.

Adding new field (insert field) using the Field Editor
Fields can be inserted into a table at the time of table creation, using the IBExpert DB Explorer or menu item NewTable. It is however often necessary to add
new fields, after the table has been created. This can be easily done in IBExpert by opening the Table Editor (double-click on the relevant table in the IBExpert
DB Explorer) or using the DB Explorer right-click menu Edit Table ... (or key combination [Ctrl + O]), and then inserting a field using the

Add Field icon (or [Ins] key) or the Table Editor right-click menu Insert Field, to openthe Adding NewField Editor.

120

The Adding NewField Editor displays the table name, into which the field is to be inserted. The new field name canbe specified by the user, along with the
parameters NOT NULL and Primary Key. Further options are to be found on the Default and Check pages, and the usual IBExpert Desc (= Description) and
DDL (= [[DDL-Data Definition Language |Data Definition Language) information pages are also included.

The new field maybe based upon an existing domain (which maybe edited using the Edit button) or a New Domain canbe created directly from the NewField
Editor. All existing domains (in the connected database) can be viewed in the "Domain" pull-down list. The domain information can be viewed in the Editor's
lower panel.

It is also possible to define certain numeric formats as standard using the Options menu, Environment Options / Grid / Display Formats, if wished. These
format standards can be overwritten in individual fields here in the Field Editor.

Of course a new field doesn't have to be based on a domain. The datatype can be specified using the pull-down list under the RawDatatype tab. However,
InterBase/Firebird automatically generates a system domain for all specified fields, so when a new field is inserted, or existing field altered, InterBase/Firebird
inserts or alters the respective system domain.

Additional context-sensitive input fields appear, relevant to the datatype selected (e.g. when VARCHAR is selected, options for specifying Length, Charset, and
Collate are offered; in the case of NUMERIC, Precision and Scale canbe specified).

Furthermore arrays can be defined, as well as default values, check constraints, "computed by" calculations and autoincrements.

121

The autoincrement page allows new generators to be created, or an existing generator to be selected. New triggers and procedures can also be created
directlyhere in this Editor for this field, if desired.

As with the majority of the IBExpert Editors, the last two pages display the object Description (which can be inserted, edited and deleted here by the user as
wished), and the DDL page,

whichdisplays the SQL code for the field as specified by the user.

Alter field
Similar to Alter Domain, only certain field attributes maybe altered. For example, CHECK instructions and default values maybe added, altered or deleted.
However it is not possible to alter the basic datatype (for example, from NUMERIC to VARCHAR). Neither is it possible to drop a NOT NULL constraint. To alter these
the field has to be dropped and recreated (see Drop Field).

122

Fields can be altered in the Table Editor by double-clicking on the selected field, or right-clicking and selecting Edit Field from the menu, or pressing the
[Enter] key, to open the Field Editor:

However you will notice that youneed to switch to the DomainEditor to perform any actual changes, as even if the field is not based on a user-defined domain,
InterBase/Firebird automatically creates a system domain for all field definitions. Simply click Edit Domain to spring to the Domain Editor:

The desired alterations canhowever be easily made to the user-defined or system domain and executed and checked before finallycommitting:

Please refer to Alter Domain and Alter Table for further information.

Drop field/delete field

123

Fields can be dropped directly in the Table Editor on the Fields page, by using the "-" icon in the Table Editor toolbar, selecting from the right-click menu or
using the keycombination [Shift + Del].

IBExpert asks for confirmation:

before finally dropping the field. Once dropped, it cannot be retrieved.

Whendropping fields, it is important to note that the field may not be part of the table's primary key, have a foreignkey relationship with another table, contain a
unique constraint, be part of a table constraint or part of another column's CHECK constraint.

The Constraints page in the Table Editor lists all such fields, so that the developer can quickly ascertainwhether constraint alterations/deletions are
necessary, before dropping the field in question (or whether, in fact, the field should be dropped at all!).

Using SQL the syntax is:

 ALTER TABLE <table_name>
 DROP <field_name>;

See also:
Field Definitions

124

Field Definitions
1. Charset / Character Set

1. Overview of the main character sets
2. Declaring character sets in XML and

HTML (IANA charset definitions)
2. Datatype

1. Blob - Binary Large OBject
a. Segment size
b. Subtype

2. CHAR and VARCHAR
a. Collate

3. NCHAR and NVARCHAR
4. INTEGER, SMALL INTEGER and BIG INTEGER

(Int , SmallInt and BigInt)
5. FLOAT and DOUBLE PRECISION
6. NUMERIC and DECIMAL
7. DATE
8. TIME
9. TIMESTAMP

3. Array
1. One-dimensional arrays
2. Multi-dimensional arrays
3. Advantages of arrays
4. Array limitations

4. Boolean
5. Autoincrement
6. NOT NULL
7. NULL

Field Definitions
Charset / Character Set
A character set is specified in InterBase/Firebird to define which characters are allowed in a CHAR, VARCHAR or BLOB field. It also provides collation options
when InterBase/Firebird needs to sort a column.

Character set definitionbecomes increasingly important as the world of database programming spreads more and more across national borders. Today it is
often necessary for applications to also meet the requirements of other countries. The problem of multilingual interfaces is just one aspect of
internationalization. A modern application needs to handle the particularities specific to individual countries such as, for example, sorting order (collation). In
the German language the umlauts ä, ö und ü are integrated in the alphabet using the letter combinations ae, oe and ue. At the same time there are also special
characters in the French language, which are not used in the German language such â, á and à.

There are completely different problems with versions whose characters are not known in the Europeancharacter sets, for example Korean or Chinese. These
character sets also oftencontain many more characters, which cannot be incorporated in the 8 bit character sets, as the technical upper limit lies at 256 (=28)
different characters. For this reasonInterBase/Firebird implements character set support.

Important character sets are, for example, ISO8859_1, to be recommended is Win1252 - the West Europeancharacter set. Unicode_FSS is the global
character set, however there is hardly a program that canread this; Win1251 is the East Europeancharacter set.

Character sets can be defined for the database (default character set):

or for domains and fields (where the collation can also be specified):

125

See also:
SET NAMES
Default character set

Overview of the main character sets

ByStefan Heymann

Character sets are an issue every programmer has to deal with one day. This is an overview of the most important character sets.

Name Bytes per
Character Description Range IANA/MIME

Code
7-bit
ASCII 1 The mother of all character sets. Contains 32 invisible control characters, the Latin letters

A-Z, a-z, the Arabic digits 0-9 and a bunch of punctual characters. Code Range 0..127. 0..127 US-ASCII

Unicode-based Character Sets

Unicode,
ISO 10646 N.A.

A universal code for all characters anyone can think of. Defines characters, assigns
them a scalar value, but does not define how characters are rendered graphicallyor in
memory.

U+0000..U
+100000 N.A.

UTF-8 1..6 A Unicode transformation format whichuses 1-Byte characters for all 7-bit US-ASCII
characters and sequences of up to 6 bytes for all other Unicode characters.

All Unicode
characters UTF-8

UCS-2 2
A unicode transformation format which uses 2 Bytes (16 Bits) for every character. This
character set is not able to render all Unicode scalars and is therefore obsolete.
However, it is still used by a lot of systems (Java, NT)

U+0000..U
+FFFF

ISO-10646-
UCS-2

UTF-16 2 A unicode transformation format which uses 2 Bytes (16 Bits) for every character. Using
the concept of "Surrogate Pairs", this format is able to render all Unicode characters.

All Unicode
characters UTF-16

UCS-4,
UTF-32 4

Two unicode transformation formats whichuse 4 Bytes (32 Bits) for every character.
UCS-4 and UTF-32 are the only character sets, whichare able to render all Unicode
characters in equally long words. UCS-4 and UTF-32 are technically identical.

All Unicode
characters

ISO-10646-
UCS-4, UTF-32

Single-byte Character Sets

ISO 8859-x 1 An extension of US-ASCIIusing the eighth bit. 0..127, 160..255 ISO-8859-x

Windows 125x 1 Equal to ISO 8859-x, plus additional characters in the 128..159 range. 0..255 Windows-125x

ISO 8859-x Character Sets

Name Covered Languages MS Windows counterpart
ISO 8859-1 Latin-1 Windows-1252

ISO 8859-2 Latin-2 Central and East European languages (Czech, Polish, etc.) Windows-1250

ISO 8859-3 Latin-3 SouthEuropean, Maltese, Esperanto

ISO 8859-4 Latin-4 North European

ISO 8859-9 Latin-5 Turkish Windows-1254

ISO 8859-10 Latin-6 Nordic (Sami, Inuit, Icelandic)

ISO 8859-13 Latin-7 Baltic Windows-1257

ISO 8859-14 Latin-8 Celtic

ISO 8859-15 Latin-9 Similar to ISO 8859-1, adds Euro sign(€) and a few other characters

MS Windows Character Sets

Number Name

126

1250 Latin 2

1251 Cyrillic

1252 Latin 1

1253 Greek

1254 Latin 5

1255 Hebrew

1256 Arabic

1257 Baltic

1258 Viet Nam

874 Thai

Declaring character sets in XML and HTML (IANA charset definitions)

ByStefan Heymann

Declaring character sets in XML

Every XML document or external parsed entity or external DTD must begin with an XML or text declaration like this:

 <?xml version="1.0" encoding="iso-8859-1" ?>

In the encoding attribute, you must declare the character set you will use for the rest of the document.

You should use the IANA/MIME-Code from Character Set Overview.

Declaring character sets in HTML

In the head of an HTML document youshould declare the character set you use for the document:

 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=windows-1252">
 ...
 </head>

Without this declaration (and, by the way, without an additional DOCTYPE declaration), the W3C Validator will not be able to validate your HTML document.

IANA Character Set Definitions

The Internet Assigned Numbers Authority IANA maintains a list of character sets and codes for them. This list is:

IANA-CHARSETS Official Names for Character Sets, http://www.iana.org/assignments/character-sets

Datatype
InterBase/Firebird tables are defined by the specificationof columns, which accommodate appropriate information in eachcolumn using datatypes, for
example, numerical (NUMERIC, DECIMAL, INTEGER), textual (CHAR, VARCHAR, NCHAR, NVARCHAR), date (DATE, TIME, TIMESTAMP) or blobs.

The datatype is an elemental unit when defining data, whichspecifies the type of data which maybe stored in tables, and which operations may be performed
on this data. It can also include permissible calculative operations and maximum data size.

The datatype can be defined in IBExpert using the DB Explorer, by creating a domain or creating a new field in the Create Table or Table Editor.

It can of course, also be defined using SQL directly in the IBExpert SQL Editor. The syntax for the datatype definition is as follows:

 <data_type> = {
 {SMALLINT | INTEGER | BIGINT | FLOAT | DOUBLE PRECISION}
 [<array_dim>]
 | {DECIMAL | NUMERIC} [(precision [, scale])]
 [<array_dim]
 | DATE [<array_dim>]
 | {CHAR | CHARACTER | CHARACTER VARYING | VARCHAR}
 [(int)] [<array_dim>] [CHARACTER SET charname]
 | {NCHAR | NATIONAL CHARACTER | NATIONAL CHAR}
 [VARYING] [(int)] [<array_dim>]
 | BLOB [SUB_TYPE {int | subtype_name}) (SEGMENT SIZE int]
 [CHARACTER SET charname]
 | BLOB [(seglen [, subtype])]
 }

The InterBase/Firebird datatype definitions included in this sectionhave beenkept as close as possible to original InterBase definitions to avoid any potential
misunderstanding or conflict with the datatypes of other database programs.

Blob - Binary Large OBject

127

http://www.iana.org/assignments/character-sets

A blob is a datatype storing large binary information (Binary Large OBject).

Blobs can contain anybinary or ASCII information, for example, large text files, documents for data processing, CAD program files, graphics and images,
videos, music files etc.

Blobs are defined as table columns. Their memory size is almost unlimited as they canbe stored across several pages. This assumes however that a
sufficient database page size has beenspecified. For example, using a 1k page, the blob maynot exceed 0.5 GB, using a 4k page size, the blob size is
limited to 8GB.

The ability to store such binary data in a database provides a high level of data security, data backup, version management, categorizationand access
control.

The advantage of blob text fields over VARCHAR fields (e.g. VARCHAR (32000)) is that a network protocol transfers all 32,000 VARCHAR characters when using an
ISDN connection (analog lines compress the data to an extent). With a blob field, only the actual file size is transferred. Although - since Borland InterBase
version6.5/7 this disadvantage with VARCHAR datatype transfer has been solved, i.e. in these newer InterBase versions the fullVARCHAR length including spaces
is no longer transferred each time across the network. However, evenhere, blobs are still more effective when working with such large data sizes.

InterBase/Firebird supports quick and efficient algorithms for reading, writing and updating blobs. The user canmanipulate blob processing with blob routines
- also called blob filters. These filters are ideal tools for the compression and translation of blobs, depending uponthe application requirements.

Blobs can be specified using the IBExpert DB Explorer or the IBExpert SQL Editor.

Blob specification includes the subtype, segment size and, if wished, the character set.

Whenthe Data View(i.e. Data page) in the Table Editor is selected, and the table shown contains a blob column, IBExpert can display the blob content of a
selected data set as text (also as RTF), hex, images and web pages using the IBExpert menu item Tools / Blob Viewer/Editor.

128

It is important when using blobs in a database, to consider the database page size carefully. Blobs are created as part of a data row, but because a blob
could be of unlimited length, what is actually stored with the data row is a BlobID, the data for the blob is stored separately on special blob pages elsewhere in
the database.

The BlobID is an 8 byte value that allows InterBase/Firebird to uniquely identifya blob and locate it. The BlobIDs canbe either temporary or permanent; a
temporary blob is one whichhas been created, but has not yet been stored as part of a table, permanent blobs have been stored in a table. The first 4 bytes
represent the relation ID for the blob (like data rows, blobs are bound to a table), the second four bytes represent the ID of the blob within the table. For
temporary blobs the relation ID part is set to 0.

A blob page stores data for a blob. For large blobs, the blob page could actually be a blob pointer page, i.e. be used to store pointers to other blob pages. For
each blob that is created a blob record is defined, the blob record contains the locationof the blob data, and some information about the blob's contents that
will be useful to the engine when it is trying to retrieve the blob. The blob data could be stored in three slightly different ways. The storage mechanism is
determined by the size of the blob, and is identified by its level number (0, 1 or 2). All blobs are initially created as level 0, but will be transformed to level 1 or 2
as their size increases.

A level 0 blob, is a blob that can fit on the same page as the blob header record, for a data page of 4096 bytes, this would be a blob of approximately 4052
bytes (page overhead - slot - blob record header).

Although the documentation states that the segment length does not affect the performance of InterBase/Firebird, the actual physical size of a blob, or its
segment length can become useful in trying to improve I/O performance for the blob, especially if youcan size the segment (typically) or blob to a page.

This is especially true if youplan to manipulate the blob using certain low level InterBase/Firebird blob calls. Whena blob is too large to fit on a single page
(level 1), and the data will be stored on one or more blob data pages, thenthe initial page of the blob record will hold a vector of blob page numbers.

A level 2 blob occurs when the initial page of the blob record is not big enough to contain the vector of all the blob data page numbers. Then InterBase/
Firebird will create blob pointer pages, i.e. multiple vector pages that can be accessed from the initial blob header record, that now point to blob data pages.

The maximum size of a level 2 blob is a product of the maximum number of pointer pages, the number of data pages per pointer page, and the space
available on eachdata page.

Max Blob Size:

1Kb page size => 64 Mb
2Kb page size => 512 Mb
4Kb page size => 4 Gb
8Kb page size => 32 Gb
16kb page size => Big enough :-).

We would like to thank Paul Beach of IBPhoenix, for allowing us to reproduce excerpts of his session, Using and Understanding Blobs, held at the European
Firebird Conference 2003.

Segment size

Segment sizes are specified for blob fields. This canbe done using the DomainEditor or the Table Editor (started from the IBExpert DB Explorer).

129

A blob segment size can be defined, to increase the performance when inputting and outputting blob data. This should roughlycorrespond to the datatype
size. With a memo field, for example, for brief descriptions which could however, in individual cases, be considerably longer, the segment length could be
defined as 100 bytes, whereby the blob datatype is processed in 100 byte blocks.

Whenprocessing videos or large graphics in the database, a large segment length should be selected. The maximum length is 65536 bytes. This is because
all blob contents are stored in blocks, and are fetched via these blocks. A typical segment size from the old days is 80 (because 80 characters fit onto one
monitor line).

Whena blob is extracted, the InterBase/Firebird server reads the number of segments that the client has requested. As the server always selects complete
blocks from the database, this value can in effect be ignored on modernpowerful computers. 2048 is recommended as a standard since version InterBase 6.

Subtype

Subtypes are specified for blobs. They are used to categorize the datatype when defining blobs. A subtype is a positive or negative numerical value, which
indicates the type of blob data. The following subtypes are predefined in InterBase/Firebird:

Subtype Meaning
0 Standard blob, non-specified binary data

1 Text blob, e.g. memo fields

Text Alternative for defining subtype 1

Positive value Reserved for InterBase

Negative value User-defined blob subtypes

130

Blob fields canbe specified using the Domain Editor or the Table Editor (started from the IBExpert DB Explorer).

The specificationof a user-defined blob subtype has no effect uponInterBase/Firebird, as the InterBase/Firebird server treats all blob fields the same, i.e. it
simply stores the data and delivers it to the client program when required.

The definitions are however required by the client programs in order to display the blob content correctly. For example, SUB_TYPE -200 could be defined as a
subtype for GIF images and SUB_TYPE -201 as a subtype for JPG images.

Subtype specification is optional; if nothing is specified, InterBase/Firebird assumes 0 = binary data.

Under the menu item Tools, the IBExpert Blob Viewer/Editor can displayblob contents as text, hex, images, RTF and web pages.

CHAR and VARCHAR

InterBase/Firebird provides two basic datatypes to store text or character information: CHAR and VARCHAR (blobs also allow character storage using the subtype
text).

CHAR and VARCHAR are datatypes whichcan store anytext information. Numbers that are not calculated, such as zip codes, are traditionallystored in CHAR or
VARCHAR columns. The length is defined as a parameter, and can be between 1 and 32,767 bytes. It is particularly useful for codes that typicallyhave a fixed or
predefined length, such a the zip code for a single country.

Compared to most other databases, InterBase/Firebird only stores significant data. If a column is defined as CHAR(100), but only contains entries with 10
characters, the additionallydefined bytes are not used, as InterBase/Firebird stores CHAR and VARCHAR types similarly, and does not fill unused spaces with
blanks. Both CHAR and VARCHAR are stored in memory buffer in their full, declared length; but the whole row is compressed prior to storing i.e. CHARs, VARCHARSs,
INTEGERs, DATESs, etc. all together.

Indeed, VARCHAR columns require more storage than CHAR columns, because when storing a VARCHAR, InterBase/Firebird adds two bytes that state just how big
the VARCHAR actually is.

So a CHAR will in fact be stored in a smaller space. However, when a SELECT is performed on a VARCHAR column, InterBase/Firebird strips the 2 byte padding
and returns the stored value. Whena SELECT is performed on a CHAR column, InterBase/Firebird returns the value and the "empty spaces". Thus the two bytes
saved in storage of a CHAR must be balanced against the subsequent need to strip the spaces on the client side. These two bytes however are, with today's
hardware, too negligible to have an influence uponthe database performance. This can however be disadvantageous when defining short text fields.

131

In practical terms consider just this one rule: only use CHARs if strings of few characters are to be stored; the exception to the rule being when working with
intermediate tables that are required to export data to fixed length prn files. Thenthe fixed length field will be a positive advantage.

This efficient storage in InterBase/Firebird can lead to considerable confusion particularly when importing data, as Paradoxor dBASE databases save all
blank spaces, and after importing a 10MB dBASE file into InterBase, often only 3-6 MB remain, althoughall data sets were imported correctly.

For this reasoncolumns can be defined generously in InterBase/Firebird without a problem, whereas in other databases eachdefined byte influences the size
of the database, regardless of whether data is stored in these fields or not.

Please note however that indexed CHAR fields should not be more than approx. 80 characters in length (with Firebird 1.5 the limit is somewhat higher).

The CHAR datatype definitioncan be written in two ways:

 CHAR
 CHARACTER

The VARCHAR datatype definition canbe writtenas follows:

 VARCHAR
 CHARACTER VARYING
 CHAR VARYING

Collate

A special collation sequence can be specified for CHAR and VARCHAR field columns. The COLLATE parameter allows fields to be collated according to a certain
language/group of languages e.g. collate according to the German language when using Win1252.

In IBExpert the collation sequence canbe specified when defining the character set for a domain or field:

The collation options are offered in IBExpert in a pull-down list, after specifying the character set.

In DDL it is specified using the keyword COLLATE and the respective character set table, for example:

 CREATE DOMAIN dom_city VARCHAR(20)
 COLLATE PXW_INTL850;

 CREATE DOMAIN User_Name VARCHAR(20)
 CHARACTER SET DOS437
 DEFAULT USER
 NOT NULL
 COLLATE PDOX_ASCII

The parameter sequence is important, as the collation sequence must be specified last.

NCHAR and NVARCHAR

NCHAR or NATIONALCHARACTER
NVARCHAR or NATIONAL CHAR VARYING or NATIONAL CHARACTER VARYING

NCHAR/VARCHAR are datatypes, whichcan be defined as the NCHAR/VARCHAR datatypes with a length of 1-32,767 bytes. The only difference to the NCHAR/VARCHAR
datatype is that NCHAR/VARCHAR automatically defines a special character set for this table column: "CHARACTER SET ISO8859_1".

INTEGER, SMALL INTEGER and BIG INTEGER (Int, SmallInt and BigInt)

INTEGER datatypes are used to store whole numbers. SMALLINT is the abbreviation for small integer. BIGINTwas added in Firebird 1.5 and is the SQL99-
compliant 64-bit signed integer type. BIGINT is available in Dialect 3 only.

132

Values following the decimal point are not allowed. Depending uponthe numeric area required, following INTEGER types are supported:

Type Size Value Range
SmallInt 2 bytes -32,768 to +32,767

Integer 4 bytes -2,147,483,648 to +2,147,483,647

BinInt 64 bytes -2^63^ to 2^63^-1
or -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

4 bytes of data storage are required for the INTEGER value, whereby31 bits are for the number and 1 bit for the sign. 2 bytes of data storage are required for the
small integer value, whereby15 bits are for the number and 1 bit for the sign. It is usually preferable to use an INTEGER datatype as 2 bytes more or less are
fairly irrelevant these days.

An INTEGER is a 15-digit number and althoughextremely large, is by far not as large as the NUMERIC(18). INTEGER types are particularlysuited for unique
identificationnumbers, as InterBase/Firebird contains mechanisms for the automatic generationof whole number values (please refer to generator for further
information). The resulting indices for the connection of multiple tables to each other are relativelysmall and offer extremely quick access, as the highest
computer performance on all computer platforms is generally found in INTEGER operations. It is possible to specify the display format of an INTEGER under
Environment Options / Grid / Display Formats.

SMALLINTs can also be used for BOOLEAN datatypes e.g. true/false, male/female.

FLOAT and DOUBLE PRECISION

FLOAT datatypes are used to store values with significant decimals. The following FLOAT types are supported:

Type Size Value range
Float 4 bytes 7 significant decimals; -3.4 x 10^-38 to 3.4 x 10^38

Double Precision 8 bytes 15 significant decimals; -1.7 x 10^-308 to 1.7 x 10^308

A column with the defined datatype FLOAT canstore a single-precision figure with up to 7 significant decimals. The decimal point can float between all seven of
these digits. If a number with more than7 decimal places needs to be saved, decimals beyond the seventh positionare truncated. FLOAT columns require 4
bytes of storage.

A column with the defined datatype DOUBLE PRECISION can store numbers with 15 significant decimals. This uses 8 bytes of storage. As with the FLOAT column,
the decimal point can float within the column. The DOUBLE PRECISION datatype is implemented in the majorityof InterBase platforms as a 64 bit number.

FLOAT types can be implemented for any calculative operations. Theyoffer an optimal performance and sufficient range of values. It is possible to specify the
display format of a FLOAT field under Environment Options / Grid / Display Formats.

The DOUBLE PRECISION datatype can be written as follows:

 DOUBLE PRECISION
 DOUBLE

The main advantage of a DOUBLE PRECISION datatype is the large number of decimal places e.g. 1/3 in DOUBLE PRECISION would be 0,33333333333333 in
NUMERIC(18,4) it would be 0,3333. Please note: up until dialect 1 NUMERIC and DOUBLE PRECISION were identical i.e. an SQL with the datatype NUMERIC(15,2)
results in the following:

Result with dialect 1:

 CREATE TABLE TEST(WERT NUMERIC(15,2));
 INSERT INTO TEST(WERT) VALUES(100);
 SELECT * FROM TEST; result 100
 UPDATE TEST SET WERT=WERT/3;
 SELECT * FROM TEST; result 33,33
 UPDATE TEST SET WERT=WERT*3;
 SELECT * FROM TEST; result 100

Result with dialect 3:

 CREATE TABLE TEST(WERT NUMERIC(15,2));
 INSERT INTO TEST(WERT) VALUES(100);
 SELECT * FROM TEST; result 100
 UPDATE TEST SET WERT=WERT/3;
 SELECT * FROM TEST; result 33,33
 UPDATE TEST SET WERT=WERT*3;
 SELECT * FROM TEST; result 99,99

Since dialect 3 NUMERIC data is rounded according to commercial rounding rules; up to dialect 1 NUMERIC data is rounded according to technical rounding
rules.

NUMERIC and DECIMAL

The NUMERIC datatype specifies a numeric column where the value has a fixed decimal point, such as for currency data. NUMERIC(18) is a 64-bit integer value
in SQL dialect 3 and is almost infinite. Since SQL dialect 3 numeric and decimal datatypes are stored as INTEGERS of the respective size.

133

SQL dialect 1 offers NUMERIC(15).

Syntax:

 NUMERIC(precision, scale);

or

 DECIMAL(precision, scale);

PRECISION refers to the total number of digits, and SCALE refers to the number of digits to the right of the decimal point. Both numbers canbe from 1 to 18 (SQL
dialect 1: 1-15), but SCALEmust be less than or equal to PRECISION.

It is better to define NUMERIC always at its maximum length, as in this case, the 32 bit INTEGER value is used. Otherwise a 16 bit value is used internally, for
example with NUMERIC(4,2), and this is not always transformed back correctly by the client program environments (an older BDE version could, for example,
transform Euro 12.40 with NUMERIC(4,2) into Euro 1,240).

InterBase/Firebird supports a number of options for specifying or not specifying PRECISION and SCALE:

1. If neither PRECISION nor SCALE are specified, InterBase/Firebird defines the columnas INTEGER instead of NUMERIC and stores only the integer portion
of the value.

2. Whenusing SQL dialect 1, if just PRECISION is specified, InterBase/Firebird converts the column to a SMALLINT, INTEGER or DOUBLE PRECISION
datatype, based on the number of significant digits being stored.

In SQL dialect 3, if just PRECISION is specified, InterBase/Firebird converts the column to a SMALLINT, INTEGER or INT64 datatype, based on the number of
significant digits being stored.

It is important to distinguish betweenthe two dialects, because since INT64 is an INTEGER datatype, and DOUBLE PRECISION is not, youwill occasionally have
rounding errors in SQL dialect 1, but not in SQL dialect 3 or later.

The NUMERIC datatype should only be used for fields that are later to be used as part of a calculation.

InterBase/Firebird converts the columns as follows:

Definition Datatype Created
Decimal(1)-Decimal(4) Small Integer

Decimal(5)-Decimal(9) Integer

Decimal(10)-Decimal(18) Int (64)

Note that if a DECIMAL(5)datatype is specified, it is actually possible to store a value as high as a DECIMAL(9) because InterBase/Firebird uses the smallest
available datatype to hold the value. For a DECIMAL(5) column, this is an INTEGER, whichcan hold a value as high as a DECIMAL(9).

DATE

The DATE datatype stores values which represent a date. InterBase/Firebird supports a single DATE-type column that requires 8 bytes of storage space. It uses
4 bytes for the date and 4 bytes for the time.

Valid dates are from January 1, 100 AD through February 28, 32,767 AD. Note: for DATE arithmetic purposes, DATE 0 (the integer value of zero) as a DATE in
InterBase/Firebird is November 17, 1898.

Different date formats are supported. There are however slight differences betweenSQL dialect 1 and SQL dialect 3.

SQL dialect 1: DATE also includes a time slice (equivalent to TIMESTAMP in dialect 3).
SQL dialect 3: DATE does not include anytime slice.

Using SQL dialect 1 the default NOW for datatype DATE means current time and date of the server; there is also TODAY (only date; the time is always set at
midnight, YESTERDAY, TOMORROW).

Example:

 SELECT CAST ("NOW" AS DATE) FROM RDB$DATABASE

SELECT CAST is an SQL dialect 1 command (although it also functions in SQL dialect 3); SELECT is used in SQL dialect 3. These values are primarily
compatible to older InterBase versions. When working with SQL dialect 3, the CURRENT_ constants (see below) should be used as far as possible.

From InterBase 6 upwards and Firebird there are the following for dialect 3: CURRENT_TIME, CURRENT_TIMESTAMP, CURRENT_DATE (without quotationmarks and
withoutCAST). Example:

 SELECT CURRENT_DATE-1 FROM RDB$DATABASE
Result: the date yesterday, etc.

 SELECT CURRENT_TIMESTAMP-(1/24) FROM RDB$DATABASE
Result: the current time minus one hour (one twenty-fourthof a day).

134

It is possible to specify the display format of a date field under Environment Options / Grid / Display Formats. For the various options available, please refer to
Date Time Format.

TIME

The TIME datatype is new to InterBase v 6.0. It is an SQL dialect 3 datatype. TIME is a 32-bit field type of TIME values. The range is from 0:00 AM to 23:59:9999
PM.

It is possible to specify the display format of a date field under Environment Options / Grid / Display Formats. For the various options available, please refer to
Date Time Format.

TIMESTAMP

TIMESTAMP is new to InterBase v 6.0. It is an SQL dialect 3 datatype. TIMESTAMP is a 64-bit field type comprised of bothdate and time. The range is from
January 1,100 AD to February 28, 32768 AD. It is the equivalent of DATE in SQL dialect 1.

It is possible to specify the display format of a date field under Environment Options / Grid / Display Formats. For the various options available, please refer to
Date Time Format.

New to Firebird 2.0: CURRENT_TIMESTAMP now returns milliseconds by default

The context variable CURRENT_TIMESTAMP now returns milliseconds by default, while it truncated sub-seconds back to seconds in former versions. If you need to
continue receiving the truncated value, youwill now need to specify the required accuracy explicitly, i.e. specify CURRENT_TIMESTAMP(0).

Array
InterBase/Firebird allows a columnto be defined as an array of elements, i.e. data information can be stored in so-called arrays. Anarray is a range of values
determined by setting a lower and an upper limit. An array consists of any amount of information that can be split into different dimensions. The array can be
managed as a whole, as a series of elements in one dimension of the array, or as individual elements.

Arrays should be used with caution. Database normalization usually supplies an alternative format for storing such data, so that normal table structures are just
as suitable, and also preferable. There are however occasionally exceptions, for example for measurement value logging, when arrays are the preferred
option.

The array datatype is used relatively seldom, as it is not verysimple to process, and does not really conform to the typical demands of an SQL database
(usually one or more detail tables would be created, and not an array).

Arrays can be declared as a domain or directly in the table definition following the datatype definition. Array data canbe of anytype except blob. Between 1
and 16 dimensions can be specified; each dimension can store as many elements as canbe fitted into the database. The values are stored as a blob and are
therefore almost unlimited in scope.

The only difference compared to the normal datatype definition is the specificationof the dimensions in square brackets, eachdimension being separated by
commas. Bydefault, the lower bounds ID number is 1 and the upper bounds ID number is the maximum of that dimension. Alternate bounds IDs can be
specified in place of the array size by separating them with a colon. For example, an array with 5 measurements with 2 dimensions starting at the default value
1 is defined as follows:

 [2,5]

Counting begins at 1 and ends at the value entered by the user. In this case 2x5=10 measurements can be logged. If counting is to begin at, for example, 0, the
array definition is as follows:

 [0:2, 0:5]

One-dimensional arrays

Definition: NAME DATATYPE [LOWER_DIMENSION:UPPER_DIMENSION]
Example: LANGUAGE_REQ VARCHAR(15) [1:5]

In this field 5 data entries of the VARCHAR(15) type can be stored. LANGUAGE_REQ[1] up to LANGUAGE_REQ[5] can be accessed.

Multi-dimensional arrays

Definition: NAME DATATYPE [LOWER_DIMENSION1:UPPER_DIMENSION1]
 [LOWER_DIMENSION2:UPPER_DIMENSION2]

Example: DAILY_MEASUREMENTS NUMERIC(18,2) [1:24][1:365]

When using arrays, it is important to be aware of the advantages and limitations.

Advantages of arrays

1. InterBase operations canbe performed uponthe total datatype as a single element. Alternativelyoperations canbe executed on part of an array only
for certain values of a dimension. Anarray can also be brokendown into eachsingle element.

135

2. Following operations are supported:

SELECT statement from array data.
Insertionof data in an array.
Updating data in an array slice.
Selecting data from an arrayslice.
Examination of an array element in a SELECT statement.

Array limitations

1. A user-defined functioncan only access one element in an array.

2. The following operations are not supported:

Dynamicallyreferencing array dimensions using SQL statements.
Inserting data into an array slice.
Setting individual array elements to null.
Using aggregate functions such an MIN(), MAX(), SUM(), AVG() and COUNT() on arrays.
Referencing an array in the GROUP BY clause in a SELECT query.
Creating a view, whichselects from arrayslices.

3. The data stored in this way cannot be selected per index; each queryalways accesses the fields unindexed.

Boolean
InterBase/Firebird does not offer a native BOOLEAN datatype. However, theycan be implemented using domains.

The first step is to define a domain (whichshould logically be named Boolean). The domain can be defined in one of two ways:

1. Using a SMALLINT (16 bits), defaulting to zero, with a check constraint to ensure only the values of zero or one are entered. i.e:

CREATE DOMAIN D_BOOLEAN AS SMALLINT DEFAULT 0
CHECK (VALUE BETWEEN 0 AND 1);

Once youhave defined this domain youcan forever use it as a BOOLEAN datatype without further concern. It is particularly suitable from a Delphi point of view,
as PascalBOOLEANs work in a similar manner.

2. Alternatively, the domain can be defined as a CHAR(1) and appropriate single character values ensured using a check constraint. If T and F or Y and N
are more meaningful for your application then use this approach.

We'd like to thank Paul Beach of IBPhoenix for this article about Booleandatatypes.

Autoincrement
Anautoincrement is an automatic counter/calculator, such as a generator, trigger or stored procedure.

NOT NULL
NOT NULL is a parameter that does not allow a columnfield to be left blank. It can be defined for a field or a domain.

136

It forces a value to be entered into the column. It operates in the same way for tables as for domains. The parameter DEFAULT NULL and NOT NULL cannot be
used in the same column definition. The NOT NULL parameter must be specified if the columnis to be defined as PRIMARY KEY or UNIQUE.

NULL
NULL is the term used to describe a data field without a value, i.e. the field has been left blank because the information is either not known or not relevant for
this record/data set. The NULL value can be stored in text, numeric and date datatypes.

A relational database is able to store NULL values as data content. A NULL value does not meannumerical zero. For example, a product canhave zero sales
(0) or unknown sales (<null>).

A NULL value can occur for the following reasons:

The value is not yet known, but will be added at a future date.
The value is not yet available for some reason, e.g. the date of receipt of payment.
The value is not important, e.g. the credit card expiry date of someone who has paid cash.

InterBase/Firebird does not use a special byte sequence to indicate a NULL, but administrates this information internally. NULL values can influence query
contents considerably, for example, when a column average is calculated. The values filled by the NULL value, i.e. empty fields, are not taken into consideration.
A field containing the value 0 is included in the calculationof the average.

Examples from the Firebird 1.5 Quick Start Guide:

1 + 2 + 3 + NULL = NULL
not (NULL) = NULL
'Home ' || 'sweet ' || NULL = NULL
if (a = b) then

MyVariable = 'Equal';
else

MyVariable = 'Not equal';

137

After executing this code, MyVariable will be Not equal if both a and b are NULL. The reason is that the expression a = b yields NULL if at least one of them is
NULL. In an if...then context, NULL behaves like FALSE. So the then block is skipped, and the else block executed.

 if (a <> b) then
 MyVariable = 'Not equal';
 else
 MyVariable = 'Equal';

Here, MyVariable will be Equal if a is NULL and b isn't, or vice versa. The explanation is analogous to that of the previous example.

 FirstName || ' ' || LastName

will returnNULL if either FirstName or LastName is NULL.

Think of NULL as UNKNOWN and all these strange results suddenly start to make sense! If the value of Number is unknown, the outcome of 1 + 2 + 3 + Number is
also unknown (and therefore NULL). If the content of MyString is unknown, thenso is MyString || YourString (even if YourString is non-NULL). Etcetera.

New to Firebird 2.0: NULLs are now "lowest" for SORTS

NULL is now treated as the lowest possible value for ordering purposes and sets ordered on nullable criteria are sorted accordingly. Thus: .
for ascending sorts NULLs are placed at the beginning of the result set,
for descending sorts NULLs are placed at the end of the result set.

Important: In former versions, NULLs were always at the end. If you have client code or PSQL definitions that rely on the legacy NULLs placement, it will be
necessary to use the NULLS LAST option in your ORDER BY clauses for ascending sorts.

Please also refer to the Firebird 2.0.4. Release Notes for further information regarding Enhancements to NULL logic in Firebird 2.

See also:
Table Editor
SQL Editor
Division of an integer by an integer
SQL Language Reference
Expressions involving NULL
Database Normalization

138

View
1. New view / View Editor

1. SQL
New to Firebird 2.0: Extensions
to CREATE VIEW specification

1. Fields
2. Dependencies
3. Triggers
4. Data
5. Description
6. Grants

Autogrant Privileges
1. DDL
2. Version History
3. Recreate Script
4. Plan Analyzer
5. Comparison
6. To-Do
7. Updatable views and

read-only views
8. Specifying a view

with the CHECK OPTION
2. Alter view
3. Drop view/delete view

View
A view is a stored SELECT of one or more tables. The rows to be returned are defined by the SELECT statement that lists columns from the source tables. Only
the view definition is stored in the database, it does not directly represent physically stored data. The WHERE command can also be used. A view has no input
parameters.

It can be likened to a virtual table. The view can be treated, in almost all respects, as if it were a table, using it as the basis for queries and evenupdates in
some cases. It is possible to perform SELECT, PROJECT, JOIN and UNION operations on views as if theywere tables.

Views give end users a personalized version of the underlying tables in the database and also simplify data access, by protecting them from the details of how
information is spread across multiple tables. Theyalso provide securityby hiding certain columns in the table(s) from various users. InterBase/Firebird allows
user rights to be granted to the view and not the underlying table(s).

Advantage of views (and stored procedures): as these are part of InterBase or Firebird, it is irrelevant which front end is subsequentlyused, be it Delphi,
PHP or other.

Theyallow the developer to denormalize data, combining information from two or more tables into a single virtual table. Instead of creating an actual table with
duplicate data, a view canbe created using SELECT, JOIN and WHERE. Even when youchange the underlying structure of the tables concerned, the view remains
consistent.

Views cannot be sorted, theymerely display the result of a specified SELECT. (A view can therefore be compared to a saved query). The ORDER BY instruction
cannot be used in a view (the data sets are displayed as determined by the optimizer, which is not always intelligent!). In such a case, a stored procedure
would have to be used (stored procedures being more flexible in any case, and offering more control).

Views can be used, for example, for internal telephone lists, or when information from more than one table needs to be linked, e.g. the first modular result
needs to be linked to the second result.

The underlying SELECT definitioncan contain all the performance features of a select queryon tables, it is however subject to the following restrictions:

1. All columns must be explicitlyspecified, so that the view always returns the same columns in the correct order.

2. If reference is made to a SELECT * statement in a view, the result is returned in the column sequence of the definitionof the underlying tables, and can
therefore deliver different results should changes later be made to the table structure.

3. No ORDER BY statements may be used.

139

4. Indices can only be placed on the columns of the base tables, not the view columns. When the view is generated, these indices are automatically used.

Views allow a data modularization, particularlyuseful with complex data quantities, as another view can be incorporated in the view definition.

If youare new to database development, please refer to the chapter Understanding and using views.

New view / View Editor
A new view can be created in a connected database, either by using the menu item Database / New View, the respective icon in the New Database Object
toolbar, or using the DB Explorer right mouse button (or keycombination [Ctrl + N]), when the view heading of the relevant connected database is highlighted.

Alternatively, a new view can be created directly in the IBExpert SQL Editor, and then saved as a view.

A NewViewdialog appears, with its owntoolbar:

The view canbe created directly in the SQL dialog, and subsequently committed using the respective icon or [Ctrl + F9].

SQL

Whencreating a view it is necessary to define a view name that is unique in the database. All data manipulationoperations such as SELECT, INSERT, UPDATE
and DELETE are carried out using this name.

The view canthen be created in the SQL dialog using the following syntax:

 CREATE VIEW ViewName (<List_of_field_names>)
 AS
 SELECT <fields_ from _table_name>
 [WITH CHECK OPTION];

Anexample canbe viewed in the InterBase/Firebird sample EMPLOYEE database:

The view name must be unique. As InterBase/Firebird only stores the view definition (i.e. it does not copythe data from the tables into the view), views depend
a lot upon indices set in the base tables, in order to locate data rapidly from the original tables. It is therefore important to analyze views carefully, and place
indices on those columns that are used to join tables and to restrict rows.

140

The tables and fields canbe easily inserted into the SQL script by dragging the relevant table and field names from the DB Explorer and SQL Assistant, and
dropping them in the respective position in the SQL dialog in the New View Editor. After naming the view fields and inserting the relevant base table fields,
the new view can be committed using the respective icon or [Ctrl + F9].

The view contents result from the returns of the SELECT statement that corresponds, with few exceptions, to the SQL SELECT command. The SELECT statement
specifies which tables, columns and rows are to be returned as part of the view.

If the view is an updatable view, the optional WITH CHECK OPTION parameter mayalso be used to control data input.

The field names, as theyare to appear in the view, can be optionally specified under a different name to the field names in the base tables. If no specification
is made, the original base table column names automatically become the view field names. If columnnames are specified, theymust be unique within the view
and a name must be specified for every columnreturned by the view (even if some of the view field names correspond to the original field names). Please note
that if the SELECT statement includes derived columns, column names must be specified.

If the view is to be used as part of a query, or indeed anyother SQL statement, InterBase/Firebird queries the original data directly. This important feature
offers the flexibilityof being able to make alterations to the underlying database structure without affecting the user's view of the data or the view of any
programs, which reference the view instead of the base tables.

Finally compile the new view using the respective toolbar icon or [F9], and, if desired, autogrant privileges, againusing the respective toolbar icon or key
combination [Ctrl + F8].

New to Firebird 2.0: Extensions to CREATE VIEW specification

FIRST/SKIP and ROWS syntaxes and PLAN and ORDER BY clauses can now be used in view specifications.

From Firebird 2.0 onward, views are treated as fully-featured SELECT expressions. Consequently, the clauses FIRST/SKIP, ROWS, UNION, ORDER BY and PLAN are
now allowed in views and work as expected.

Syntax

For syntaxdetails, refer to Select Statement & ExpressionSyntax in the Firebird 2.0.4 Release Notes chapter about DML.

See also:
SELECT
SELECT statement

Fields

The Fields page displays the fields selected from the base table (with their new view names, if they have been specified), along with their properties.

The individual fields may not be edited directly from this dialog; to alter fields, please refer to the Table Editor / Fields. These fields can however be sorted
here into ascending or descending order based upon the columnwhere the mouse is, by clicking on the column headers (i.e. Field Name etc.). Bydouble-
clicking on the right edge of the columnheader, the column width can be adjusted to the ideal width.

Dependencies

141

Please refer to Table Editor / Dependencies.

Triggers

Please refer to Table Editor / Triggers.

Data

142

Please refer to Table Editor / Data. Please note that data mayonly be manipulated in this dialog if the view is defined as, and meets all conditions required by
an updatable view.

Description

Please refer to Table Editor / Description.

Grants

Please refer to Table Editor / Grants.

Autogrant Privileges

The Autogrant Privileges icon

143

canbe found in the View Editor toolbar, Procedure Editor toolbar and Trigger Editor toolbar. Privileges can also be autogranted using the key combination
[Ctrl + F8]. It allows all privileges to be automatically granted for views, procedures and triggers.

(This feature is unfortunately not included in the IBExpert Personal Edition.)

This assigns all rights for newlycreated objects for all users, and helps to prevent the frequent problem that developers often initially create multitudes of
objects for their new database, and suddenly realize that theyhave not assigned any rights for these views, triggers or procedures.

For those preferring to limit the assignment of rights, please use the Grants page, offered in the majorityof object editors, or the IBExpert Tools / Grant
Manager.

Under the IBExpert Option menu item, Environment Options / Tools the default option, Autogrant privileges when compiling procedures, triggers and views,
needs to be checked, for this function to work. Since IBExpert version 2005.02.12.1 it is also possible to specifyhere whether existing privileges should first be
deleted, before new ones are granted.

DDL

144

Please refer to Table Editor / DDL.

Version History

The Version History page offers a unique and automatic documentation. It is available in the View Editor, Procedure Editor and Trigger Editor. It displays
different versions of the view, procedure or trigger (if existent), and lists the dates when changes were made, along with the person(s) responsible.

The first time the Version History is opened, IBExpert asks for confirmation, as it needs to create certain system tables for the versionhistory logging. This
only needs to be confirmed once. After this the Version History appears immediately in all relevant editors, and all object changes are automatically stored.

Versions listed in the Version Info panel can be marked, and deleted using the right mouse click menu (keycombinations: Delete version [Del]; Remove
duplicates [Shift + Ctrl + Del]).

The SQL scripts of the different versions can evenbe compared, under the Compare Versions tab.

The pull-down list at the top of the two script panels allows different versions to be selected, without having to switch back to the Versions page. Alterations are
highlighted by colored bars, marking the line where an alterationhas been made. The color code keycan be viewed in the dialog's status bar, along with a
note of the number of changes made betweenthe two versions.

Recreate Script

The Recreate Script page displays the full SQL script for the view, beginning with the DROP VIEW command, and thenrecreating the current view. This is useful
should errors arise in a view where it is almost impossible, due to the complexityof the view or the multitude of different versions, to detect the source.

145

The script can evenbe edited directly in this dialog, and the changes committed. The right-click menu is the same as that in the SQL Editor, allowing a number
of further operations directlyon the SQL script (please refer to SQL Editor Menu).

Plan Analyzer

Please refer to SQL Editor / Plan Analyzer. Please note that the performance information is not available here in the View Editor's Plan Analyzer.

Comparison

Please refer to Table Editor / Comparison.

To-Do

Please refer to Table Editor / To-Do.

Updatable views and read-only views

146

The simplest and quickest way to create an updatable view is to use the Create Viewfrom Table option in the IBExpert Table Editor, and create a trigger
(checkbox options to create BEFORE INSERT, BEFORE UPDATE or BEFORE DELETE). Complete the trigger text in the lower code editor window (taking into
consideration the notes below), and the updateable view is complete!

If the view is to be an updatable view, the optional parameter WITH CHECK OPTIONS needs to be used to control data input. If this parameter is used, only those
values corresponding to the view's SELECT statement may be input. A view needs to meet all of the following conditions if it is to be used to update data in the
base table:

1. The view is based on a single table or on another updatable view. Joined tables result in a read-only view. (The same is true if a subquery is used in
the SELECT statement.)

2. Any columns in the base table that are not part of the view allow NULLs. This condition requires that the base table's primary keybe included in the view.
3. The SELECT statement does not include a DISTINCT operator. This restrictionmight have the effect of removing duplicate rows, making it impossible for

InterBase/Firebird to determine whichrow to update.
4. The SELECT statement does not include aggregate functions or the GROUP BY or HAVING operators.
5. The SELECT statement does not include stored procedures or user-defined functions.

In a normalized database, a view is usually updatable if it is based on a single table and if the primary keycolumn or columns are included in the view
definition.

However it is possible to input data into a view and thenallocate the new data / data changes to several individual tables by using triggers.

Specifying a view with the CHECK OPTION

If a view is updatable, INSERT, UPDATE, or DELETE operations canbe made on the view to insert new rows into the base table(s), or to modify or delete existing
rows.

However, the update could potentially cause the modified row to no longer be a part of the view, and what happens if the view is used to insert a row that does
not match the view definition?

To prevent updates or inserts that do not match the WHERE conditionof the view, the WITH CHECK OPTION needs to be specified after the view's SELECT
statement. This clause tells InterBase/Firebird to verify an UPDATE or INSERT statement against the WHERE condition. If the modified or inserted row does not
match the view definition, the statement fails and InterBase/Firebird returns an error.

Alter view
A view can be altered in the View Editor, opened by double-clicking on the view name in the DB Explorer. Alternativelyuse the DB Explorer's right mouse-
click menu item Edit Viewor key combination [Ctrl + O].

Alterations maybe made directly in the SQL input page; fields, dependencies and triggers can be examined in their respective pages before field deletion.

When altering a view, IBExpert actually does nothing other thancreate a new view of the same name as the old one, replacing it after committing.

Drop view/delete view
When a view is dropped it is deleted for good. A view cannot be dropped if it is used elsewhere in the database's metadata. For example, if the view to be
dropped is included in the definition of another view, a stored procedure or any CHECK constraint, the dependent object must first be dropped before the view
can be dropped. Any existent dependencies can be viewed on the View Editor / Dependencies page. Most database objects canbe dropped here directly on
the Dependencies page or using the IBExpert Dependencies Viewer (found in the IBExpert Tools menu) by using the right-click menu on the selected object,
and choosing the menu item Drop Object or [Ctrl + Del].

To drop a view, use the DB Explorer right mouse button menu item Drop View... (or [Ctrl + Del]).

IBExpert asks for confirmation:

before finallydropping the view. Once dropped, it cannot be retrieved.

Alternatively the DROP VIEW statement can be used in IBExpert's SQL Editor. It has the following syntax:

 DROP VIEW <view_name>;

For example, to drop the PHONE_LIST view in the sample EMPLOYEE database, the following statement should be issued:

 DROP VIEW PHONE_LIST;

147

Please note that a view can only be dropped by its creator or the SYSDBA.

See also:
Create a trigger for a view
Create view or procedure from SELECT

148

Stored Procedure
1. Executing stored procedures

1. Select procedures
2. Non-select procedures

2. New procedure
1. SET TERM
2. Stored procedure parameters

(input and output/returns)
3. Local variables / DECLARE

VARIABLE statement
4. Procedure body
5. Comment Procedure Body/

Uncomment Procedure Body
6. Lazy Mode

3. Stored Procedure Editor
1. Edit
2. Results
3. Description
4. Dependencies
5. Operations/Index Using
6. Performance Analysis
7. Plan Analyzer
8. DDL
9. Grants

10. Version History
11. Comparison
12. To-Do

4. Procedure using the SUBSTRING()
function (Susbstr procedure)

5. Debug procedure or trigger
(IBExpert Debugger)

1. Parameters and Variables
2. Watches
3. Last Statement
4. Breakpoints
5. Messages
6. Results
7. SQL Editor Messages

6. Alter procedure
7. Drop procedure/delete procedure

Stored Procedure
A stored procedure is a series of commands (also knownas routines) stored as a self-contained program in the database as part of the database's
metadata. Theyare pre-compiled, so they don't need to be sent over the network and parsed every time, theyare just executed. Theycan be started by the
EXECUTE PROCEDURE command with specificationof the procedure name and a list of parameters. Procedures cantake parameteres and - like SELECTs - give
back their data in the form of a table.

It is similar to a trigger, but is not automatically executed or bound to a specific table.

149

It is written in Firebird/InterBase procedure and trigger language, also known as PSQL. It can perform special processing on the metadata and data within the
database. Program execution occurs on the server.

Currently the maximum size of a stored procedure or trigger in InterBase and Firebird is 48 KB of BLR (the size of the byte code language compiled from
stored procedure or trigger language and not the source code itself, whichmay include comments). However, as this comprises well over 1,000 lines of code,
it is wiser to split anyprocedures of this size into smaller ones anyway, as this will improve not just the readibility and ease of maintenance but also, more often
thannot, the efficiency.

Each stored procedure is a stand-alone module of code that can be executed interactively or as part of a SELECT statement, from another stored procedure or
from another application environment.

Theycan be invoked directly from applications, or canbe substituted for a table or view in a SELECT statement; theycan receive input parameters and return
values to applications.

With the Client/Server database concept, it is important that the database is not just used to store data, but is actively involved in the data queryand data
manipulationprocesses. As the database must also be able to guarantee data integrity, it is important that the database can also handle more complex
operations than just simple comparisons. InterBase/Firebird uses stored procedures as the programming environment for integrating active processes in the
database.

The stored procedure language is a language created to run in a database. For this reason its range is limited to database operations and necessary
functions.

Stored procedures provide SQL enhancements that support variables, comments, declarative statements, conditional testing and looping as programming
elements. Theyhave full access to SQL DML statements allowing a multitude of command types; theycannot however execute DDL statements, i.e. a stored
procedure cannot create a table.

Stored procedures offer the following advantages when implementing applications:

1. Reductionof network traffic by off-loading application processes from the client to the server. This is particularly important for remote users using
slower modem connections. And for this reasonof course, theyare fast.

2. Splitting up of complextasks into smaller and more logical modules. Stored procedures can be invoked by each other. Stored procedures allow a
library of standardized database routines to be constructed, that can be called in different ways.

3. They're reusable. Rather thanrecreate a statement on the client each time it's needed, it's better to store it in the database. Theycan be shared by
numerous applications using a single database. Alterations to the underlying data definitions only need to be implemented in the stored procedure and
not in the individual applications themselves. Readability is enhanced, and redundancy, maintenance, and documentation are greatly reduced.

4. Full access to SQL and the database's metadata. This allows certain environments to perform extended operations on the database that might not be
possible from another application language. The language evenoffers functions that are not available in SQL, e.g. IF…WHEN…ELSE, DECLARE VARIABLE,
SUSPEND, etc.

150

5. Enhanced security: if database operations such as INSERT, ALTER or DROP canonly be performed on a table by stored procedures, the user has no
privileges to access the table directly. The only right the user has is to execute the stored procedure.

6. As stored procedures are part of InterBase or Firebird, it is irrelevant which front end is subsequentlyused, be it Delphi, PHP or other.

There are no disadvantages to using stored procedures. There are however, two limitations. Firstly, anyvariable information must be able to be passed to the
stored procedure as parameters or the information must be placed in a table that the stored procedure canaccess. Secondly, the procedure and trigger
language maybe too limited for complexcalculations. Stored procedures should be used under the following circumstances:

1. If an operation canbe carried out completely on the server with no necessity to obtain information from the user while the operation is in process.
When invoking a stored procedure these input parameters can be incorporated in the stored procedure.

2. If an operation requires a large quantityof data to be processed, whose transfer across the network to the client application would cost an enormous
amount of time.

3. If the operation must be performed periodically or frequently.

4. If the operation is performed in the same manner by a number of different processes, or processes within the application, or by different applications.

The stored procedure must contain all statements necessary for the database connection, creation or alterationof the stored procedure, and finally the
disconnection from the database.

All SQL scripts canbe incorporated into a stored procedure and up to 10 SQLs in one procedure, as well as the additional functions already mentioned,
making stored procedures considerablyquicker and more flexible thanSQL.

Stored procedures can oftenbe used as an alternative to views (being more flexible and offering more control) as the ORDER BY instruction cannot be used in a
view (the data sets are displayed as determined by the optimizer, which is not always intelligent!). In such a case, a stored procedure should be used.

Stored procedures are almost identical to triggers, the only exception being the way theyare called. Triggers are called automaticallywhen a change to a row
in a table occurs. Most of what is said about stored procedures applies to triggers as well.

Executing stored procedures
InterBase/Firebird stored procedures are divided into two groups with respect to how theyare called. Select procedures returnresult values through output
parameters, because they canbe used in place of a table name in an SQL SELECT statement. Execute or non-select procedures perform an action and do not
return values. To ba able to call a procedure, the user must have EXECUTE rights (see Grant Manager). In IBExpert the template already includes this statement
for you (refer to the illustration in the SET TERM chapter below).

The simplest way to execute a stored procedure is to use the EXECUTE PROCEDURE statement. This statement can be used in one of the following ways:

1. From within another stored procedure.
2. From within a trigger.
3. From an application.

When a procedure is executed from withinan InterBase/Firebird application, such as another procedure or a trigger, it has the following syntax:

 EXECUTE PROCEDURE
 <procedure_name>
 <input_parameter_list>
 RETURNING_VALUES
 <parameter_list>

If the procedure requires input variables, or if it is to return output variables, the relevant parameters need to be specified. In eachcase, <parameter_list> is a
list of parameters, separated by commas (see stored procedure parameters for further information).

Each time a stored procedure calls another procedure, the call is said to be nested because it occurs in the context of a previous and still active call to the first
procedure.

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent infinite loops that canoccur when a recursive procedure provides
no absolute terminating condition. Nested procedure calls maybe restricted to fewer than1,000 levels by memory and stack limitations of the server.

When using IBExpert's Procedure Editor to execute a procedure, IBExpert tells youwhether input parameters need to be entered:

151

before displaying the return values (= output or results) on the Results page:

Select procedures

It is possible to use a stored procedure in place of the table reference in a SELECT statement. This type of procedure is known as a select procedure.

Whena stored procedure is used in place of a table, the procedure should return multiple columns or rows, i.e. it assigns values to output parameters and uses
SUSPEND to return these values. This allows the SELECT statement to filter the results further by different criteria.

SUSPEND is used to suspend execution of the procedure and return the contents of the output variables back to the calling statement. If the stored procedure
returns multiple rows, the SUSPEND statement needs to be used inside a FOR SELECT … DO loop to return the rows one at a time.

Non-select procedures

Execute or non-select procedures perform an action and do not returnany results.

New procedure
There are numerous ways to approach creating a new stored procedure:

1. Using the IBExpert menu item Database / New Procedure or using the NewProcedure icon on the New Database Object toolbar to start the Procedure
Editor.

2. From the DB Explorer by right-clicking on the highlighted procedure branch of the relevant connected database (or key combination [Ctrl + N]) which
also starts the Procedure Editor.

152

3. A stored procedure canalso be created directly from a selected table in the DB Explorer, using the right-click pop-up menu item Create SIUD
procedures.

4. Or created directly from the Field Editor.

153

5. Or created in the IBExpert SQL Editor, and then saved as a stored procedure. When an SQL script has been successfully committed, and the results
are as wished, the script canbe integrated into a stored procedure using the Stored Procedure button. The stored procedure script appears, and
simplyneeds to be named and completed.

The CREATE PROCEDURE statement has the following syntax:

 CREATE PROCEDURE <Procedure_Name>
 <Input_Parameter_List>
 RETURNS
 <Return_Parameter_List>
 AS
 <Local_Variable_Declarations>
 BEGIN
 <Procedure_Body>
 END

The CREATE and RETURNS statements (if there is a returnstatement) comprise the stored procedure's header. Everything following the AS keyword is the
procedure's body. There canalso be statements between the AS and BEGIN keywords that are also considered part of the body. These statements declare
local variables for the stored procedure, and are detailed under Stored Procedure Language.

Since IBExpert version 2005.03.12 there is added support for following Firebird 2 features:

154

DECLARE <cursor_name> CURSOR FOR ...
OPEN <cursor_name>
FETCH <cursor_name> INTO ...
CLOSE <cursor_name>
LEAVE <label>
NEXT VALUE FOR <generator>

The possibility to create SUID procedures was implemented in IBExpert version 2007.02.22. This is a new mechanism of composing texts of SIUD
procedures based on IBEBlock.

Further information explaining the necessary components can be found under Procedure Editor, started using the first two menuoptions (i.e. IBExpert
Database menuand DB Explorer right mouse button menu).

The Procedure Editor has its own toolbar (see Procedure Editor toolbar). To the right of the toolbar, the new procedure name can be specified. The procedure
name follows the naming convention for anyInterBase/Firebird object and must be unique. The Lazy Mode iconcan be used to switch the lazy mode on and
off as wished:

The New Procedure Editor has five pages:
1. Edit
2. Description
3. Plan Analyzer
4. DDL
5. Comparison

described under Procedure Editor. A new procedure is created on the Procedure Editor / Edit page.

SET TERM

Every command in a Firebird/InterBase script must be terminated by a semicolon, including the procedure itself. To distinguish the semicolons in the
procedure from the terminating semicolon, another temporary terminator is needed for the end of the procedure. SET TERM replaces the terminator semicolon
with a user-defined character. After the procedure itself is terminated by this new terminator, the terminator symbol is set back to the semicolon.

When using the IBExpert Procedure Editor, the procedure templates already include this code, so youdon't have to worry about it. If you openthe New
Procedure Editor and take a peek at the DDL page, youwill see how much code has already be generated by IBExpert, althoughyou haven't evenstarted to
define your procedure:

Even SUSPEND@@ and the GRANT EXECUTE@@ statement have been included.

For those who wish to view the syntax and an example of how to use this when coding by hand, please refer to SET TERM terminator.

Stored procedure parameters (input and output/returns)

Input parameters are a list of variables (=values) that are passed into the procedure from the client application. These variables can be used within the
procedure to modify its behavior.

The return parameter (or output parameter) list represents values that the procedure can pass back to the client application, such as the result of a calculation.
Each list is in the following format:

 ParameterName1 ParameterType,
 ParameterName2 ParameterType,

155

 ...
 ParameterNameN ParameterType

ParameterType is any valid InterBase/Firebird datatype except blob, domain and arrays of datatypes.

Local variables / DECLARE VARIABLE statement

Local variables can be defined within the procedure body. Local variables of anyInterBase/Firebird type canbe declared withina stored procedure. As with
anyother structured programming environment, these variables only exist while the procedure is running, and their scope is local to the procedure. Theyare
invisible outside the procedure and are destroyed when the procedure finishes. There are no global variables available with stored procedures and triggers. If
values need to be shared by two or more procedures, theyshould either be passed as parameters or stored in a table.

Local variables are declared immediately after the AS clause, using the DECLARE VARIABLE statement. For example the variable ANY_SALES is declared in the
EMPLOYEE database's DELETE_EMPLOYEE procedure:

 DECLARE VARIABLE ANY_SALES INTEGER;

Each variable must be declared in its ownDECLARE VARIABLE statement, as eachstatement candeclare only one variable.

Procedure body

The procedure bodyconsists of a compound statement, which can be anynumber of InterBase/Firebird procedure and trigger language statements. The
procedure bodystarts with a BEGIN statement, followed by any local variable declarations, and ends with an END statement.

BEGIN and END must also be used to surround any block of statements that logically belong together, such as the statements withina loop.

BEGIN and END do not need terminating characters, except for the final ENDwithin the procedure.

Comment Procedure Body/Uncomment Procedure Body

In certain situations it may be necessary to disable certain commands or parts of SQL text. This can be easily done temporarily, without it being necessary to
delete these commands.

Simply select the rows concerned in the SQL Editor, and select either the editor toolbar icons:

the right mouse button menu item Comment Selected, or key combination [Ctrl + Alt + .]. This alters command rows to comments. The commented text canbe
reinstated as SQL text by using the Uncomment Procedure icon (above), the right mouse button menu item Uncomment Selected, or [Ctrl+ Alt + ,].

Lazy Mode

Using lazy mode, the programmer does not have to worry about which input and output parameters need to be considered. It can be switched between lazy
mode and classic mode using the

icon in the Procedure Editor and Trigger Editor.

The possibility to select domains as a datatype for input/output parameters and variables has been added in IBExpert version 2004.8.5.1. In this case
IBExpert copies information from the domain definition to the native datatype of the parameter/variable. It is now also possible to drag 'n' drop a domain from
the Database Explorer.

And since IBExpert version2005.06.07 it is possible to specify SEGMENT SIZE for blob parameters and variables whilst working in lazy mode.

Stored Procedure Editor
The Procedure Editor can be started using the Database / New Procedure menu item; from the DB Explorer, using the right mouse-click menu or double-
clicking on an existing procedure.

Please refer to New Procedure when creating a stored procedure for the first time.

The Procedure Editor has its owntoolbar (see Procedure Editor Toolbar) and offers the following options:

1. Edit
2. Results
3. Description
4. Dependencies
5. Operations/Index Using
6. Performance Analysis
7. Plan Analyzer
8. DDL

156

9. Grants
10. Version History
11. Comparison
12. To-Do

At the time of writing, the maximum size of a stored procedure is limited in InterBase and Firebird to 64K.

Edit

The CREATE PROCEDURE statement has the following syntax:

 CREATE PROCEDURE <Procedure_Name>
 <Input_Parameter_List>
 RETURNS
 <Return_Parameter_List>
 AS
 <Local_Variable_Declarations>
 BEGIN
 <Procedure_Body>
 END

A stored procedure comprises the following components:

1. input parameters
2. output parameters (returns)
3. variables
4. procedure body
5. comments (optional)

If the lazy mode is switched off, the Edit dialog offers a single SQL input area, with the procedure syntaxalready displayed. If the lazy mode is switched on, the
Edit dialog consists of three areas:

(1) The field grid, where new parameters can be specified.

(2) In the middle are three buttons specifying the parameter type, i.e. input parameters, output parameters and variables. It is possible to drag 'n' drop
parameters/variables from the field grid onto the corresponding button to move them. For example, click the Output Parameters button, drag a named
variable from the field grid onto the Variable button. Click the Variable button to view the new variable in the field grid.

(3) Below this is the SQL panel for direct code input. Again the procedure syntax is already displayed to help the user.

As with all Editors, it is possible to format the code text, such as:

Comment or Uncomment code using the right-click context-sensitive menu
indent a marked block of code with [Ctrl + Shift + I] and move back with [Ctrl + Shift + U]

Please refer to Localizing Form for further keyboard shortcuts.

For those who do not wish to use the basic syntaxtemplate, or wish to add certain statements themselves to create their own standard, this can be done using
the IBExpert menu item Options / General Templates, and clicking on either the Standard Mode or Lazy Mode under NewProcedure.

157

Since IBExpert version 2005.04.24 the Debugger also supports the new Firebird 2.0 feature: SELECT ... FROM (SELECT ...) and since IBExpert version
2005.06.07 the new Firebird 2.0 feature IS DISTINCT FROM.

Since IBExpert version 2005.12.04 the Code Completion list now displays cursor names when one is declared within procedure or trigger (Firebird 2).

As with all SQL input windows, the SQL Editor Menucan be called using the right mouse button.

The basic parameters of the stored procedure are set here as SQL text for creating the procedure. A parameter can have anyInterBase/Firebird datatype
except blob or array. The input parameters are set in brackets after the procedure name, the output parameters are set in brackets after the RETURNS
statement, and the procedure bodywritten in InterBase procedure and trigger language, bracketed by BEGIN and END statements.

New parameters can be quickly and easilyspecified, by clicking the respective button (i.e. input, output or variables), and inserting field information using the
respective iconor right-click menu, in the same manner as creating a new table.

Local variables of any InterBase/Firebird type can be declared within a stored procedure (please refer to local variables), after the AS keyword and before the
BEGIN (which marks the begin of the procedure body).

Alternatively, the required information can be entered directly in the editor's input panel and field names can be simply dragged from the DB Explorer or SQL
Assistant into the procedure script. The code insight can be used to save time wasted searching for correct names, and to prevent anypossible spelling
errors. A right mouse-click within this area produces the SQL Editor menu.

The input parameters are set with their types in brackets after the procedure name. By checking the Code Parameter optionunder Options / Editor Options /
Code Insight, a list of the necessary parameters automatically appears. Output parameters are specified in the same way after RETURNS. The operations to be
performed by the procedure are described after the BEGIN statement. Please refer to Stored Procedure and Trigger Language for further details.

After inputting the required information, the stored procedure can be executed using [F9] or the relevant icon. The statement window appears, where the
resulting SQL statement can be viewed before committing. If necessary the code can subsequently be debugged using the debugging iconor [Shift + Ctrl + D]
. (Please refer to Debug Procedure for more details.)

Don't forget to finally compile the new procedure using the respective toolbar icon or [F9], and, if desired, autogrant privileges, againusing the respective
toolbar iconor keycombination [Ctrl + F8].

Results

The Results page appears following execution of the procedure, and displays all data sets fetched:

Please refer to SQL Editor / Results for details.

Description

Please refer to Table Editor / Description.

Dependencies

See Table Editor / Dependencies.

158

Operations/Index Using

This page dissects the procedure into single operations, and examines them to see whether they use a plan(i.e.) or not. The ORG_CHART procedure in the
sample EMPLOYEE database displays red-marked entries, which indicates a planNATURAL (i.e. no indices are used). Whenan operation is selected, the
statement for this operation is displayed in the lower window:

Bydouble-clicking on a selected operation, the SQL panel appears, highlighting the SQL statements for this operation, enabling further analysis and
amendments. For example, should perhaps the ORDER BY be altered, or perhaps a different JOIN?

Input and output parameters and variable fields can be displayed by clicking on the buttons in the center of the editor. Alterations maybe made directly in the
SQL window and subsequentlyexecuted and committed.

New to IBExpert v. 2.5.0.47 is the SP/Triggers/Views Analyzer in the IBExpert Tools menu. This loads all stored procedures and triggers in the active
database, and all NATURAL operations are highlighted.

Performance Analysis

159

This page only appears once a procedure has been executed. Please refer to SQL Editor / Performance Analysis for details.

Plan Analyzer

Please refer to SQL Editor / Plan Analyzer.

DDL

The DDL page is new to IBExpert version 2004.6.17. It includes the CREATE PROCEDURE statement, stored procedure and parameter descriptions and GRANT
statements.

160

Grants

Please refer to Table Editor / Grants and autogrant privileges.

Version History

Please refer to View / Version History.

Comparison

Please refer to Table Editor / Comparison.

To-Do

Please refer to Table Editor / To-Do.

Procedure using the SUBSTRING() function (Susbstr procedure)
Unfortunately Firebird 1.5 does not allow anyvariable parameters in the SUBSTRING() SQL function.

Although there are diverse UDF implementations, for those preferring to use stored procedures, here is an example from Lucas Franzen:

(For those of you who maybe wondering what on earth "Donaudampfschiffahrtsgesellschaftskapitän" is, it is the German word for "Donau Steam Navigation
Company Captain"!).

Call:

 SELECT RESULT FROM SP_SUBSTRING
 (INPUTSTRING, STARTPOS, NO_CHAR_FROM_STARTPOS).

 E.g.: SELECT RESULT FROM SP_SUBSTRING
 ('Donaudampfschiffahrtsgesellschaftskapitän', 1, 10)
 --> Donaudampf

 E.g.: SELECT RESULT FROM SP_SUBSTRING
 ('Donaudampfschiffahrtsgesellschaftskapitän', 35, 8)
 --> kapitän

 CREATE PROCEDURE SP_SUBSTRING (
 SRC VARCHAR (255),
 START_AT INTEGER,
 NLEN INTEGER
)
 RETURNS (
 RESULT VARCHAR (255)
)
 AS
 declare variable II INTEGER;
 declare variable VGL VARCHAR(255);
 declare variable PFX VARCHAR(255);

161

 declare variable C CHAR(1);
 BEGIN

 /* Version : 1 */
 /* Author: LUC, 08.01.2003*/
 /* Description: */
 /* */

 IF (START_AT <= 0) THEN START_AT = 1;
 IF (START_AT > 255) THEN START_AT = 255;

 IF (NLEN > 255) THEN NLEN = 255;
 IF (NLEN < 1 OR NLEN IS NULL) THEN NLEN = 1;

 VGL = '';
 RESULT = '';
 PFX = '';

 IF (START_AT > 1) THEN
 BEGIN
 II = 1;
 WHILE (II < START_AT) DO
 BEGIN
 PFX = PFX || '_';
 II = II + 1;
 END
 END

 II = START_AT;
 WHILE (II < NLEN + START_AT) DO
 BEGIN
 /* WHAT DOES THE STRING LOOK LIKE AT THE CURRENT POSITION, I.E. QUERY THE CURRENT CHARACTER */
 C = ' ';

 IF (SRC LIKE PFX || ' %') THEN C = ' ';
 ELSE IF (SRC LIKE PFX || 'A%') THEN C = 'A';
 ELSE IF (SRC LIKE PFX || 'B%') THEN C = 'B';
 ELSE IF (SRC LIKE PFX || 'C%') THEN C = 'C';
 ELSE IF (SRC LIKE PFX || 'D%') THEN C = 'D';
 ELSE IF (SRC LIKE PFX || 'E%') THEN C = 'E';
 ELSE IF (SRC LIKE PFX || 'F%') THEN C = 'F';
 ELSE IF (SRC LIKE PFX || 'G%') THEN C = 'G';
 ELSE IF (SRC LIKE PFX || 'H%') THEN C = 'H';
 ELSE IF (SRC LIKE PFX || 'I%') THEN C = 'I';
 ELSE IF (SRC LIKE PFX || 'J%') THEN C = 'J';
 ELSE IF (SRC LIKE PFX || 'K%') THEN C = 'K';
 ELSE IF (SRC LIKE PFX || 'L%') THEN C = 'L';
 ELSE IF (SRC LIKE PFX || 'M%') THEN C = 'M';
 ELSE IF (SRC LIKE PFX || 'N%') THEN C = 'N';
 ELSE IF (SRC LIKE PFX || 'O%') THEN C = 'O';
 ELSE IF (SRC LIKE PFX || 'P%') THEN C = 'P';
 ELSE IF (SRC LIKE PFX || 'Q%') THEN C = 'Q';
 ELSE IF (SRC LIKE PFX || 'R%') THEN C = 'R';
 ELSE IF (SRC LIKE PFX || 'S%') THEN C = 'S';
 ELSE IF (SRC LIKE PFX || 'T%') THEN C = 'T';
 ELSE IF (SRC LIKE PFX || 'U%') THEN C = 'U';
 ELSE IF (SRC LIKE PFX || 'V%') THEN C = 'V';
 ELSE IF (SRC LIKE PFX || 'W%') THEN C = 'W';
 ELSE IF (SRC LIKE PFX || 'X%') THEN C = 'X';
 ELSE IF (SRC LIKE PFX || 'Y%') THEN C = 'Y';
 ELSE IF (SRC LIKE PFX || 'Z%') THEN C = 'Z';

 ELSE IF (SRC LIKE PFX || 'a%') THEN C = 'a';
 ELSE IF (SRC LIKE PFX || 'b%') THEN C = 'b';
 ELSE IF (SRC LIKE PFX || 'c%') THEN C = 'c';
 ELSE IF (SRC LIKE PFX || 'd%') THEN C = 'd';
 ELSE IF (SRC LIKE PFX || 'e%') THEN C = 'e';
 ELSE IF (SRC LIKE PFX || 'f%') THEN C = 'f';
 ELSE IF (SRC LIKE PFX || 'g%') THEN C = 'g';
 ELSE IF (SRC LIKE PFX || 'h%') THEN C = 'h';
 ELSE IF (SRC LIKE PFX || 'i%') THEN C = 'i';
 ELSE IF (SRC LIKE PFX || 'j%') THEN C = 'j';
 ELSE IF (SRC LIKE PFX || 'k%') THEN C = 'k';
 ELSE IF (SRC LIKE PFX || 'l%') THEN C = 'l';
 ELSE IF (SRC LIKE PFX || 'm%') THEN C = 'm';
 ELSE IF (SRC LIKE PFX || 'n%') THEN C = 'n';
 ELSE IF (SRC LIKE PFX || 'o%') THEN C = 'o';
 ELSE IF (SRC LIKE PFX || 'p%') THEN C = 'p';
 ELSE IF (SRC LIKE PFX || 'q%') THEN C = 'q';
 ELSE IF (SRC LIKE PFX || 'r%') THEN C = 'r';
 ELSE IF (SRC LIKE PFX || 's%') THEN C = 's';
 ELSE IF (SRC LIKE PFX || 't%') THEN C = 't';
 ELSE IF (SRC LIKE PFX || 'u%') THEN C = 'u';
 ELSE IF (SRC LIKE PFX || 'v%') THEN C = 'v';
 ELSE IF (SRC LIKE PFX || 'w%') THEN C = 'w';
 ELSE IF (SRC LIKE PFX || 'x%') THEN C = 'x';
 ELSE IF (SRC LIKE PFX || 'y%') THEN C = 'y';
 ELSE IF (SRC LIKE PFX || 'z%') THEN C = 'z';

 ELSE IF (SRC LIKE PFX || '0%') THEN C = '0';
 ELSE IF (SRC LIKE PFX || '1%') THEN C = '1';
 ELSE IF (SRC LIKE PFX || '2%') THEN C = '2';
 ELSE IF (SRC LIKE PFX || '3%') THEN C = '3';

162

 ELSE IF (SRC LIKE PFX || '4%') THEN C = '4';
 ELSE IF (SRC LIKE PFX || '5%') THEN C = '5';
 ELSE IF (SRC LIKE PFX || '6%') THEN C = '6';
 ELSE IF (SRC LIKE PFX || '7%') THEN C = '7';
 ELSE IF (SRC LIKE PFX || '8%') THEN C = '8';
 ELSE IF (SRC LIKE PFX || '9%') THEN C = '9';

 ELSE IF (SRC LIKE PFX || 'ä%') THEN C = 'ä';
 ELSE IF (SRC LIKE PFX || 'ö%') THEN C = 'ö';
 ELSE IF (SRC LIKE PFX || 'ü%') THEN C = 'ü';
 ELSE IF (SRC LIKE PFX || 'Ä%') THEN C = 'Ä';
 ELSE IF (SRC LIKE PFX || 'Ö%') THEN C = 'Ö';
 ELSE IF (SRC LIKE PFX || 'Ü%') THEN C = 'Ü';
 ELSE IF (SRC LIKE PFX || 'ß%') THEN C = 'ß';

 ELSE IF (SRC LIKE PFX || '!%') THEN C = '!';
 ELSE IF (SRC LIKE PFX || '"%') THEN C = '"';
 ELSE IF (SRC LIKE PFX || '§%') THEN C = '§';
 ELSE IF (SRC LIKE PFX || '$%') THEN C = '$';
 ELSE IF (SRC LIKE PFX || '&%') THEN C = '&';
 ELSE IF (SRC LIKE PFX || '/%') THEN C = '/';
 ELSE IF (SRC LIKE PFX || '(%') THEN C = '(';
 ELSE IF (SRC LIKE PFX || ')%') THEN C = ')';
 ELSE IF (SRC LIKE PFX || '=%') THEN C = '=';

 ELSE IF (SRC LIKE PFX || '@%') THEN C = '@';
 ELSE IF (SRC LIKE PFX || %') THEN C = ';
 ELSE IF (SRC LIKE PFX || '*%') THEN C = '*';
 ELSE IF (SRC LIKE PFX || '~%') THEN C = '~';
 ELSE IF (SRC LIKE PFX || '#%') THEN C = '#';
 ELSE IF (SRC LIKE PFX || '%') THEN C = '´';
 ELSE IF (SRC LIKE PFX || %') THEN C = ';

 ELSE IF (SRC LIKE PFX || 'Á%') THEN C = 'Á';
 ELSE IF (SRC LIKE PFX || 'É%') THEN C = 'É';
 ELSE IF (SRC LIKE PFX || 'Í%') THEN C = 'Í';
 ELSE IF (SRC LIKE PFX || 'Ó%') THEN C = 'Ó';
 ELSE IF (SRC LIKE PFX || 'Ú%') THEN C = 'Ú';
 ELSE IF (SRC LIKE PFX || 'á%') THEN C = 'á';
 ELSE IF (SRC LIKE PFX || 'é%') THEN C = 'é';
 ELSE IF (SRC LIKE PFX || 'í%') THEN C = 'í';
 ELSE IF (SRC LIKE PFX || 'ó%') THEN C = 'ó';
 ELSE IF (SRC LIKE PFX || 'ú%') THEN C = 'ú';

 ELSE IF (SRC LIKE PFX || 'À%') THEN C = 'À';
 ELSE IF (SRC LIKE PFX || 'È%') THEN C = 'È';
 ELSE IF (SRC LIKE PFX || 'Ì%') THEN C = 'Ì';
 ELSE IF (SRC LIKE PFX || 'Ò%') THEN C = 'Ò';
 ELSE IF (SRC LIKE PFX || 'Ù%') THEN C = 'Ù';
 ELSE IF (SRC LIKE PFX || 'à%') THEN C = 'à';
 ELSE IF (SRC LIKE PFX || 'è%') THEN C = 'è';
 ELSE IF (SRC LIKE PFX || 'ì%') THEN C = 'ì';
 ELSE IF (SRC LIKE PFX || 'ò%') THEN C = 'ò';
 ELSE IF (SRC LIKE PFX || 'ù%') THEN C = 'ù';

 ELSE IF (SRC LIKE PFX || 'Â%') THEN C = 'Â';
 ELSE IF (SRC LIKE PFX || 'Ê%') THEN C = 'Ê';
 ELSE IF (SRC LIKE PFX || 'Î%') THEN C = 'Î';
 ELSE IF (SRC LIKE PFX || 'Ô%') THEN C = 'Ô';
 ELSE IF (SRC LIKE PFX || 'Û%') THEN C = 'Û';
 ELSE IF (SRC LIKE PFX || 'â%') THEN C = 'â';
 ELSE IF (SRC LIKE PFX || 'ê%') THEN C = 'ê';
 ELSE IF (SRC LIKE PFX || 'î%') THEN C = 'î';
 ELSE IF (SRC LIKE PFX || 'ô%') THEN C = 'ô';
 ELSE IF (SRC LIKE PFX || 'û%') THEN C = 'û';

 ELSE IF (SRC LIKE PFX || '{%') THEN C = '{';
 ELSE IF (SRC LIKE PFX || '}%') THEN C = '}';
 ELSE IF (SRC LIKE PFX || '[%') THEN C = '[';
 ELSE IF (SRC LIKE PFX || ']%') THEN C = ']';

 RESULT = RESULT || :C;

 PFX = PFX || '_';
 II = II + 1;
 IF (II > 255) THEN
 BEGIN
 SUSPEND;
 EXIT;
 END
 END
 SUSPEND;
 END

Debug procedure or trigger (IBExpert Debugger)
A stored procedure or trigger can be simplyand quickly debugged in IBExpert. (This feature is unfortunately not included in the IBExpert Personal Edition.)
IBExpert simulates running the procedure or trigger on the database server by interpreting the procedure and running the commands one at a time. It offers a
number of useful functionalities, such as breakpoints, step into, trace or run to cursor, youcan watch certain parameters, analyze the performance and indices

163

used, and youcan evenchange values on the fly. If youhave Delphi experience you will easily find your way around the Debugger as key strokes etc. are the
same.

Simply open the procedure or trigger in the Procedure Editor or Trigger Editor by double-clicking on the procedure/trigger name in the DB Explorer and click
the Debug iconon the Procedure or Trigger Editor toolbar (or [Shift + Ctrl + D]) to start the Debugger window.

The Debug Procedure/Trigger Editor comprises 3 pages, the Debug page (described here), Performance Analysis and the SQL Editor.

The Debugger also supports the following new Firebird 2.0 features in the named IBExpert versions:

IBExpert version 2005.04.24: SELECT ... FROM (SELECT ...)
IBExpert version 2005.06.07: IS DISTINCT FROM
IBExpert version 2005.09.25: INSERT ... RETURNING
IBExpert version 2005.09.25: Added support for aliases of nested SELECTs as in the following example:

 SELECT * FROM (SELECT RDB$RELATION_NAME,
 RDB$RELATION_ID
 FROM RDB$RELATIONS) AS R
 (RELATION_NAME, RELATION_ID)

IBExpert version 2005.09.25: TRIM function
IBExpert version 2005.09.25: ROWS clause
IBExpert version 2006.10.14: CROSS JOIN

The upper half of this dialog displays the SQL text. Since IBExpert version 2006.10.14 the object name (if applicable) is displayed in the Windows bar. The
lower area displays a number of tabs:

Parameters and Variables

The parameters are listed in a grid. The circular symbols to the left of the name indicate whether the parameters are input (I) or output (O). Variables logically
have the key(V). Further information displayed here includes the parameter value, scope and datatype. The Watch boxes can be checked, to specifywhich
variables should be observed.

Since IBExpert version 2004.9.12.1 there is the added possibility to initialize parameters/variables using values of any data grid. Just drag and drop a cell
value from anydata grid onto the corresponding node in the parameters/variables list to initialize the variable with the value of the data cell. It is also possible
to initialize multiple variables/parameters by holding the [Ctrl] keywhen dropping. In this case IBExpert searches for the corresponding parameter/variable (by
name) for each field in the data record, and if the parameter/variable is found it will be initialized with the value of the field with the same name.

Since IBExpert version 2004.04.01.1 there is added support for default values of input parameters (Firebird 2).

164

And IBExpert version 2005.12.04 introduced the possibility to debug universal triggers whichuse the context variables INSERTING/UPDATING/DELETING. The
debugger interprets these variables as regular input parameters with a BOOLEAN datatype and theyare FALSE by default.

Watches

The Watches tab displays those parameters and variables that have been checked for particular observation in the previous window.

Last Statement

Following execution, the last internal statement is displayed here, along with additional information such as execution time:

Breakpoints

This page displays the positions where breakpoints have been specified, using the respective icon in the Debug Procedure toolbar, the [F5] key, or by
clicking on the blue points in the SQL left margin.

When the procedure is executed (using the respective iconor [F9]), it always stops automatically at these breakpoints. The procedure canthus be executed
step by step, either using [F8] (or the respective toolbar icon) to continue execution step by step (not including the next sublevel), or [F7] (or the respective
toolbar icon) to continue step by step including the next sublevel. Please note that this Trace Into [F7] function is new to IBExpert version 2004.04.01.1.

Alternatively, if you have a procedure or trigger containing cursors, youcan of course use the Run to Cursor icon, or [F4], to execute a part of a stored
procedure or trigger up to the locationof the cursor in the Code Editor.

165

Since IBExpert version 2006.06.05 it is also possible to define breakpoints using comments. To define a breakpoint simply write a special comment line:

 -- IBE_BREAKPOINT

or

 /* IBE_BREAKPOINT */

before the statement where the debug process should be paused.

Messages

These indicate the sort of error that has occurred and where, by highlighting the relevant SQL row.

Results

This page only appears if there are output parameters in the procedure.

166

SQL Editor Messages

These are displayed here when applicable.

When debugging a procedure, first take a look at the values of the parameters and thenuse [F8] to go through the procedure step by step ([F9] executes fully).
After each step, all variable values can be seen. Don't forget to work with breakpoints [F5]. Of course, the Debug Procedure toolbar offers all these operations
and more.

Alter procedure
Procedures can be altered directly in the Procedure Editor, started by double-clicking directly on the procedure name in the DB Explorer. Alternativelyuse the
DB Explorer's right mouse-click menu item Edit Procedure or key combination [Ctrl + O].

ALTER PROCEDURE has exactly the same syntax as CREATE PROCEDURE. In fact, when procedures are altered the original procedure definition is replaced. It may
seem that ALTER PROCEDURE is therefore not necessary, as a procedure could be dropped and then recreated to carry out anychanges. However this will not
work if the procedure to be changed is called by another procedure. If procedure A calls procedure B, procedure B cannot be dropped because procedure A
depends on its existence.

The SQL syntax for this command is:

 ALTER PROCEDURE <procedure_name>
 <revised_input_parameter_list>
 RETURNS
 <revised_return_parameter_list>
 AS
 <local_variable_declarations>
 BEGIN
 <procedure_body>
 END

A procedure can only be altered by the original creator or by the SYSDBA user.

167

Drop procedure/delete procedure
A procedure mayonly be dropped, if it is not being used at the time of deletion. Also it maynot be dropped if it is used by other procedures, triggers, views or
SELECTs, until this dependency is removed.

The Procedure Editor / Dependencies page displays which database objects use this procedure, and which objects this procedure uses. Most database
objects can be dropped directlyon the Dependencies page or the Dependencies Viewer by using the right-click menuon the selected object, and choosing
the menu item Drop Object or [Ctrl + Del].

To drop a procedure use the DB Explorer right mouse-click menu item Drop Procedure... (or [Ctrl + Del]).

IBExpert asks for confirmation:

before finally dropping the procedure. Once dropped, it cannot be retrieved; the procedure has to be recreated, if a mistake has been made!

Using SQL the syntax is:

 DROP PROCEDURE <procedure_name>;

A procedure canonly be dropped by its creator or the SYSDBA.

See also:
SELECT
DDL - Data Definition Language
Stored Procedure and Trigger Language
Create Stored Procedure from SELECT
Dependencies Viewer
Firebird for the database expert - Episode 1: Indexes
Writing stored procedures and triggers
Firebird 2 SQL Reference Guide

168

Trigger
1. Database triggers

1. Database trigger types
2. Table triggers

1. Table trigger types
a. ACTIVE or INACTIVE
b. BEFORE or AFTER
c. INSERT, UPDATE, DELETE

2. NEW and OLD context variables
3. New trigger

1. Local variable declarations
2. Create a trigger for a

generator
3. Create a trigger for a

view
4. Trigger Editor

1. Trigger page
2. Description
3. Dependencies
4. Operations/Index Using
5. DDL
6. Version History
7. Comparison
8. To-do
9. Comment Trigger Body/

Uncomment Trigger Body
5. Alter trigger
6. Recreate trigger
7. Drop trigger/delete trigger

Trigger
A trigger is an independent series of commands stored as a self-contained program (SQL script) in the database. Triggers are executed automatically in the
database when certain events occur. For example, it is possible to check before an insert, whether a primary key already exists or not, and if necessary
allocate a value by a generator. These events are database-, table- or row-based.

Triggers are the so-called database police force, as theyare vital for database integrity and securityby enforcing the rules programmed by the database
developer. They can include one or more execute commands. Theycan also be used as an alarm (= event alerter) that sends an event of a certain name to the
InterBase/Firebird Event Manager.

Triggers take no input parameters and do not returnvalues.

The sequence in which triggers are specified is determined by the term TRIGGER POSITION, and different trigger types can be specified (see below).

Theycan be created, edited and deleted using the IBExpert DB Explorer right-click menu, from the Table Editor or Field Editor, or directly in the IBExpert SQL
Editor.

Since Firebird 1.5 universal triggers (whichcan be used simultaneously for insert and/or update and/or delete) are available and Firebird 2.1 introduced
database triggers (see below for further information).

An example of a trigger:

 CREATE TRIGGER TEST_TRIG FOR TEST
 ACTIVE BEFORE INSERT POSITION 0
 AS
 begin

169

 if (new.id is null) then
 new.id=gen_id (GLOB_ID,1);
 end

Several triggers can be created for one event. The POSITION parameter determines the sequence in which the triggers are executed.

Triggers are almost identical to stored procedures, the main difference being the way theyare called. Triggers are called automatically when a change to a row
in a [Table | table]] occurs, or certain database actions occur. Most of what is said about stored procedures applies to triggers as well, and theyshare the
same language, PSQL.

Database triggers
Database triggers were implemented in Firebird 2.1. These are user-defined PSQL modules that canbe defined to fire in various connection-level and
transaction-level events. This allows you to, for example, set up a protocol relatively quickly and easily.

Database trigger types

Database-wide triggers can be fired on the following database trigger types:

CONNECT The database connection is established, a transaction begins, triggers are fired - uncaught exceptions rollback the
transaction, disconnect the attachment and are returned to the client. Finally the transaction is committed.

DISCONNECT A transaction is started, triggers are fired - uncaught exceptions rollback the transaction, disconnect the attachment and
are stopped. The transaction is committed and the attachment disconnected.

TRANSACTION
START

Triggers are fired in the newly-created user transaction - uncaught exceptions are returned to the client and the
transaction is rolled back.

TRANSACTION
COMMIT

Triggers are fired in the committing transaction - uncaught exceptions rollback the trigger's savepoint, the commit
command is aborted and an exception is returned to the client. For two-phase transactions the triggers are fired in
PREPARE and not in COMMIT.

TRANSACTION
ROLLBACK

Triggers are fired in the rolling-back transaction - changes made will be rolled back together with the transaction, and
exceptions are stopped.

Only the SYSDBA or the database owner can:

define database triggers
switch them of for a new connectionby:

new isc_dpb_no_db_triggers tag
new -no_dbtriggers switch in utilities

In IBExpert database triggers can be created, edited and deleted in the same way as table-bound triggers (see Newtrigger for details). Simply switch to
Database trigger in the toolbar, to access the options specific to database triggers:

Anexample of a database trigger (source Firebird 2.1 What's New, by Vladyslav Khorsum):

Example of an ON CONNECT trigger

 isql temp.fdb -user SYSDBA -pass masterkey
 Database: temp.fdb, User: SYSDBA
 SQL> SET TERM ̂ ;
 SQL> CREATE EXCEPTION EX_CONNECT 'Forbidden !' ̂
 SQL> CREATE OR ALTER TRIGGER TRG_CONN ON CONNECT
 CON> AS
 CON> BEGIN
 CON> IF (<bad user>)
 CON> THEN EXCEPTION EX_CONNECT USER || ' not allowed !';
 CON> END ̂
 SQL> EXIT ̂

 isql temp.fdb -user BAD_USER -pass ...

170

 Statement failed, SQLCODE = -836
 exception 217
 -EX_CONNECT
 -BAD_USER not allowed !
 -At trigger 'TRG_CONN' line: 5, col: 3
 Use CONNECT or CREATE DATABASE to specify a database
 SQL> EXIT;

If you encounter problems with an ON CONNECT trigger, so that noone can connect to the database any more, use the -no_dbtriggers switch in the utilities:

 isql temp.fdb -user SYSDBA -pass masterkey
 -nodbtriggers Database: temp.fdb, User: SYSDBA
 SQL> ALTER TRIGGER TRG_CONN INACTIVE;
 SQL> EXIT;

Database triggers can be quickly and easily defined in IBExpert's Trigger Editor (see below).

Table triggers

Table trigger types

Trigger types refer to the trigger status (ACTIVE or INACTIVE), the trigger position (BEFORE or AFTER) and the operation type (INSERT, UPDATE or DELETE).

Theyare specified following the definitionof the table or view name, and before the trigger body.

ACTIVEor INACTIVE

ACTIVE or INACTIVE is specified at the time a trigger is created. ACTIVE is the default if neither of these keywords is specified. An inactive trigger does not
execute.

BEFOREor AFTER

A trigger needs to be defined to fire either BEFORE or AFTER an operation. A BEFORE INSERT trigger fires before a new row is actually inserted into the table; an
AFTER INSERT trigger fires after the row has been inserted.

BEFORE triggers are generally used for two purposes:

1. Theycan be used to determine whether the operation should proceed, i.e. certain parameters can be tested to determine whether the row should be
inserted, updated or deleted or not. If not, an exception canbe raised and the transaction rolled back.

2. BEFORE triggers canalso be used to determine whether there are linked rows that might be affected by the operation. For example, a trigger might be
used to automatically reassignsales before deleting a sales employee.

AFTER triggers are generally used to update columns in linked tables that depend on the row being inserted, updated or deleted for their values. For example,
the PERCENT_CHANGE column in the SALARY_HISTORY table is maintained using an AFTER UPDATE trigger on the EMPLOYEE table.

To summarize: Use BEFORE until all data manipulationoperations have beencompleted. The EMPLOYEE database trigger SET_CUST_NO is an example of a
BEFORE INSERT, as a new customer number is generated before the data set has been inserted.

When manipulationof the table data should have been concluded before checking or altering other data, thenuse an AFTER trigger. The EMPLOYEE database
trigger SAVE_SALARY_CHANGE is an example of AFTER UPDATE trigger, as the changes to the data have already been completed, before the trigger fires.

INSERT, UPDATE, DELETE

A trigger must be defined to fire on one of the keywords INSERT, UPDATE or DELETE.

1. An INSERT trigger fires before or after a row is inserted into the table.
2. An UPDATE trigger fires when a row is modified in the table.
3. A DELETE trigger fires when a row is deleted from the table.

If the same trigger needs to fire on more thanone operation, a universal trigger needs to be defined. Before Firebird 1.5 triggers were restricted to either
insert or update or delete actions, but now only one trigger needs to be created for all of these. For example:

 AS
 BEGIN
 if (new.bez<>'')
 then new.bez=upper(new.bez);
 END

The ' ' UPPER applies to INSERT and UPDATE operations.

Please note that special characters, such as German umlauts, are not recognized and altered to upper case, as the character is treated technically as a
special character, and not an alphabetical letter.

For further information regarding NEW variables, please refer to NEW and OLD context variables.

NEW and OLD context variables

171

In triggers (but not in stored procedures), InterBase/Firebird provides two context variables that maintain information about the row being inserted, updated or
deleted:

1. OLD.columnName refers to the current or previous values in a row being updated or deleted. It is not relevant for INSERT triggers.
2. NEW.columnName refers to the new values in a row being inserted or updated. It is not relevant for DELETE triggers.

Using the OLD. and NEW. values youcan easily create history records, calculate the amount or percentage of change in a numeric value, find records in another
table that match either the OLD. or NEW. value or do prettywell anything else youcan think of. Please note that NEW. variables canbe modified in a BEFORE
trigger; since the introduction of Firebird 2.0 it is not so easyto alter them in an AFTER trigger. OLD. variables cannot be modified.

It is possible to read to or write from these trigger variables.

New to Firebird 2.0: Restrictions on assignment to context variables in triggers

Assignments to the OLD context variables are now prohibited for every kind of trigger.
Assignments to NEW context variables in AFTER-triggers are also prohibited.

Tip: If youreceive an unexpected error Cannot update a read-only column thenviolation of one of these restrictions will be the source of the exception.

New trigger
There are numerous ways to create a trigger in IBExpert.

1. Using the IBExpert Database menu item, NewTrigger or the respective iconon the New Database Object toolbar.

2. From the DB Explorer by right-clicking on the highlighted trigger branch of the relevant connected database (or key combination [Ctrl + N]).

Both these options open the Trigger Editor:

The Trigger Editor's first page allows the following to be specified simply and quickly, with the aid of pull-down lists, provided the lazy mode has been
switched on:

(1) Name: the trigger name can be altered as wished, if you do not wish to keep the default name. As with all database objects it is important to make
rule about , which will aid you and other developers in the years to come to easily recognize objects, where theybelong and their relationship to other
objects. The illustration above depicts a BEFORE INSERT trigger. The name is composed of the table name, BI is the abbreviation for Before Insert and
10 denotes the specified position.
(2) For Table: select the table or view name from the drop-down list.
(3) Position: 255 positions are allowed per table, (starting at 0, up to 254). Several triggers on a table can also have the same firing position if it is
irrelevant whichone is fired first. As the positions do not have to be consecutive numbers it is wise to develop a convention, beginning let's saywith 50,
and numbering in 10 or 20 intervals. That way, youcan insert and position new triggers at anytime, without having to alter all your existing triggers to
adjust the firing position. It's extremely important to layer the execution order of your triggers for logical reasons. For example, The before insert
logging trigger on a table needs to know the data set's primary key, so the before insert primary key trigger needs to be fired first.
(4) Is Active: check the box active/inactive as appropiate.
(5) Type: specify trigger type as BEFORE or AFTER, and check the action(s) INSERT, UPATE and/or DELETE as wished. Checking all three manipulation
options automaticallygenerates a universal trigger.
(6) Trigger body: The trigger body can be completed in the SQL window.

3. A trigger can also be created in the Table Editor or View Editor, on the Triggers page by selecting the desired BEFORE/AFTER operation and using the
mouse right-click menu item NewTrigger. This opens the NewTrigger Editor shown above.

4. Or in the Field Editor on the Autoincrement page. For example, a trigger text for a new generator canbe simplyand quickly created using the Edit
Field / Autoinc, Create Generator and thenCreate Trigger.

172

For those preferring direct SQL input, the CREATE TRIGGER statement has the following syntax:

 CREATE TRIGGER <trigger_name>
 FOR <table_name>
 <keywords_for_trigger_type>
 AS
 <local_variable_declarations>
 BEGIN
 <body_of_trigger>
 END

The trigger name needs to be unique within the database, and follow the InterBase/Firebird naming conventions used for columns, tables, views and
procedures.

Triggers can only be defined for a single database, table or updatable view. Triggers that should apply to multiple tables need to be called using a stored
procedure. This can be done simply by creating a stored procedure whichrefers to the trigger. Please refer to the Using procedures to create and drop
triggers chapter in the Firebird Development using IBExpert documentation.

Triggers fire when a row-based operation takes place on the named table or view.

Local variable declarations

Triggers use the same extensions to SQL that InterBase/Firebird provides for stored procedures. Therefore, the following statements are also valid for
triggers:

DECLARE VARIABLE
BEGIN … END
SELECT … INTO : variable_list
Variable = Expression
/* comments */
EXECUTE PROCEDURE
FOR select DO …
IF condition THEN … ELSE …
WHILE condition DO …

As with stored procedures, the CREATE TRIGGER statement includes SQL statements that are conceptually nested inside this statement. In order for InterBase/
Firebird to correctlyparse and interpret a trigger, the database software needs a way to terminate the CREATE TRIGGER that is different from the way the
statements inside the CREATE TRIGGER are terminated. This can be done using the SET TERM statement.

Since IBExpert version 2005.03.12 there is added support for following Firebird 2 features:

DECLARE <cursor_name> CURSOR FOR ...
OPEN <cursor_name>
FETCH <cursor_name> INTO ...
CLOSE <cursor_name>
LEAVE <label>
NEXT VALUE FOR <generator>

Don't forget to finallycompile the new trigger using the respective toolbar iconor [F9], and, if desired, autogrant privileges, again using the respective toolbar
icon or key combination [Ctrl + F8].

Create a trigger for a generator

Generally a generator is used to determine unique identification numbers for primary keys. A BEFORE INSERT trigger can be defined for this to generate a new
ID, increasing the current value using the GEN_ID() function, and automatically entering it in the respective table field.

173

The above illustrates the Field Editor, started from the Table Editor.

Create a trigger for a view

It is possible to create a trigger for a view directly in the View Editor on the Trigger page. This is particularly interesting for read-only views. For example,
BEFORE INSERT, insert into Table1 new_fields and table2 new_data for fields. BEFORE UPDATES and BEFORE DELETE triggers should also be added, in order
to distribute the data manipulation made in the view into the respective base tables.

Trigger Editor
The Trigger Editor canbe started using the IBExpert Database menu item, NewTrigger; from the DB Explorer, using the right mouse-click menuor double-
clicking on an existing trigger, or alternatively directly from the View or Triggers page.

Please refer to New Trigger when creating a trigger for the first time.

The Trigger Editor has its own toolbar (see Trigger Editor toolbar) and offers the following options:

Trigger
Description
Dependencies
Operations/Index Using
DDL
VersionHistory
Comparison
To-Do

Trigger page

The Trigger Editor's first page allows the trigger name, table or view name, position, active/inactive, and trigger type to be specified simplyand quickly, with
the aid of pull-down lists, provided the lazy mode has been switched on:

174

If this is switched off, all information needs to be specified in the SQL window:

The SQL window provides a template for both standard (for the whole trigger) and lazy mode, where the trigger bodycan be input. These templates can be
altered if wished, using the IBExpert menu item Options / General Templates / New Trigger.

As with all SQL input windows, the SQL Editor Menucan be called using the right mouse button. The keyboard shortcuts available in the SQL Editor are also
available here. These options may be used to perform a number of actions, for example:

Comment or Uncomment code using the right-click context-sensitive menu.
indent a marked block of code with [Ctrl + Shift + I] and move back with [Ctrl + Shift + U].

Since IBExpert version 2005.04.24 the Debugger also supports the new Firebird 2.0 feature: SELECT ... FROM (SELECT ...)

Since IBExpert version 2005.12.04 the Code Completion list now displays cursor names when one is declared withinprocedure or trigger (Firebird 2).

When the trigger or trigger alterations are complete, it can be compiled using the respective iconor [Ctrl + F9]. If errors are found, click YES when the
Compile Anyway queryappears, to produce an SQL error script (below the trigger text), to detect the error source.

175

If the problem is more complicated, the options Copy Script or Copy Info can be used before finally rolling back the trigger.

The Trigger Editor also has its ownDebug Trigger icon. For more information regarding this, please refer to Debug Procedure or Trigger.

Description

Please refer to Table Editor / Description.

Dependencies

Please refer to Table Editor / Dependencies.

Operations/Index Using

Please refer to Procedure Editor / Operations / Index Using.

DDL

176

Please refer to Table Editor / DDL.

Version History

Please refer to View Editor / VersionHistory.

Comparison

Please refer to Table Editor / Comparison.

To-do

Please refer to Table Editor / To-do.

Comment Trigger Body/Uncomment Trigger Body

It certain situations it maybe necessary to disable certain commands or parts of trigger code. It is possible to do this temporarily, without it being necessary to
delete these commands. Simply select the rows concerned in the SQL Editor, and select either the editor toolbar icons:

the right mouse button menu item, Comment Selected, or keycombination [Ctrl + Alt + .]. This alters command rows to comments. The commented text can be
reinstated as SQL text by using Uncomment Trigger Body icon (above), the right mouse button menu item Uncomment Selected, or [Ctrl+ Alt + ,].

It can not only be used to add comments and documentarynotes to more complexstored procedures and triggers; but also to factor out selected parts of code
during the testing phase, or evenfor customer applications, where certain features are not currently needed but may be required at a future date. The code can
be reinstated by simplyuncommenting as and when required.

Alter trigger
Both the trigger header and the trigger body maybe altered. The trigger header maybe activated or deactivated, or its positionchanged (in relation to other
triggers).

If the trigger body needs to be altered, there is no need to make any alterations to the header, unless youwish to of course! Although in this case, it would
probably make more sense to drop the trigger and create a new one. Any amendments to the trigger bodyoverride the original contents.

177

Triggers can easilybe altered in the DB Explorer's Trigger Editor, opened either by double-clicking on the trigger name, or right-clicking and selecting Edit
Trigger [Ctrl + O]. The header information can be changed as wished using the pull-down lists to alter position, active/non-active and type:

(Image shows lazy mode). The bodytext maybe altered in the SQL panel as wished.

Finally the revised trigger needs to be compiled and committed, for the alterations to become effective.

The SQL syntaxfor alterations to the trigger header is as follows:

 ALTER TRIGGER <trigger_name> INACTIVE | ACTIVE

 ALTER TRIGGER <trigger_name> POSITION n

where n is the new positionnumber. Or to alter the trigger body:

 ALTER TRIGGER <trigger_name>
 AS
 BEGIN
 <new_trigger_body>
 END

A trigger can only be altered by the database owner or by the SYSDBA.

Recreate trigger
New to Firebird 2.0: The DDL statement RECREATE TRIGGER is now available in DDL. Semantics are the same as for other RECREATE statements.

See also:
RECREATE TRIGGER

Drop trigger/delete trigger
A trigger can only be dropped if other users are not performing any changes to anytables which mayrelate to the specified trigger, at the time of deletion. In
IBExpert, a trigger can be dropped from the DB Explorer by selecting the trigger to be deleted and using the right-click menu item Drop Trigger or [Ctrl + Del].

IBExpert asks for confirmation

before finally dropping.

For those preferring to use SQL, the syntax is as follows:

 DROP TRIGGER <trigger_name>

178

An alternative solution to dropping triggers is to alter them to the INACTIVE status. That way theyare left in the database, but disabled from firing, just in case
theymight be needed after all at a later date.

A trigger can only be dropped by the database owner or the SYSDBA.

See also:
Stored Procedure and Trigger Language
Writing stored procedures and triggers
Using procedures to create and drop triggers
Comments
Lazy Mode
Generator
View
Debug Procedure
Firebird for the database expert - Episode 1: Indexes
Dependencies Viewer
Stored Procedure/Triggers/Views Analyzer
IBE$VERSION_HISTORY system table

179

Generator (FB2: Sequence)
1. New generator
2. Generator Editor

1. Generators page
2. Dependencies
3. DDL
4. Scripts
5. Comparison
6. To-Do

3. Alter generator
4. Drop generator/delete generator

Generator (FB2: Sequence)
Generators are automatic sequential counters, spanning the whole database. They are necessary because all operations in InterBase/Firebird are subject to
transaction control.

A generator is a database object and is part of the database's metadata. It is a sequential number, incorporating a whole-numbered 64 bit value integer since
InterBase 6/Firebird (in earlier versions a 32 bit value integer), that canautomatically be inserted into a column. It is often used to ensure a unique value in an
internal primary key.

Generators are the only transaction-independent part of InterBase/Firebird. For each operation a new number is generated, regardless whether this
transaction is ultimatelycommitted or rolled back (this consequently leads to "missing numbers"). Therefore generators are best suited for automatic internal
sequential numbering for internal primary keys.

SEQUENCEwas introduced in Firebird 2.0. It is the SQL-99-compliant synonym for GENERATOR. SEQUENCE is a syntax term described in the SQL specification,
whereas GENERATOR is a legacy InterBase syntaxterm.

It is recommended Firebird 2.0 users use the standard SEQUENCE syntax:

CREATE SEQUENCE
NEXT VALUE FOR
ALTER SEQUENCE
DROP SEQUENCE

A sequence generator is a mechanism for generating successive exact numeric values, one at a time. A sequence generator is a named schema object. In
dialect 3 it is a BIGINT, in dialect 1 it is an INTEGER. It is oftenused to implement guaranteed unique IDs for records, to construct columns that behave like
AUTOINC fields found in other RDBMSs. Further information regarding SEQUENCE can be found in the Firebird 2.0.4 Release Notes.

For legacy reasons, IBExpert will still continue to use the term Generator alongside the term SEQUENCE.

Generators can be created either directly in the SQL Editor or using the DB Explorer (refer to New Generator for details).

Generallya generator is used to determine unique identificationnumbers for primary keys. A trigger can be defined for this, which increases the current value
using the GEN_ID() function, and automatically enters it in the respective table]field. Please refer to create a trigger for a generator for more information. A
generator can also be called from a stored procedure or an application.

A database cancontain any number of generators. Althoughup until the most recent InterBase version7.x the number of generators was limited to one data
page. One generator uses 8 bytes, whichmeans approximately 115 generators fit onto one page (at 1K). This limitation has been solved in the InterBase 7.x
version.

The current generator value of existing generators is not stored in a table but on its ownsystem data pages, as the table contents are subject to transactional
changes. The generator value is also secured when backing up.

Generators are database objects and are part of the database's metadata, and can be created, modified and dropped as all other InterBase/Firebird objects
in the IBExpert DB Explorer.

New generator
A new generator can be created in a connected database in a number of ways:

180

1. Byusing the menu item Database / New Generator, the respective icon in the New Database Object toolbar, or using the DB Explorer right mouse
button (or keycombination [Ctrl + N]), when the generator heading of the relevant connected database is highlighted, to start the NewGenerator Editor:

2. Alternatively, a new generator can be created in the DB Explorer on the Fields page by double-clicking (or using the space bar when inserting a new
field) to check the Autoinc box:

3. Or in the under Autoincrement (started by double-clicking on an existing INTEGER or SMALLINT field in the Table Editor).

4. Or directly in the IBExpert SQL Editor, and thensaved as a generator.

Using the the new generator name simplyneeds to be specified along with the initial generator value. Several generators can be created in the Generator
Editor and compiled simultaneously:

181

Using the Display all Generators button on the Generator Editor toolbar, all generators for the database can be listed and an existing generator selected. (For
internal numbering purposes, the same generator maybe used on several fields, for example all internal primary keyIDs, within the database.)

Using the Autoinc page in the Table and Field Editors, the Create Generator box simplyneeds to be checked, and the name and starting value defined.

It is also possible to select an existing generator for the specified field here (simply click Use Existing Generator and select from the pull-down list):

For those preferring direct SQL input, the syntax is as follows:

 CREATE GENERATOR <Generator_Name>;

This statement also sets the initial generator value to zero. To establish a different starting value, use the SET GENERATOR statement, for example:

 SET GENERATOR <Generator_Name> TO n;

where n is the initial generator value. SET GENERATOR can also be used to reset an existing generator's value. This however requires care, as usually the
column(s) that receives the generator value is/are defined to be unique. For example, youwould not normally reset customer IDs except under unusual and
controlled circumstances.

To increment the generator use the STEP_VALUE parameter (can be positive or negative):

 GEN_ID(<Generator_Name>, STEP_VALUE)

If this parameter is not used, the default STEP_VALUE with an increment of 1 applies.

Generator Editor
The Generator Editor canbe started using the Database / NewGenerator menuitem; from the DB Explorer, using the right mouse-click menu or double-
clicking on an existing generator; or directly from the Field or Table Editor / Autoincrement.

Please refer to New Generator when creating a generator for the first time.

The Generator Editor has its own toolbar (see Generator Editor toolbar) and offers the following options:

Generators page
Dependencies
DDL
Scripts
Comparison
To-Do

Generators page

182

Here it is possible to create new generators, select an existing generator, and alter a generator. Please refer to New Generator or Alter Generator for details.

Dependencies

Please refer to Table Editor / Dependencies.

DDL

Please refer to Table Editor / DDL.

Scripts

Creating - displays the CREATE GENERATOR statement for the generator selected on the Generators page. If all generators are displayed on the Generator
page (Display All Generators button), all corresponding CREATE statements appear on this page.

Setting Values - displays the SET GENERATOR statement for the generator selected on the Generators page. Again, if all generators are displayed on the
Generator page (Display All Generators button), allSET statements appear on this page.

Full - displays the full SQL text for the generator selected on the Generators page (or all generators).

Please note that the Scripts page is for display only. It is not possible to make any amendments on this page.

Comparison

Please refer to Table Editor / Comparison.

To-Do

Please refer to Table Editor / To-Do.

Alter generator
A generator may be altered to specifya new value. The value of a generator canbe changed as oftenas wished.

This canbe performed in IBExpert using the DB Explorer's Generator Editor, opened either by double-clicking on the generator name, or right-clicking and
selecting Edit Generator [Ctrl + O]. Simply enter the new figure in the Value column, compile and commit.

The SQL syntax for altering a generator is as follows:

 SET GENERATOR <generator_name> TO n

where n is the new value. This new value is immediatelyeffective.

Please refer to the SET GENERATOR statement for further information.

Drop generator/delete generator
In IBExpert, a generator can be dropped from the DB Explorer by selecting the generator to be deleted and using the '-' icon on the Generator Editor toolbar or
[Shift + Del].

IBExpert asks for confirmation and displays the SQL statement:

183

before finally dropping when the statement is committed.

For those preferring to use SQL, the syntax is as follows:

 DROP GENERATOR <generator_name>;

See also:
CREATE SEQUENCE
FB 2.0.4. Release Notes: CREATE SEQUENCE
Firebird for the database expert - Episode 2: Page Types
SET GENERATOR Create a trigger for a generator

184

Exception
1. New exception/Exception Editor

1. Exceptions page
2. Dependencies
3. DDL
4. Comparison
5. To-Do

2. Raising an exception
3. Alter exception
4. Drop exception/delete exception

Exception
Exceptions are user-defined named error messages, written specifically for a database and stored in that database for use in stored procedures and triggers.

If it is ascertained in a trigger that the value in a table is incorrect, the exception is fired. This leads to a rollback of the total transaction that the client
application is attempting to commit. Exceptions can be interleaved.

Theycan be shared among the different modules of an application, and evenamong different applications sharing a database. Theyprovide a simple way to
standardize the handling of preprogrammed input errors. Exceptions are typically used to implement program logic, for example, youdo not wish a user to sell
an item in stock, which has already beenreserved by another user for their customer.

Exceptions are database objects and are part of the database's metadata, and can be created, modified and dropped as all other InterBase/Firebird objects
in the IBExpert DB Explorer.

New exception/Exception Editor
A new exception canbe created in a connected database either by using the menu item Database / New Exception, the respective icon in the New Database
Object toolbar, or using the DB Explorer right-click menu(or keycombination [Ctrl + N]), when the exception heading of the relevant connected database is
highlighted. A NewException dialog appears, with its owntoolbar:

Alternatively, a new exception can be created directly in the IBExpert SQL Editor, using the following statement:

185

 CREATE EXCEPTION <Exception_Name>
 "Exception_Text";

The Exception Editor can be opened directly from the DB Explorer by double-clicking on any existing exception name. It canalso be started directly from any
procedure or trigger containing an exception, simply by double-clicking on the exception name in the SQL text on the Procedure Editor's Edit page, or the
Trigger Editor's Triggers page.

Exceptions page

The new exception name canbe added to the list displaying all exceptions for the active database, and the exception text message entered. Please be careful
when using special characters! Especially when using older versions of InterBase, it is preferable to abstain from using any special characters. With the newer
versions, there should not be any problems, provided the correct character set has been specified. The exception ID is automatically assigned by the
database, when the exception is committed.

After creating the exception, it then needs to be incorporated into a stored procedure or a trigger, to determine under what conditions and when the exception
is to appear. Please refer to Raising an Exception for details.

Dependencies

Please refer to Table Editor / Dependencies.

DDL

Please refer to Table Editor / DDL.

Comparison

Please refer to Table Editor / Comparison.

To-Do

Please refer to Table Editor / To-Do.

Raising an exception
The EXCEPTION statement is used to notify a calling application of an exception. The calling application can be a trigger, a stored procedure, or another
program. To raise an exception in a trigger or stored procedure use the EXCEPTION keyword:

 EXCEPTION <Exception_Name>;

Whenan exception is raised, the following takes place:

1. The exception terminates the trigger or procedure.
2. Any statements in the trigger or stored procedure that follow the EXCEPTION statement are not executed. In the case of a BEFORE trigger the update that

fired the trigger is aborted.
3. The trigger or procedure returns an error message to the calling application.

Anexample of an exception raised in a procedure canbe found in the EMPLOYEE database. The exception REASSIGN_SALES was first created:

186

and then incorporated into the DELETE_EMPLOYEE procedure:

Alter exception
Exceptions can be altered directly in the Exceptions Editor, started by double-clicking directlyon the exception name in the DB Explorer. Alternativelyuse the
DB Explorer's right mouse-click menu item Edit Exception or keycombination [Ctrl + O].

The Exception Editor appears, where changes to the exception name and exception text can be made as wished. Changes to exception texts maybe made
even if other objects depend on them, however not the exception name.

The SQL syntax is:

 ALTER EXCEPTION <exception_name>
 'New Exception Text';

An exception can only be altered by the original creator or by the SYSDBA user.

187

A number of new syntaxes for changing exceptions was introducted in Firebird 2.0. Please refer to Firebird 2.0.4 Release Notes: New syntaxes for changing
exceptions for further information.

Drop exception/delete exception
Anexception may not be dropped if it is used by other procedures or triggers, until the dependency is removed. Any such dependencies are listed on the
ExceptionEditor / Dependencies page, where theycan be directly removed, if wished.

To drop an exception use the DB Explorer right mouse-click menu item Drop Exception... or [Ctrl + Del]. IBExpert asks for confirmation:

before finally dropping the exception. Once dropped, it cannot be retrieved.

Using SQL the syntax is:

 DROP EXCEPTION <exception_name>;

Anexception can only be dropped by its creator, the database owner or the SYSDBA.

See also:
Stored Procedure
Trigger
Stored procedure and trigger language
Dependencies Viewer

188

User-defined function
1. UDF Editor
2. Drop external function/drop UDF
3. RFunc

1. RFunc installation
a. Windows installation
b. Linux installation

4. FreeUDFLib
1. FreeUDFLib installation

5. FreeAdhocUDF
1. FreeAdhocUDFmin installation
2. FreeAdhocUDF complete installation
3. Necessary update for existing databases

User-defined function
A user-defined function (UDF) is used to perform tasks that Firebird/InterBase can't. It can be described as an external database functionwritten entirely in
another language, such as C++ or Pascal, to perform data manipulation tasks not directlysupported by InterBase/Firebird.

UDFs can be called from InterBase/Firebird and executed on the server. These functions canexist on their ownor be collected into libraries. UDFs offer the
possibility to create your ownfunctions (such as SUBSTR) and integrate them in the database itself. Each UDF is arranged as a function, belonging to a DLL
(Linux: .SO). Thus one dynamically loaded library consists of at least one function.

UDFs can be incorporated into the database using the IBExpert DB Explorer, IBExpert SQL Editor, or IBExpert Script Executive.

UDF Editor

The IBExpert UDF Editor displays those UDFs inserted into the list, by double-clicking on the UDF name in the DB Explorer, or alternatively using the
navigation icons in the editor toolbar to insert single or all UDFs. The grid display can also be filtered or grouped if wished. The grid displays key information,
including name, library, entry point, input parameters, returns, return mechanism (pull-down list of options), whether freed (checkbox), and description.
IBExpert version2006.06.05 introduced support for the Firebird 2.0 NULL clause. Further information is displayed on the Description, Dependencies, DDL,
Comparison and To-Do pages.

UDF definitions are database dependent and not server dependent, i.e. they need to be registered for each database individually. Since InterBase 6/Firebird,
the libraries need to be stored in the InterBase/Firebird UDF folder. This is not critical when working with older InterBase versions.

Please refer to the DECLARE EXTERNAL FUNCTION statement for details of incorporating UDFs in InterBase/Firebird.

It is important to note that the majority of UDFs, when used in a WHERE condition, prevent indices being used during execution.

New to Firebird 2.0: The following is a summaryof the major changes, the details of which canbe found in the Firebird 2.0.4 Release Notes in the External
functions (UDFs) chapter:

Ability to signal SQL NULL via a null pointer
UDF library diagnostic messages improved
UDFs added and changed

IB_UDF_rand() vs IB_UDF_srand()
IB_UDF_lower

General UDF changes
Build changes

An ideal example of a UDF library is RFunc (written in C++) containing over 80 UDFs (althoughsome of these are only applicable for older InterBase versions
or for different SQL dialects). It is available for both Windows and Linux platforms in English and Russian and can be downloaded free of charge from http://
www.ibexpert.com/download/udf/. FreeUDFLib is an example of a UDF library written in Delphi, and can also be downloaded from this link.

For further functions please refer to IBEBlock Functions and the Firebird documentation: Firebird built-in Functions.

189

www.ibexpert.com/download/udf/.FreeUDFLibisanexampleofaUDFlibrarywritteninDelphi,andcanalsobedownloadedfromthislink

Drop external function/drop UDF
The DROP EXTERNAL FUNCTION command removes the declaration of the UDF, specified by an additional parameter, from the database.

The dropped functioncan no longer be reached by the database, as the relevant reference to the UDF library is deleted. However the UDF still exists in the
UDF library, so that it can still be used by other databases.

In IBExpert, a UDF canbe dropped from the DB Explorer by selecting the UDF to be deleted and using the right-click menu item Drop UDF or [Ctrl + Del].

IBExpert asks for confirmation

before finally dropping.

The SQL syntax is:

 DROP EXTERNAL FUNCTION <external_function_name>

The declaration of a UDF can only be dropped by the database owner or the SYSDBA.

RFunc
RFunc is a UDF library containing over 80 UDFs (althoughsome of these are only applicable for older InterBase versions or for different SQL dialects). It is
available for both Windows and Linux platforms in English and Russian. It can be downloaded free of charge from http://www.ibexpert.com/download/udf/. The
most up-to-date version of this library can found at http://rfunc.sourceforge.net/.

It represents a set of user's (UDF) string, bit, numerical functions, and can also be used for operations with DATEs and TIME and blobs. Also contains PARSER,
i.e. calculator of expressions.

InterBase 4.2, 5.x, 6.x, 7.0 (Windows 9x, NT, 2000) and InterBase 5.x, 6.x, 7.0 (Linux) or Firebird are supported. The library is written in C++ and is delivered
with source codes.

RFunc installation

The ZIP-file should be selected (Windows or Linux; English or Russian) and downloaded.

Windows installation

1. The RFUNC.DLL file needs to be copied into a folder:

Variant 1: <IB path>IB_path\bin (for IB6: IB_path\UDF), where IB_path is the path to a folder, in which InterBase/Firebird is installed (recommended).
Variant 2: Windows\System (for Windows 9x) or WinNT\System32 (Windows NT, 2k).

2. only for IB 5.x: copy ib_util.dll file from <IB path>\Lib to \Bin.

If several versions of InterBase servers are installed on one computer, it is necessary to use the RFunc library appropriate to the installed client IB (GDS32.DLL).

It is recommended before starting the InterBase/Firebird server to substitute GDS32.DLL appropriate to the version of the server.

Linux installation

IB 5.x:

Variant 1: Copy the RFunc file into directory /usr/lib.
Variant 2: Copy the RFunc file into any directory, for example, /home/rFunc. Create the reference to the library by using the \ln -s /home/rFunc/
rfunc /usr/lib/rfunc\ command. The user should ownthe right to create references in the directory/usr/lib.

InterBase 6-7 und Firebird (Windows und Linux):

Copy the RFunc file into directory \UDF.

The rfuncx.sql (x= InterBase version; use rfunc6.sql for all Firebird versions) script, found in the UDF\sql directory, should then be copied into the IBExpert
Script Executive (found in the Tools menu), and executed [F9]. A database connectionmust exist, as UDF libraries need to be registered for eachdatabase
(i.e. they are database-dependent and not server-dependent).

190

http://www.ibexpert.com/download/udf/.The
http://rfunc.sourceforge.net/

It is thennecessary to disconnect and reconnect to the database so that the full list of RFunc UDFs can be viewed in the DB Explorer under the DB object
branch UDF.

FreeUDFLib
FreeUDFLib is a free UDF library (October 1998) containing many useful UDFs for use with InterBase 4.2 and 5.0 under the Win32 platforms (unfortunately no
UNIX support with this). It is written entirely in Delphi and all source code is provided.

It can be downloaded free of charge from http://www.ibexpert.com/download/udf/.

Everything in this release is completely free. However, it's not a PUBLIC DOMAIN. Please refer to the license.txt, included in the ZIP file for more information
on licensing.

FreeUDFLib installation

After unzipping FreeUDFLib.zip, copyFreeUDFLib.dll to the InterBase/Firebird bin or udf directory, for example: C:\Program Files\InterBase Corp
\InterBase\bin, C:\Program Files\Borland\InterBase\udf\bin or C:\Program Files\Firebird\udf\bin.

The ext_funcs.sql script should then be copied into the IBExpert Script Executive (found in the Tools menu), and executed using [F9]. A database connection
must exist, as UDF libraries need to be registered for each database (i.e. theyare database-dependent and not server-dependent). If necessary, use the
Script Executive menu item Add CONNECT statement to connect to the desired database, before executing.

It is thennecessary to disconnect and reconnect to the database so that the full list of FreeUDF external functions can be viewed in the DB Explorer under the
DB object branch UDF.

FreeAdhocUDF
The latest published versionof FreeAdhocMin(a "minimal" version without source code) was released on February 9, 2007. It is available for Linux and
Windows and canbe downloaded at: http://www.ibexpert.com/download/udf/.

It includes several minor bug fixes, new functions and almost complete implementation of RFunc. Altogether a total of 333 functions! Full documentation of the
individual functions can be found at: http://www.udf.adhoc-data.de/documentation_english/dok_eng_inhalt.html.

The FreeAdhocUDFs are based upon:

FreeUDFLib (in Delphi, 1998 from Gregory Deatz)
FreeUDFLibC (ported to C, 1999 from Gregory Deatz)

and are compatible to

191

http://www.ibexpert.com/download/udf/
http://www.ibexpert.com/download/udf/
http://www.udf.adhoc-data.de/documentation_english/dok_eng_inhalt.html

FreeUDFLib from AvERP (in Delphi, with some enhancements) - complete
GrUDF (in Delphi and Kylix 2004 from Torsten Grundke and Gerd Kroll) - complete
RFunc (in C++ from Polaris Software, last version 2003-11-27) - nearly complete

The FreeAdhocUDFs are programmed by Peter M., Georg Hornand Christoph Theuring.

The FreeAdhocUDFs return the same values in Windows and Linux. Theyalso return the same values from InterBase 5.6 to InterBase2007 and Firebird 1.0 to
Firebird 2.0.

The FreeAdhocUDFs are published under the GPL and everyone mayuse them, even in commercial projects (see license). The FreeAdhocUDFs are
copyright adhoc dataservice GmbH, Virneburg/Eifel, Germany.

The FreeAdhocUDFs are distributed under the License on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied.

FreeAdhocUDFmin installation

The newest version of FreeAdhocMin(a "minimal" version without source code) was released on February 9, 2007. It is available for Linux and Windows and
canbe downloaded at: http://www.ibexpert.com/download/udf/.

Download the ZIP file to the hard drive. Select the file you wish to install (Windows/Linux, InterBase/Firebird). and copy to the InterBase/Firebird bin or udf
directory, for example: C:\Program Files\InterBase Corp\InterBase\bin, C:\Program Files\Borland\InterBase\udf\bin or C:\Program Files\Firebird
\udf\bin.

Copy the required SQL text (found in the Install directory) into the IBExpert]Script Executive (found in the Tools menu), and execute using [F9]. A database
connectionmust exist, as UDF libraries need to be registered for eachdatabase (i.e. theyare database-dependent and not server-dependent). If necessary,
use the Script Executive menu item Add CONNECT statement to connect to the desired database, or click the Use current connect checkbox before
executing.

It is then necessary to disconnect and reconnect to the database so that the full list of FreeAdhocUDF external functions canbe viewed in the DB Explorer
under the DB object branch UDF.

Because of the sheer quantityof UDFs, there is no longer a single SQL script but a number of DECLARE SQL scripts for the individual UDF types, so that users
only need to install those UDFs that they require.

There are also a number of different versions for some functions, e.g. for SUBSTR - for reasons of compatibility; which means different DECLAREs compatible to:

FreeUDFLib
FreeUDFLibC
FrUDF or AvERPUDF (for those working from AvERP)
RFunc

In such cases it is necessary to "uncomment" the relevant script parts.

For those RFunc users who have recently transferred to FreeAdhocUDF, there is an special script, so that the application containing the script does not need
to be altered.

Important: please refer to Necessary update for existing databases before updating to FreeAdhocUDFmin.

The most recent news, information and documentation canbe found at: http://www.udf.adhoc-data.de/index_eng.html.

FreeAdhocUDF complete installation

Installation of versions published on or before November 30, 2006: Unzip the file, select the required FreeAdhocUDF.dll or FreeAdhocUDF.so and copy to the
InterBase/Firebird bin or udf directory, for example: C:\Program Files\InterBase Corp\InterBase\bin, C:\Program Files\Borland\InterBase\udf\bin or
C:\Program Files\Firebird\udf\bin.

The FreeAdhocUDF_declarations_all_dialect1.sql or the FreeAdhocUDF_declarations_all_dialect3.sql script should then be copied into the IBExpert
Script Executive (found in the Tools menu), and executed using [F9]. A database connection must exist, as UDF libraries need to be registered for each
database (i.e. they are database-dependent and not server-dependent). If necessary, use the Script Executive menu item Add CONNECT statement to
connect to the desired database, or click the Use current connect checkbox before executing.

It is then necessary to disconnect and reconnect to the database so that the full list of FreeAdhocUDF external functions canbe viewed in the DB Explorer
under the DB object branch UDF.

Necessary update for existing databases

Because it's possible in FireBird 2.0 for UDFs to return<null> instead of 0 or empty string, the code of most functions must be changed basically to use this
mechanism. So a RETURN INTEGER BY VALUE becomes a RETURN INTEGER FREE_IT.

To use the functions in the new version with an old declaration, which includes a BY VALUE, returned for example in SELECT F_HOUR ('30.11.2006 15:00:00')
FROM RDB$DATABASE plus something nonsensical - a number with 8 digits - but not 15. It is therefore necessary in all cases to replace the old declarations with
the new ones - evenyou do not want to use Firebird 2.0 or do not want to use the <null> option.

If youhave declared your FreeAdhocUDF with a version prior to version adhoc200612xx you have to delete the UDFs and redeclare them or - if youcan't delete
them because of existing dependencies - youhave to use the UPDATE script adhoc200612update_xxx.sql! You'll find them at http://www.ibexpert.com/download/
udf/.

For UUID-functions there is no UPDATE script, you have to delete the declarations in the database and then rebuild them with the newDECLARE script.

192

http://www.ibexpert.com/download/udf/
http://www.udf.adhoc-data.de/index_eng.html
http://www.ibexpert.com/download/

For the functionF_TRUNCATE the entry point had to be altered from truncate to f_truncate to avoid conflicts with a standard function in C. This is also part of the
UPDATE script.

The current DECLARE scripts are up to date (March2007).

See also:
Aggregate Functions ConversionFunctions DECLARE EXTERNAL FUNCTION (incorporating a new UDF library) Threaded Server and UDFs

193

Blob filter
1. Declaring a blob filter
2. Calling a blob filter

Blob filter
Blob filters are routines for blobs. They translate blob data from one type to another, i.e. they allow the contents of blob subtype X to be displayed as subtype Y
or vice versa. These filters are ideal tools for certain binary operations such as the compressionand translation of blobs, depending upon the application
requirements.

A blob filter is technically similar to a UDF (user-defined function). It hangs itself in the background onto the database engine, and is used for example to
compress the blob, or to specify the format such GIF or JPG (dependent uponuse with Windows or Apple Mac). The blob filter mechanism relies on knowing
what the various subtypes are, to provide its functionality.

Blob filters are written in the same way that UDFs are written, and are generally part of standard libraries, just as UDFs are.

Declaring a blob filter
A blob filter needs to be explicitlydeclared in the database before it is used. This is done using the keyword DECLARE FILTER. First it is necessary to connect
to the database using the blob filter, and then issue the statement. The syntaxof DECLARE FILTER is as follows:

 DECLARE FILTER <IB/FB_Filter_Name>
 <Parameter_List>
 INPUT TYPE <Type>
 OUPUT TYPE <Type>
 ENTRY_POINT <External_Function_Name>
 MODULE_NAME <Library_Name>;

New to Firebird 2.0: Declare BLOB subtypes by knowndescriptive identifiers

Previously, the only allowed syntaxfor declaring a blob filter was that above. Since Firebird 2.0 there is an alternative new syntax:

 DECLARE FILTER <name>
 INPUT_TYPE <mnemonic>
 OUTPUT_TYPE <mnemonic>
 ENTRY_POINT <function_in_library>
 MODULE_NAME <library_name>;

where <mnemonic> refers to a subtype identifier known to the engine.

Initially they are binary, text and others mostly for internal usage, but it is possible to write a newmnemonic in rdb$types and use it, since it is parsed only at
declaration time. The engine keeps the numerical value. Please don't forget that only negative subtype values are meant to be defined by users.

To view the predefined types, do

 select RDB$TYPE, RDB$TYPE_NAME, RDB$SYSTEM_FLAG
 from rdb$types
 where rdb$field_name = 'RDB$FIELD_SUB_TYPE';

 RDB$TYPE RDB$TYPE_NAME RDB$SYSTEM_FLAG
 ========= ============================ =================
 0 BINARY 1
 1 TEXT 1
 2 BLR 1
 3 ACL 1
 4 RANGES 1
 5 SUMMARY 1
 6 FORMAT 1
 7 TRANSACTION_DESCRIPTION 1
 8 EXTERNAL_FILE_DESCRIPTION 1

Examples can be found at: Declare BLOB subtypes by knowndescriptive identifiers.

Calling a blob filter
In the same way as UDFs, blob filters can be called from InterBase/Firebird code whenever an InterBase/Firebird built-in functioncall is used. In order to use
the blob filter, invoke the FILTER statement when declaring a cursor. Then, whenever InterBase/Firebird uses the cursor, the blob filter is automatically invoked.

See also:
BLOB
Firebird for the database expert - Episode 2: PageTypes
User-Defined Function(UDF)

194

Role
1. New role
2. Alter role
3. Drop role/delete role

Role
A role is a named group of privileges. It simplifies granting user rights as multiple users can be granted the same role. For example, in a large sales
department, all those clerks involved in processing incoming orders could belong to a role Order Processing.

Should it become necessary to alter the rights of these users, only the role has to be changed.

New role
A new role can be created in a connected database, either by using the IBExpert menu item Database / New Role, the respective icon in the New Database
Object toolbar, or using the DB Explorer right-click menu(or keycombination [Ctrl + N]), when the role heading of the relevant connected database is
highlighted.

A NewRole dialog appears:

Simply enter the new role name, and click OK to compile and commit.

Note: when a role with the name SYSDBA is created, no other users (not eventhe SYSDBA) can access the database.

For those preferring SQL input, the syntax is as follows:

 CREATE ROLE <Role_Name>;

After successfully creating one or more new roles, privileges need to be granted to the role name(s). Please refer to Grant Manager, found in the IBExpert
Tools Menu, and the GRANT statement for further information.

Alter role
Users and rights may be altered for a role using the IBExpert Grant Manager. This canbe started either directly from the DB Explorer by either double-clicking
on a role name, using the right-click menu item Edit Role... or the keycombination [Ctrl + O], or using the IBExpert Tools menu item, Grant Manager. Please
refer to Grant Manager for details.

Drop role/delete role
To drop a role use the DB Explorer right mouse-click menu item Drop Role... (or [Ctrl + Del].

IBExpert asks for confirmation:

195

before finally dropping the role. Once dropped, it cannot be retrieved.

Using SQL the syntax is:

 DROP ROLE <Role_Name>;

See also:
Grant Manager
User Manager
Server Security ISC4.GDB / SECURITY.FDB

196

System objects
IBE$VERSION_HISTORY system table

System objects
InterBase/Firebird generates system database objects, and stores its ownspecific system information about the database objects in system tables. System
objects are displayed in the DB Explorer in red, if the system options have been flagged in the Register Database dialog (called using the right mouse button
Additional/DB Explorer).

Firebird system objects contain the prefixRDB$; IBExpert system objects contain the prefix IBE$.

A newlycreated database is almost 0,5 MB large. This is due to the system tables that are automaticallygenerated by InterBase/Firebird when a database is
created.

IBE$VERSION_HISTORY system table
A special browser was introduced in IBExpert version 2006.06.05, implemented for the IBE$VERSION_HISTORY table. When IBE$VERSION_HISTORY is opened in
the Table Editor, a new Version Browser page is automatically opened:

197

Select the database object and the versions youwish to compare. Text and code is highlighted according to whether it has been added, modified or deleted.

See also:
VersonHistory

198

Text Editor / SQL Code Editor
All Object Editors and SQL Editors include text/SQL input windows. Please refer to the individual subjects, for further information. For example:

SQL Editor / Edit page
Plan Analyzer
SQL Editor / Logs
Description page
Debugger
DDL page
SQL Monitor
Stored Procedure

Objects and fields canbe simplyand quickly dragged and dropped from the DB Explorer and SQL Assistant into the Edit page. Since version 2004.2.26.1
this has been greatly improved. Whenan object node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert offers various versions of text to be
inserted into the code editor.

Since version 2006.08.12 IBExpert offers you the following choices when dragging a database node from the DB Explorer tree into anycode editor: CONNECT
statement, CREATE DATABASE statement, IBEBlock with the ibec_CreateConnection function.

A Code Insight system is included to simplify command input and database objects are underlined for easyrecognition.

Hyperlinks allow you to quickly reference database objects if necessary.

There are a number of options available to customize the appearance of the code in the Text Editor. Please refer to the IBExpert Options menu item, Editor
Options, to view and specifyall options available. For example, it is possible to customize the highlighting of variables. Use the IBExpert menu item Options /
Editor Options / Color to select color and font style for variables.

The Text Editor/Code Editor has its own comprehensive right-click context-sensitive menu, the contents of whichare described in detail in the SQL Editor /
SQL Editor Menuand IBExpert Edit menu. IBExpert version 2007.07.18 introduced the possiblity to convert text from/to unicode. If here is no text selected, the
entire content of the code editor will be converted.

As with all working areas in IBExpert there are also a number of key combinationshortcuts available here in the Text Editor. To view all short cuts or specify
your own, use the Localizing Form (a complete list of all shortcuts and operations), opened using [Ctrl + Shift + Alt + L]. For example, a selected block of text
can be simply and easily indented using [Ctrl + Shift + U] (decrease indentation using [Ctrl + Shift + I]).

New to IBExpert version 2005.09.25: Highlighting of paired brackets has been added. This optioncan be customized using the IBExpert Options menu item,
Editor Options / Color.

199

New features added in IBExpert version 2006.10.14 include the visual representation and highlighting of paired BEGIN/END and CASE/END clauses, and the
implementation of round brackets on a code editor gutter.

200

Printing from the database object editors
1. Print Table
2. Print Preview and Print Design
3. Printing Options

Printing from the database object editors
Print Table
Please refer to the IBExpert Edit Menu item Print and the Table Editor menu item Printing Options.

Print Preview and Print Design
Please refer to the IBExpert Report Manager for further information.

Printing Options
The Printing Options dialog can be started using the Print Table Metadata iconor [Shift + Ctrl + P].

The Printing Options dialog offers different options depending uponwhich Editor it is started from. For example, when started from the Table Editor:

the View Editor:

the Procedure Editor:

the Trigger Editor:

These options include the following:

Fields
Constraints
Indices
Dependent Objects
Depend On Objects
Parameters
DDL

201

Description

Simply check as wished, and then click Preview(to view the report as it will be printed - refer to Report Manager for further information), Design (to customize
the report - again refer to Report Manager for further information) or Print to proceed to the standard Windows Print dialog.

202

IBExpert Edit menu
1. Load from File / Save to File
2. Cut / Copy / Paste / Select All
3. Find / Search Again / Replace
4. Incremental Search
5. Print Preview
6. Print
7. Page Setup
8. Convert Identifiers/Keywords

IBExpert Edit menu
The IBExpert Edit menuoffers typical manipulationoptions found in the majorityof windows applications. It includes:

Load and save to file
Cut, Copy and Paste
Find, Search Again and Replace
Incremental Search
Print Preview, Print and Page Setup

Load from File / Save to File
These first two items in the IBExpert Edit menucan also be called using the SQL Editor right-click menu (available in the SQL and Object Editors) or the key
combinations [Ctrl + L] or [Ctrl + S] respectively. These items can also be found in the Edit toolbar. Theyallow SQL scripts etc. to be loaded or saved to file.

Cut / Copy / Paste / Select All
These three items can be found in the IBExpert Edit menuand SQL Editor right-click menu (available in the SQL and Object Editors). Theycan also be
executed using the keycombinations:

Cut [Ctrl + X]
Copy [Ctrl + C]
Paste [Ctrl + V]

These items canalso be found in the Edit toolbar. Theyallow selected (i.e. marked) text to be cut or copied into the clipboard, and then pasted - either directly
in IBExpert or in other applications, such as Windows Editor, Word etc.

The menu item Select All [Ctrl + A] selects a complete text (e.g. SQL script).

Find / Search Again / Replace
These three items can be found in the IBExpert Edit menuand SQL Editor right-click menu (available in the SQL and Object Editors). Theycan be executed
using the key combinations:

Find [Ctrl + F]
Search Again [F3]
Replace [Ctrl + R]

or the respective icons in the Edit toolbar.

Theyare useful for finding individual words/digits or word/digit strings in longer texts or metadata. The Find dialog offers a number of options:

Find page:

203

(1) Find What: the Find dialog automatically offers the word, where the cursor is currently standing, or a selected text. This can be altered as wished.
Previous Find criteria can be selected using the pull-down list.

(2) Options: This includes Case Sensitive, Whole Words Only and Regular Expressions (e.g. *,?).

(3) Direction: i.e. forwards or backwards.

(4) Scope: i.e. global or just the selected text.

(5) Origin: From cursor (searches from the cursor positiononwards), or entire scope (complete text).

The Find in Metadata page offers alternative options:

These include database selection (or evena Search in all active databases optionusing the checkbox at the bottom of the dialog) and, in addition to the
options offered on the Find page, a check list of the database object categories to be searched.

New to version 2004.08.05.1 is the checkbox option to search for text or text strings within database object descriptions.

Replace:

The Replace dialog is similar to the Find page :

with the following additions:

Replace with:

Enter the word(s)/number(s) that are to replace the searched for text. Previous Replace entries can be selected using the pull-down list.

The Options check list contains the additional check Prompt on Replace (default), allowing the user to check that the found word/number string is correctly
replaced.

Incremental Search

204

The Incremental Search [Ctrl + F] allows a simple search for individual entries by simply marking the desired columnheader, clicking the right mouse button
menu item Incremental Search [Ctrl + F] and thentyping the relevant digits/letters, until the required dataset(s) is/are found. Alternatively, the [Ctrl + Enter] keys
can be used to search for the next occurrence of a substring.

This menu item canalso be found in the context-sensitive menus in the Table Editor / Data page and in all editors containing an SQL Editor window and right-
click SQL Editor Menu.

Print Preview
This item can be found in the IBExpert Edit menuand SQL Editor right-click menu (available in the SQL and Object Editors).

The Print Previewdialog is part of the Fast Report Manager and, when opened, displays the current script/report. It offers a number of options:

It is possible to specify the view scale, using the respective icon or the right-click menu:

Further options include opening a report/script, saving it, printing the report/script previewed, and evensearching for text within the script:

205

The last icon in the Print Preview toolbar allows the Print Preview window to be closed.

The right-click menu, in addition to scale specification, also offers options to add a page (for example, for a front cover or introduction) or delete one, and also
to edit the page previewed, by opening the Report Designer.

The Report Designer (part of the Report Manager) canalso be automatically opened by double-clicking on the report, enabling the user to make alterations to
the layout as wished.

Print
This item can be found in the IBExpert Edit menuand SQL Editor right-click menu(available in the SQL and Object Editors), and as an iconon the relevant
toolbars, for printing scripts, reports or database object metadata.

It opens a standard Windows Print dialog:

including the usual options such as printer specification (and properties), page range and number of copies.

Page Setup
This item can be found in the IBExpert Edit menuand SQL Editor right-click menu(available in the SQL and Object Editors).

It opens a standard Windows Page Setup dialog, where the following options can be specified:

Paper size
Source (i.e. printer trayspecification)
Portrait or landscape
Margins

as well as a Printer button to specify the printer.

Convert Identifiers/Keywords
The menu item, Convert Identifiers/Keywords, can be found in the IBExpert Edit menuor in the right-click Text Editor/Code Editor menu. It offers the following
options to alter the appearance of the SQL characters:

1. Convert keywords: allows all keywords (i.e. statements, commands etc.) in the current SQL script to be converted completely to lower or upper case.

206

2. Convert identifiers: allows all identifiers (i.e. object names, field names etc.) in the current SQL script to be converted completely to lower or upper
case.

207

IBExpert Grid menu
1. Apply Best Fit
2. Save Grid Data
3. Copy Current Record to Clipboard/Copy All to Clipboard

IBExpert Grid menu
The IBExpert Grid menu item is new to version2003.11.6.1. It includes the following:

ApplyBest Fit
Save Grid Data
Copy Current Record to Clipboard
Copy All to Clipboard

It is of course necessary to be in an active grid (e.g. Table Editor / Data page, View Editor / Data page, SQL Editor / Results page etc.) for anyof these menu
items to be effective!

Apply Best Fit
The IBExpert menu item Apply Best Fit is new to IBExpert version 2003.11.6.1 and can be started from the Grid menu, or using the keycombination [Ctrl +
(NumBlock +)].

This automatically adjusts all grid columns to the ideal width.

Save Grid Data
The IBExpert menu item Save Grid Data as is new to IBExpert version 2003.11.6.1 and can be started from the Grid menu, or using the keycombination [Shift
+ Ctrl + S].

It opens the Save Grid Data As... dialog:

It is possible to save grid data into TXT, XLS, HTML or XML formats. This works only with dataset grids (field and index grids in the Table Editor, the parameters/
variables grid in the Stored Procedure Editor while working in lazy mode), and doesn't work with SQL Assistant lists, the constraint list in the Table Editor etc.

Copy Current Record to Clipboard/Copy All to Clipboard
The IBExpert menu items Copy Current Record to Clipboard and Copy All to Clipboard are new to IBExpert version2003.11.6.1 Theycan be started from the
Grid menu, and used to copyeither one selected record or all records (including columncaptions) in an active grid to clipboard. The values are delimited with
the tab character.

IBExpert View menu
The IBExpert View menuallows the developer to specify which, of certain options, he wishes to have displayed on screen. This eliminates superfluous or
unnecessary items on screen. The options available canbe seen in the following illustration:

208

The options DB Explorer, status bar and windows bar canbe blended in and out simplyby clicking on the check box (alternatively using the space bar). The
menu item Toolbar is subdivided into the four main standard toolbars: Database toolbar, Tools toolbar, Edit toolbar, and New DB Objects toolbar.

Autohide DB Explorer is a further alternative to quickly blend the DB Explorer in and out as wished (alternatively use the [F11] key). This optionnamely
enables the DB Explorer to disappear automaticallywhen any editor is opened - allowing a larger working area. It is blended back into view simply by holding
the mouse over the left-hand side of the IBExpert main window.

IBExpert Options menu
The IBExpert Options menuenables you to organize your IBExpert working environment as youwish. It includes the following options:

Environment Options
Editor Options
Visual Options
Keyboard Templates
General Templates
Object Editor Options

209

Environment Options
1. Preferences

1. (1) User interface
a. MDI

(Multiple Document Interface)
b. SDI

(Single Document Interface)
2. (2) Interface language
3. (3) Default server version
4. (4) Default character set
5. (5) Default client library
6. (6) Localize form shortcut
7. Check options

2. Confirmations
3. Tools

1. DB Explorer
2. SQL Editor
3. SQL Script Options

4. Font
5. Transactions
6. Grid

1. Colors
2. Display Formats

Date Time Formats
7. Additional Help
8. Additional Tools
9. Disabled Names

10. Associations
11. IBExpert Direct
12. IBExpert Bug Track
13. IBExpert User Database
14. Sounds
15. IBExpert After Start Script

Environment Options
Environment Options can be found in the IBExpert Options menu. It enables the user to organize his IBExpert working environment as he wishes. It is
possible, for example, to set certain defaults for editors and specific menu items, alter colors or the system font, etc.

Preferences
The Preferences window allows the user to specify certain general preferences or defaults.

These include:

(1) User interface

The pull-down list offers the options MDI or SDI (please see below for details). Note that changes to the user interface only take effect after IBExpert has been
restarted.

The user interface is the connection between the machine and the user, i.e. the way the software is presented to the user on-screen. The user interface
enables the user to use the program and manipulate data.

210

Under the IBExpert Options menu item, Environment Options, the user interface can be defined as SDI (Single Document Interface) or MDI(Multiple
Document Interface).

MDI (Multiple Document Interface)

MDIis the abbreviation for Multiple Document Interface. It canbe specified in the IBExpert menu item Options / Environment Options.

This is the recommended interface, as all windows are contained withinone main Window, similar to MS applications. There is one document per window.
For all additional objects or documents, the Windows operating system opens an additional window.

The status bar can be seen at the bottom of the screen.

When changing the interface from SDI to MDIand vice versa, IBExpert needs to be restarted for the alterations to take effect.

SDI (Single Document Interface)

SDI is the abbreviation for Single Document Interface.

211

The windows are spread freely and somewhat haphazardly over the screen, similar to Delphi. The status bar is part of the upper menuand toolbar panel.

Careful: it is possible to accidentally move a window totallyout of view!

Whenaltering the user interface from SDI to MDIand vice versa, IBExpert needs to be restarted for the change to take effect.

(2) Interface language

The default language is English. The pull-down list offers the following alternative languages:

Czech
Dutch
English
French
German
Hungarian
Italian
Japanese
Polish
Portuguese
Romanian
Russian
Spanish

Should younot be able to see the full list of languages in the drop-down list, either delete the ibexpert.lng file or rename the english.lng file, found in the
IBExpert Languages directory, to ibexpert.lng, and place this in the main IBExpert directory.

(3) Default server version

If the same database version is used for all projects, it is advisable to set a default version here. This saves having to enter the database server version every
time a database is registered. The pull-down list offers the following database versions:

Unknown(default)
Firebird 1.0

212

Firebird 1.5
Firebird 2.0
Firebird 2.1
InterBase 5.x
InterBase 6.1
InterBase 6.5
InterBase 7.0
InterBase 7.1
InterBase 7.5
InterBase 2007
Yaffil 1.0

(4) Default character set

The default character set is the character set defined when creating the database, and applicable for all areas of the database unless overriddenby the
domain or field definition. It controls not only the available characters that canbe stored and displayed, but also the collation order. If not specified, the
parameter defaults to NONE, i.e. values are stored exactly as typed.

Please refer to the Create Database chapter for further information.

The following character sets are currently available:

ASCII
BIG_5
CYRL
DOS437
DOS850
DOS852
DOS857
DOS860
DOS861
DOS863
DOS865
EUCJ_0208
GB_2312
ISO8859_1
ISO8859_2
KSC_5601
NEXT
NONE
OCTETS
SJIS0208
UNICODE_FSS
UTF8
WINI1250
WINI1251
WINI1252
WINI1253
WINI1254

(5) Default client library

The GDS32.DLL is dependent uponthe database server. Firebird has, in addition to this, its own library, FBCLIENT.DLL. The GDS32.DLL is however also included
for compatibility reasons. When working with Firebird, or different InterBase/Firebird server versions, the DLL canbe selected here, as wished; simply click
the Open File icon to the right of this field, to select the library required.

Since IBExpert version 2006.01.29, the Script Executive always uses this default client library unless it is overriden using the SET CLIENTLIB command
directly in the Script Executive editor.

(6) Localize form shortcut

Here youcan specifyyour ownshortcut for opening the Localizing Form, if youdo not wish to use the default [Ctrl + Shift + Alt + L]. The Localizing Form
displays all functions and the respective key combinations, whichcan also be customized. Please refer to Localizing Form for further information.

Check options

The following features can be checked or unchecked as wished:

(7) Don't Show Splash Screen: disables the IBExpert SplashScreen displayed whilst IBExpert is being loaded.
(8) Disable multiple instances of IBExpert: when checked this optionensures that IBExpert is only opened once.
(9) Restore desktop after connect: if this option is checked, IBExpert will restore all those forms left open as the last connection was ended, when it
reconnects to the database.
(10) Maximize first child window: the first Editor/window opened is automatically expanded to fill the maximum screen area. This option is only available in
the MDIversion.
(11) Autohide DB Explorer when inactive: this optionhides the DB Explorer automatically, if it is not focused. In other words, when the mouse is held over
the left area, the DB Explorer appears; when the mouse is removed to begin work in an editor or child window, the DB Explorer is blended out, offering a
larger work area.

213

Confirmations
Some users find it annoying to be constantlyasked for confirmation, whether or not theyreally want to carryout an operation. This window allows the user to
specify, whichconfirmations he considers wise.

The following options are available:

Confirm object (or documentation) saving: if this option is checked, IBExpert will request confirmation before saving object modifications or
descriptions.
Confirm exit from editor (if object is changed): if this option is checked, IBExpert will request confirmation, if alterations have been made, before
exiting from an object editor.
Confirm object dropping (recommended): if this option is checked, IBExpert will request confirmation before dropping anydatabase object.
Confirm exit: if this option is checked, IBExpert will request confirmation before closing IBExpert.
Confirm successful compilation: (recommended) if this option is checked, IBExpert displays a dialog, showing whether compilation was successful
or not.
Confirm commit/rollback transaction: (recommended) this option determines whether a message boxappears, asking for confirmationwhen a
user commits or rolls back active transactions in the SQL Editor, Table Editor, View Editor or Stored Procedure Editor.

Tools

214

The Tools page allows the user to specify the following for all tools if wished:

Autogrant privileges when compiling procedures, triggers and views: this saves the repetitive task of autogranting privileges on the Grants
page of the object editors eachtime a new procedure, trigger or view is created, and prevents the problems which inevitablyarise should the
assignment of rights be forgotten.
Revoke existing privileges: if this option is enabled, an object's (stored procedure, trigger, view) existing privileges will be deleted before granting it
new privileges.
Inplace Objects Editors: this item applies to the so-called editors within editors.

For example, the Table Editor is active and a trigger is selected on the Trigger page: if this option is not checked, an SQL Editor window appears
automatically in the lower part of the Table Editor, displaying the trigger code, but not allowing any changes to be made. When this option is however checked,

215

a simple click on a trigger automaticallyopens the Trigger Editor in this lower area, enabling work to be done on it, without having to leave the Table Editor
and opening the Trigger Editor.

DB Explorer

Here it is possible to specify whether database object descriptions should be displayed or not (this only makes sense if object descriptions are entered by the
user), and whether double-click expanding (for the DB Explorer tree) is desired. Further options include a check-box option to allow filtering of inactive
database nodes and, since IBExpert version 2007.07.18, the tab positionof the Database Explorer pages can be also defined here.

Furthermore, colors may be specified for the following:

system objects
database folders
inactive triggers

SQL Editor

216

The following options maybe user-defined for the SQL Editor:

Fetch All: when this option is checked, all records corresponding to the query will be extracted from the table and displayed on the Results page, as
opposed to only those displayed that are visible in the Results area, when this option is left unchecked.
Go to Results page after executing: this option is only worth checking of course if youhave specified Separate Results page (see below).
Clear editor after successful execution of DDL statement: this clears the results page after the queryhas beencommitted.
Separate Results page: turn this option off to place SQL queryresults directlybelow the Code Editor, or activate it to display queryresults on a
separate page (found directly to the right of the Edit page).

SQL Script Options

The SQL Script Options page offers the following user specifications:

Abort Script on Error: the script execution is halted the moment an error is detected.
Rollback on Abort: the script is automatically rolled back the moment an error is detected in the script. This option is only possible, if the first item,
Abort Script on Error, is already selected.

217

Font
Here it is possible for the user to specify the system (i.e. IBExpert) font name and size. The Sample Text 12345 displays the specified font as it will appear in
IBExpert.

Transactions
Here certain additional data and metadata transaction properties maybe defined for the server connection.

These are all InterBase/Firebird APIterms, and maybe checked as wished.

Data Transaction Properties:

Snapshot
Read Committed

218

Read-OnlyTable Stability
Read-Write Table Stability

Metadata Transaction Properties:

Snapshot
Read Committed
Read-OnlyTable Stability
Read-Write Table Stability

Grid
Here a range of options are available, applicable for all data grids:

Check boxes for the following options:

Stripy Grids: makes reading wide lines of data rows easier.
Scrollbars tracking
Show text blobs as memo: The memo option enables the blob to be easily read by simply focusing the cursor over the blob field.
Immediate editor: Enables immediate editing in the data grid by simplyplacing the cursor on a field, as opposed to having to first double-click on the
field, in order to edit it.
Allow records grouping: When this option is checked, an additional gray bar appears above the columnheaders over the grid. A column header
simply needs to be dragged 'n' dropped into this area, to group by the selected column. A reorganized data view appears, where the group contents
can be revealed or hidden, by clicking on the '+' or '-' buttons. Please note that this is not the same as the data grid right-click menu item Group Fields/
Ungroup Fields.

219

Enable tooltips: when checked, this optiondisplays the full field contents when the cursor is held over a particular field, if the columnwidth is not
sufficient to displayall information. This is useful, if tables with many columns and long field contents need to be scanned.
Enable navigation using [Tab] and [Shift + Tab] keys
Allow multiselect: allows multiple data sets to be selected for editing (e.g. copying). If this is not checked, it is only possible to select one data set at a
time. The change of mode can be recognized by the form/shade of the arrow on the left when pointing at a selected data set.
Full refresh (close and open dataset) when Refresh button clicked

Furthermore it is possible to specify the exact representation of a NULL and NOT NULL fields. The default value is displayed as <null> (in red). NOT NULL fields
canbe displayed as bold text or be highlighted with color.

Colors

Here the user can specify the colors for different elements in the grids:

Grid Background
Current Row
Odd Rows

220

Display Formats

These options allow the user to specify the display format in grids for INTEGER, FLOAT, DATE, TIME and DATE/TIME fields.

Further options include a check boxoption for Use field scale, which allows a field definition to override these standard specifications, and an option to specify
the String fields' width for characters.

The following lists the various date and time formatting options available.

Date Time Formats

The following format allows youto alter the way the date and time is displayed. Please note that this does not alter the way this information is stored, only the
way it is displayed.

Date time format strings specify the formatting of date-time values (such as TDateTime) when they are converted to strings. Date time format strings are
passed to formatting methods and procedures (such as FormatDateTime), and are also used to set certain global variables (such as ShortDateFormat).

Theyare composed from specifiers that represent values to be inserted into the formatted string. Some specifiers (such as d), simply format numbers or
strings. Other specifiers (such as /) refer to local-specific strings from global variables.

In the following table specifiers are given in lower case. Case is ignored in formats, except for the am/pm and a/p specifiers.

Specifier Displays

c Displays the date using the format given by the ShortDateFormat global variable, followed by the time using the format given by the LongTimeFormat global
variable. The time is not displayed if the date-time value indicates midnight precisely.
d Displays the dayas a number without a leading zero (1-31).
dd Displays the dayas a number with a leading zero (01-31).
ddd Displays the dayas an abbreviation (Sun-Sat) using the strings given by the ShortDayNames global variable.
dddd Displays the dayas a full name (Sunday-Saturday) using the strings given by the LongDayNames global variable.
ddddd Displays the date using the format given by the ShortDateFormat global variable.
dddddd Displays the date using the format given by the LongDateFormat global variable.
e Displays the year in the current period/era as a number without a leading zero (Japanese, Korean and Taiwanese locales only).
ee Displays the year in the current period/era as a number with a leading zero (Japanese, Korean and Taiwanese locales only).
g Displays the period/era as an abbreviation (Japanese and Taiwanese locales only).
gg Displays the period/era as a full name. (Japanese and Taiwanese locales only).
m Displays the month as a number without a leading zero (1-12). If the m specifier immediately follows an h or hh specifier, the minute rather than the month is
displayed.
mm Displays the month as a number with a leading zero (01-12). If the mm specifier immediately follows an h or hh specifier, the minute rather than the month
is displayed.
mmm Displays the month as an abbreviation (Jan-Dec) using the strings given by the ShortMonthNames global variable.
mmmm Displays the month as a full name (January-December) using the strings given by the LongMonthNames global variable.
yy Displays the year as a two-digit number (00-99).
yyyy Displays the year as a four-digit number (0000-9999).
h Displays the hour without a leading zero (0-23).
hh Displays the hour with a leading zero (00-23).
n Displays the minute without a leading zero (0-59).
nn Displays the minute with a leading zero (00-59).
s Displays the second without a leading zero (0-59).
ss Displays the second with a leading zero (00-59).

221

z Displays the millisecond without a leading zero (0-999).
zzz Displays the millisecond with a leading zero (000-999).
t Displays the time using the format given by the ShortTimeFormat global variable.
tt Displays the time using the format given by the LongTimeFormat global variable.
am/pm Uses the 12-hour clock for the preceding h or hh specifier, and displays am for any hour before noon, and pm for anyhour after noon. The am/pm
specifier can use lower, upper, or mixed case, and the result is displayed accordingly.
a/p Uses the 12-hour clock for the preceding h or hh specifier, and displays a for any hour before noon, and p for anyhour after noon. The a/p specifier can use
lower, upper, or mixed case, and the result is displayed accordingly.
ampm Uses the 12-hour clock for the preceding h or hh specifier, and displays the contents of the TimeAMString global variable for any hour before noon, and
the contents of the TimePMString global variable for any hour after noon.
/ Displays the date separator character given by the DateSeparator global variable.
: Displays the time separator character given by the TimeSeparator global variable.
'xx'/"xx" Characters enclosed in single or double quotes are displayed as-is, and do not affect formatting.

Example

To format the date as month, day, year and the time as am or pm, simplyenter the following in Display Formats:

Simply alter DateTime Fields to: mm/dd/yyyy hh:mm am/pm: and Time Fields to hh:mm:ss am/pm

Additional Help
The Additional Help dialog allows the user to add certain additional help files. This is particularly useful for incorporating the help files of third party
components, installed in the IBExpert PlugIns menu.

222

An additional menu item is automatically inserted in the IBExpert Help menu, for each of these help files.

Additional Tools
The Additional Tools dialog allows the user to add certain additional third party tools. For more details, please refer to the IBExpert PlugIns Menu.

Disabled Names
This page canbe used to define a list of disabled object names.

223

IBExpert refers to this list, when new database objects (and fields) are created, and publishes a warning if the new name corresponds to anyname in this list.

Names that should be avoided because theyare Firebird keywords, such as ORDER and START (Firebird 2.1) do not need to be added to this list, as theyare
automaticallygenerated by IBExpert with the necessary quotation marks ("). If you wish to avoid metadata names in quotationmarks, these words need to be
typed with the quotation marks in the list of disabled names (see illustrationabove).

Associations
This dialog is important, to specify which file types IBExpert should recognize and associate with the InterBase/Firebird database. The check list includes the
following suffixes:

.GDB

.FDB

.IB

.SQL

.GRC

224

IBExpert Direct
The IBExpert Direct dialog allows the user to specify a number of options concerning this IBExpert menu item found in the Help menu. The IBExpert
configuration window can be started either from the IBExpert Options menu item, Environment Options or alternatively directly from the IBExpert Help menu
item IBExpert Direct, using the respective icon:

The options available include the following:

(1) Automatically poll network: this is recommended, as IBExpert Direct is an important information source, informing all users of news concerning
IBExpert, such as new versions, documentation, downloads, plugins, newsgroups, as well as contact addresses and a direct link to the IBExpert home page,
http://ibexpert.net/ibe/.

225

http://ibexpert.net/ibe/

(2) The polling interval in days can be user-specified. Check boxes allow the user to specify whether IBExpert Direct should (3) automatically shownon
refresh, or whether (4) the network should be polled for new items, each time IBExpert is started.

(5) The Last update field is purely a display field, showing the last time the network was polled for new IBExpert Direct news items.

(6) It is also possible to specifya proxy server if necessary, with fields for specificationof the proxy address, port, user name and password.

(7) The last field displays the IBExpert Direct link address for IBExpert to internallydownload the file.

IBExpert Bug Track
This optionallows the user to specifyhis signature before posting bugs in the IBExpert Help menu item, Bug Track System.

The Bug Track signature requires the following information:

Sender Name
Sender email
Signature string

The optionMark message as read after n(sec) applies to all bug messages listed in the Bug Track System.

IBExpert User Database
The complete IBExpert configurationand work is stored here in the IBExpert User Database. The user database should always be used for your mainstorage
for security reasons.

226

The following information is required in order to create a new user database. After checking the AllowUser Database checkbox the following fields need to be
completed:

User Database Connection String: e.g. If you're using local server the connectionstring should be as follows: localhost:c:\mydata\ibexpert.fdb
(for a TCP/IP protocol) or just c:\mydata\ibexpert.fdb (for a local protocol).
User Name (default: SYSDBA).
Password (masterkey).
Client Library File including path and file name.
Check box: Store Project ViewData in User Database

The user database can thenbe created and initialized using the Create and Init User Database button, and then registered using the IBExpert Database
menu item, Register Database.

Sounds
Using the Sounds preference, it is possible to specify a .WAV file to announce the end of a time-consuming query.

227

IBExpert After Start Script
The IBExpert After Start Script feature was implemented in IBExpert version 2006.08.12. A script specified here will be executed after IBExpert is started.

The following example illustrates how to use the After Start Script to find all database registration records with missing database files (if local access is used),
and place them into an individual folder. This only works with the User Database.

 execute ibeblock
 as
 begin
 reg = ibec_reg_Open(__HKEY_CURRENT_USER, 0);
 try
 if (ibec_reg_OpenKey(reg, 'Software\HK Software\IBExpert\CurrentData', FALSE))

 then
 begin
 UDBConnectString = ibec_reg_ReadString(reg, 'UDBConnectString');
 UDBClientLib = ibec_reg_ReadString(reg, 'UDBClientLib');
 UDBUserName = ibec_reg_ReadString(reg, 'UDBUserName');
 UDBPassword = ibec_reg_ReadString(reg, 'UDBPassword');
 end
 finally
 ibec_reg_Close(reg);
 end;

 if ((UDBConnectString is null) or (UDBConnectString = '')) then
 exit;

 UserDBConnectParams = 'DBName="' || UDBConnectString ||
 '"; ClientLib=' || UDBClientLib ||
 '; User=' || UDBUserName ||
 '; Password=' || UDBPassword ||
 '; Names=UNICODE_FSS; SqlDialect=1';

 UserDB = ibec_CreateConnection(__ctInterBase, UserDBConnectParams);
 try
 ibec_UseConnection(UserDB);

 -- Looking for missing database files (for local databases only)
 MissingFiles = null;
 i = 0;

 PropIni = ibec_ini_Open('');
 try
 for select id, props from databases
 where (rec_type = 0) and (props containing 'Protocol=3')
 into :id, :props
 do
 begin
 Props = '[DB]' || ibec_CRLF() || Props;
 ibec_ini_SetStrings(PropIni, Props);
 Props = ibec_ini_GetStrings(PropIni);
 DBFile = ibec_ini_ReadString(PropIni, 'DB', 'DBNames', '');

228

 if ((DBFile <> '') and (not ibec_FileExists(DBFile))) then
 begin
 MissingFiles[i] = ID;
 i = i + 1;
 end;
 end;
 finally
 ibec_ini_Close(PropIni);
 end;

 if (i > 0) then
 begin
 ParentID = null;
 select id from databases
 where (rec_type = 1) and (props containing 'FolderCaption=***MISSING DATABASE FILES***')
 into ParentID;
 if (ParentID is null) then
 begin
 ParentID = gen_id(GEN_DATABASE_ID, 1);
 insert into databases (ID, PARENT_ID, REC_TYPE, DB_ORDER, PROPS)
 values (:ParentID, 0, 1, 0, 'FolderCaption=***MISSING DATABASE FILES***');
 commit;
 end

 for i = 0 to ibec_High(MissingFiles) do
 begin
 id = MissingFiles[i];
 update databases set parent_id = :ParentID where id = :id;
 commit;
 end
 end;

 finally
 ibec_CloseConnection(UserDB);
 end;
 end

See also:
IBEBlock

229

Editor Options
1. General
2. Display
3. Color
4. Code Insight

Editor Options
Editor Options can be found in the IBExpert Options menu. It opens the Editor Properties dialog, whichenables the user to organize and customize IBExpert
editors as he wishes. It is possible, for example, to set certain defaults, or alter the font or colors, customize code completion etc.

General
The first page in the Editor Properties dialog is the General page, whichoffers the following options:

Auto Indent: (default) this automatically indents code when editing SQL script; each new indention identical to the previous. The tab (= tabulator)
length canbe specified using the lower right Tab Stops counter (default = 4 characters).
Insert Mode: (default) inserts text at the cursor without overwriting existing text. When disabled (i.e. when unchecked), the so-called typeover mode is
activated, i.e. the text at the cursor is overwritten. It is possible to use the [Ins] key to switch the insert mode on and off in the code editor, without having
to alter the default.
Smart Tab: this automatically limits the tab stop lengths to the length of the previous line.
Use Syntax Highlight: (default) enables highlighted syntax in the object editor window. To set highlighting options, please refer to Editor Options /
Color.
Highlight Current Line: useful for orientation in long scripts.
Find Text at Cursor: (default)searches automatically for the word, where the cursor happens to be standing when starting the IBExpert Edit / Find
menu item (see also Search - [CTRL + F]). This saves having to mark the word first, or type in the text to be searched for eachtime.
Always Show Hyperlinks: (default) displays hyperlinks in SQL script as green underlined text (unless altered by the user under Editor Options /
Color). It can be opened by double-clicking or single-clicking (user-defined; see Open links with below).
Show Lines Number: useful when working with long scripts. This optiondisplays line numbers in the gutter in the editor window. A gutter is
automatically inserted, even if it has beenunchecked on the Display page (please refer to Editor Options / Display).
Scroll past end of line: (default) when this is not checked, the cursor jumps to the beginning of the next line automatically when it has reached the end
of the text. If this option is checked, the cursor continues to travel to the right, evenafter the end of the text has been reached.

Furthermore it is possible to specify the following:

Open links with: double click (default) or single click.
Tab Stops: defines the tab length (see above).
Undo limit: specifies the maximum number of keystrokes, that can be undone (default = 50).

Display
The Display page allows the user to specify certain visual editor properties.

230

The options available here include:

1. Margin (= right margin) and Gutter (= inner or left margin):
Visible Right Margin and Gutter (check box option to blend margins in or out)
User specification of right marginposition and gutter width (in characters).

Note: checking the "Show Lines number" box on the General page automatically inserts a gutter, even if it is not checked here.
2. Editor Font:

User specifications include font, size and print size (with sample text preview). The advantage here is that it is possible to specify a larger or smaller
display font size thanthe print font size.

Color
The Color page allows the user to specifycolors and text attributes for a range of elements:

%center

The range of elements includes the following:

default
comments
strings,
keywords
numbers
hyperlinks
wrong symbols
identifiers

231

symbols
selected text
current line
double-quoted string (new to IBExpert version2003.11.6.1)
conditional directive (new to IBExpert version 2003.11.6.1)
variable
IBEBlock procedure/function(new to IBExpert version 2005.02.12.1)
Pairing brackets (new to IBExpert version 2005.09.25)

The following properties can be specified for the above elements:

Foreground Color: determines the color of the selected element in the foreground (usually text).
Background Color: determines the color of the selected element in the background (generally used to highlight text).
Text attributes: includes specificationof bold, italic and/or underline.
Use defaults for: allows the default to be rapidly specified for both the foreground and background colors for a selected element.

The text preview panel displays the elements as theyhave been specified, allowing the user to approve or alter his choice, or return to the default settings
using the Use defaults for Foreground/Background check boxes.

Code Insight
The Code Insight page offers a number of options related to the IBExpert automatic code completion:

These include:

Code Completion: here the user can specify, whether code completion should be active or not.
Disable Code Completion in Descriptions: a new feature in IBExpert version 2005.01.12.1, allowing the user to disable code completion while
editing an object description.
Enable SPACE as select: a new feature in IBExpert version 2006.08.12, this option canbe activated to allow the SPACE bar to work as the [ENTER]
key, i.e. it inserts selected items from the Code Insight list into the code.
Code Parameters: this is a very useful option when active. For example when working with procedures, a list of all necessary input parameters
automaticallyappears, and when one or more parameters have already been specified, the next parameter required appears in bold type. Since
IBExpert version 2003.11.6.1 the list of fields to be inserted is now displayed when the VALUES part of an INSERT statement is typed.
Delay (sec):Delay in seconds before the code completion pop-up list appears with a list of one or more possible suggestions (default value is 1
second).
Code Case: user specificationof the words (e.g. object names, field names) inserted automaticallyby code insight: either lower (default), upper, first
upper or name case.
Code Case and SQL Keywords Case: user specificationof the SQL keywords inserted automatically by code insight: either lower (default), upper,
first upper or name case. There is also a check option to disable formatting of local variables when working with stored procedures and triggers.

It is also possible to specify whether keyboard templates (for faster typing of regularly used words or expressions) should be used, and the Custom Code
Insight Items display panel displays those items, specified by the user.

232

233

Visual Options
1. Bars and Pop-up Menus
2. Lists and Trees
3. Edit Controls
4. Page Controls
5. Splitters

Visual Options
Visual Options can be found in the IBExpert Options menu. It opens the Visual Options Editor, which enables users to customize the IBExpert interface. It is
possible, for example, to specify the behavior of pop-up menus, the appearance of border and button styles, and evenof splitters.

Bars and Pop-up Menus
The first tab in the Visual Options Editor is the Bars and Pop-up Menus page, whichoffers the following options:

Bar Style: the options Standard, Enhanced or Flat maybe selected. The visual effects of the selection is immediately visible in the sample toolbar,
displayed at the top of the Visual Options dialog.
Show recent items first: reduces those menu items offered in the pull-down list, to those most recentlyselected by the user.
Show full menus after delay: if one of the most recent menu items is not immediately selected, the full range of menu items is displayed.
Multiline toolbars: allows toolbars to cover more than a single row (whichmay eventually lead to icons running off the right-hand side of the screen, if
too many toolbars are active).

Lists and Trees
The Lists and Trees page offers the following options:

234

Lists and trees may be displayed in a Standard, Flat or Ultraflat format. The visual effects of the selection can immediatelybe seen in the example field grid,
displayed to the right of the pull-down list.

Edit Controls
The third tab in the Visual Options Editor is the Edit Controls page, which offers the following options:

Border Style: options offered include None, Single, Thick, Flat and 3D. The visual effects of the selection is immediately visible in the sample
controls panel in the lower area of the window.
Button Style: the options offered here include Default, 3D, Flat Simple, HotFlat. This changes the style of displaying application buttons. The effect
can be previewed in the sample controls (observe the combo box and check box).
Button Transparence: here the options include None, Inactive, Always and Hide and Inactive. This alters the appearance of transparent buttons.
The effects can be viewed in the sample controls (observe the combo box).
Hot Track: activating this option causes boxes and buttons to be highlighted with a 3D effect, when the mouse is focused over it. The effect only be
previewed on all sample controls, if the Border Style None has been selected. Otherwise this effect can only be observed on the combo box.
Shadow: this optionplaces a shadow effect around boxes. The sample controls preview shows the effect of this.

The sample controls panel displays a preview of how a pull-down list (combo box), edit field, memo panel/window and check box appear, as specified by the
user.

235

Page Controls
The Page Controls page offers the following options:

Backcolor delta: this optionalters the contrast shade of those page tabs currently in the background. The default value is 20; any changes to this
value canbe previewed immediatelyby observing the Visual Options Editor's ownpage tabs.
Multiline page controls: when checked, this options allows page tabs (or page controls) to be placed over more thanone line. This saves the user
the necessityof sliding from left to right, in order to find the page he needs. The effect of this optioncan most easily be viewed in the DB Explorer.
Usually the DB Explorer width is limited, in order to allow sufficient space in the mainworking window. It is therefore often the case that only a small
number of the DB Explorer page tabs are visible, and it is necessary to move from left to right before opening, for example, the Windows page. Using
this option, the page tabs are displayed over two rows, enabling the user to simply click on the page he needs.

Splitters
A splitter is a moveable line, dividing a child window or editor into two panels.

The Splitters page enables the user to specify the appearance of all IBExpert splitters:

236

Available options include the following:

Splitter Style: the options offered here include Standard and Netscape. The Netscape style includes a centered strip (if the splitter width is sufficient,
directional arrows are visible). The user simplyneeds to click on this strip to move the splitter up or down (or left or right if the splitter is vertical), thereby
reducing the size of one panel or window and simultaneously increasing the size of the second panel or window. It is also possible to manuallyadjust
the splitter position using drag 'n' drop. Whenusing the standard style the only way to move the splitter is by using drag 'n' drop.
Resize Style: the options offered here include None, Line, Update and Pattern. The effects of these options can be viewed by dragging and
dropping the sample splitter.
Splitter Width/Height: the effects of any alterations here can be viewed immediatelyon the sample splitter, displayed in the lower half of this page.

237

Keyboard Templates
This can be found under the IBExpert Options menu. It can be used to customize and standardize typing abbreviations for frequently used typical statements,
thus increasing efficiency.

For example scroll down to IFE. The full phrase can be viewed and, if needed, altered as wished in the Expansion panel. The pipe, |, (vertical bar) indicates
the cursor position, when the text is inserted in the SQL Editor.

After confirming any alterations go back to the SQL Editor Edit page, type ife and press the space bar.

It is automatically expanded to the if ... then ... else ... statement as defined in the keyboard template; the cursor is automatically positioned as
specified.

Templates can be added or selected templates edited and deleted as wished. Templates can also be simplydeactivated (instead of deleted), by clicking on
the flagged checkbox to the left of the template name. To reactivate a deactivated template, simplycheck the box again.

Further attributes such as Templates Case can also be specified in this editor. Available options include As Is, Uppercase, Lowercase, Namecase, and
NameCase.

A further feature allows the user to insert author, date and time fields automaticallyand rapidly, with a simple button click. For example, the abbreviation ME,
with the expansion /* #author #date */ (click the Author and Date buttons to insert the fields, add the comment symbols, done!) results in an simple
documentation comment at the beginning of all SQLs listing author and date (i.e. /* SYSDBA 08/07/2003 */) simply by typing ME!

General Templates
General Templates canbe found in the IBExpert Options menu. This canbe used to standardize and automate the naming conventions of new database
objects, and in some cases, to edit SQL code templates for creating some of these objects.

238

Below are a couple of illustrations of such templates.

239

Templates for data logging triggers were added in version 2004.6.17. Please refer to Log Manager for further information.

240

Object Editor Options
1. Domains Editor Options
2. Tables Editor Options
3. Views Editor Options
4. Procedures Editor Options
5. Triggers Editor Options

Object Editor Options
Object Editor Options canbe found in the IBExpert Options menu. It opens an Objects Editors Options dialog, whichenables users to customize certain
database object editors. It is possible, for example, to specifywhich page should be active, when the Table Editor or View Editor is opened, or specify the
standard editor mode in the Procedure Editor or Trigger Editor, and more.

Domains Editor Options
The Domains Editor Options page offers the following two options:

Use old-styled modal editor - when checked, this replaces the current Domain Editor with the old-style editor from earlier versions of IBExpert:

Enable direct modification of system tables - for reasons of security, it is wise not to check this item, unless the SYSDBA, administrator or database owner
really need to make changes to any of the system tables.

Tables Editor Options
The Tables Editor Options page offers the following options:

241

Restore last active page when editor reopened: checking this options results in the last active page remaining the active page, when the editor is
reopened.
Active page: offers a choice of all available pages in the Table Editor, i.e. Fields, Constraints, Indices, Dependencies, Triggers, Data, Description,
DDL, Grants. This optiondoes not function if the Restore last active page when editor reopened option is checked.
Use RDB$DB_KEYinstead of PK for modifying and deleting records: RDB$DB_KEY is an internal system field. Everysingle data set in the
database has one of these system keys (a binary column is inserted by InterBase/Firebird for this purpose into eachtable). It is always unique, and can
- in certain cases be very useful. For example, if a developer has created tables in his database, with no primary key, and a particular table column
contains the name Miller twice, it is only possible, using SQL, to delete either bothdata sets or none. RDB$DB_KEY is a possibility to clearly identify
individual data sets, and prevent multiple data records accidentally being deleted.
Sort records on server: records maybe sorted in the client memory, by simply clicking on a table column header, without running a new SELECT. If the
data is to be sorted on the server, a newSELECT statement is required. This is often necessary with large data quantities as the client memory is
insufficient.
Order data by primary key if exists: a further sorting option for data.

Views Editor Options
The Views Editor Options page offers the following options:

Restore last active page when editor reopened: checking this options results in the last active page remaining the active page, when the editor is
reopened.

Active page: offers a choice of all available pages in the View Editor, i.e. SQL, Fields, Dependencies, riggers, Data, Description, Grants, DDL,
Version History, Recreate Script, Plan Analyzer. This optiondoes not function if the Restore active page when editor reopened option is checked.

Procedures Editor Options
The Procedures Editor Options page offers the following options:

242

Editor Mode: a default editor mode canbe specified here; either Lazy Mode or Standard.
Check Syntax before compiling: here the syntax is first checked locally for anyerrors, before sending the SQL to the server. This is quicker than
sending everything to the server, whichwill then need to stop and returnany eventual errors.

A number of Recompiling Dependencies are also offered:

Recompile dependent procedures and triggers request: this optionprovides a reminder, asking whether procedures depending uponthe
amended procedure, should also be recompiled.
First recompile procedures with empty bodies: this optioncompiles the procedure bodysource code after the procedure has been compiled, in
order to avoid invalid references within the procedures. As soon as one stored procedure has been made dependent on another, procedures are
automatically compiled in this way.
Commit after each statement: allows procedures to be compiled step by step, in order to determine where exactly an error lies.

Triggers Editor Options
The Triggers Editor Options page offers the following options:

Editor Mode: a default editor mode canbe specified here; either Lazy Mode or Standard.
Variables in grid: when working in lazy mode, all variables are displayed in a table.
Check Syntax before compiling: here the syntax is first checked locally for anyerrors, before sending the SQL to the server. This is quicker than
sending everything to the server, whichwill then need to stop and returnany eventual errors.
Notice about triggers with same position: if two triggers are bothspecified the same position, InterBase/Firebird allows this. However InterBase/
Firebird chooses which trigger comes first purely by chance. This is therefore a useful warning, just in case two triggers have accidentally beengiven
the same positionnumber.

IBExpert Tools menu
The IBExpert Tools menuoffers an extensive range of tools to aid database administration, maintenance and manipulation.

243

SQL Editor
1. SQL Editor Menu

1. Bookmark
2. Convert FROM Unicode / Convert TO Unicode
3. Copy Text as RTF
4. Comment Selected/Uncomment Selected
5. Convert Charcase

2. Edit page
1. Inserting text
2. Code Insight
3. Hyperlinks
4. Create view or procedure from SELECT

3. Results
1. Grid View
2. Form View
3. Print Data
4. Messages and Query Columns
5. Filter Panel
6. Export Data
7. Export Data into Script

4. Statements History
5. Plan Analyzer
6. Performance Analysis

1. Graphical Summary
2. Additional

a. (1) Enhanced Info
b. (2) Query Time
c. (3) Memory
d. (4) Operations
e. (5) Copy Analysis to Clipboard

7. Logs
8. Optimizing SQL statements
9. Special features

1. Creating a table from query results
2. Moving data between databases

SQL Editor
The SQL Editor is an IBExpert tool whichsimplifies the input of SQL commands. It is used to create and execute SQL queries and view and analyze the
results.

It is an essential part of IBExpert. As a rule, all work on a database is performed using SQL. The SQL Editor allows you to execute DML and DDL statements,
analyze queryplans and query performance, move data betweendatabases, export queryresults into many formats, create views and stored procedures from
SELECT etc.

The SQL Editor is intended for the execution of single commands. The Script Executive should be used for more complexscripts.

If youare new to Firebird/InterBase SQL, please refer to Firebird Development using IBExpert for a comprehensive introductionto SQL. The SQL Language
Reference and the Firebird 2 SQL Reference Guide provide references to all Firebird/InterBase SQL keywords, syntaxand parameters.

The SQL Editor can be started by selecting the IBExpert Tools menu item, SQL Editor, clicking the respective icon in the Tools toolbar, or using [F12]. This
cleans the active SQL window for new input. An additional SQL Editor canbe opened using Tools / New SQL Editor or [Shift + F12].

Whencreating stored procedures or triggers using the DB Explorer menu item New Procedure or New Trigger, an SQL Editor window is also opened. As
these editors offer certain additional features (such as lazy mode, debugger), please refer to stored procedure or trigger for specific details.

The SQL Editor can be used together with the DB Explorer to quickly insert datbase object names (e.g. table fields canbe marked and moved from the DB
Explorer or the SQL Assistant into the SQL Editor using drag 'n' drop).

More thanseven tables should not be incorporated into an SQL, as this is too time-consuming for InterBase/Firebird to analyze the indices in order to
determine the most efficient solution. The database server therefore simplystarts randomly, which leads to slow and lengthyqueries. Since Firebird 1.5 the
Optimizer has beenconsiderably improved when working with multiple tables.

A stored procedure or view canbe created from the current querydirectly in the SQL Editor, using the respective icons in the SQL Editor toolbar (see Create
viewor procedure from SELECT below). And since IBExpert version 2005.12.04 there is the added possibility to turn queryparameters into the input
parameters of a stored procedure. Ten SQLs can be incorporated into a stored procedure.

The Tools / SQL Editor menu item includes the following:

1. Edit window (and Results)
2. Statements History
3. Plan Analyzer
4. Performance Analysis
5. Logs

The Edit window is the main input window for all SQL transactions. The Historypage lists previous queries. The Plan Analyzer provides information in a tree
structure with statistics. A statistical summarycan also be viewed in the lower panel on the Messages page. The Performance Analysis shows how much
effort was required by InterBase/Firebird to perform this query.

244

For those not yet competent in SQL, the Visual Query Builder is there to make life easier! It is ideal for the beginner, althoughsomewhat limited for more
advanced work; more complex queries would need to be performed in the SQL Editor or perhaps eventhe Script Executive.

To access the Visual Query Builder simplyclick the

icon in the SQL Editor toolbar, or use the keycombination [Ctrl + Alt + B].

To customize the SQL Editor, please refer to the IBExpert Options menu item, Editor Options and Environment Options / SQL Editor.

SQL Editor Menu
In addition to the icons in the SQL Editor toolbar, the SQL Editor has its ownmenu, opened using the right mouse button:

245

The most important menu items are detailed in this section or canbe found in the IBExpert Edit menu.

Bookmark

Bookmarks are useful for flagging sections of long SQL scripts. They are purely an aid for the user and have no influence uponthe SQL script or database
whatsoever.

Bookmarks can be set in the SQL Editor and in the Code Editor in the Stored Procedure and Trigger Editors, using the mouse right-click menu item Toggle
Bookmarks. They canalternatively be specified using the key combination [Ctrl + Shift + 0-9].

The bookmarks themselves can be seen in the left marginof the SQL Edit window. Theycan be numbered as wished. The mouse right-click menu item Go To
Bookmarks canbe used to spring from bookmark to bookmark. Alternatively the key combination [Ctrl + 0-9] can be used.

Bookmarks can be removed by simply unchecking those bookmarks listed in the Toggle Bookmarks menu.

Convert FROM Unicode / Convert TO Unicode

To convert strings from/to unicode use the corresponding items of popup menuof code editor:

246

Copy Text as RTF

In order to copya script, including the text formats (color, bold, indent etc.), select the script or script parts to be copied, right-click and select the menu item
Copy Text as RTF (or [Ctrl + W]).

This feature is ideal, for example, for documentation purposes.

Comment Selected/Uncomment Selected

In certain situations it maybe necessary to disable certain commands or parts thereof. This can be easily done without it being necessary to delete these
commands. Simply select the rows concerned, right-click and select the menu item Comment Selected (or using [Ctrl + Alt + .]). This alters command rows to
comments.

The commented text can be reinstated as SQL text by using the right mouse keymenu item Uncomment Select (or using [Ctrl+ Alt + ,]).

This is particularlyuseful when attempting to discover error sources or performing parts of standard SELECTs.

Convert Charcase

The mouse right-click menu item Convert Charcase offers the following options to alter the appearance of the SQL characters:

1. Convert to lower case [Alt + Down]: allows the selected text to be converted completely to lower case.

2. Convert to upper case [Alt + Up]: allows the selected text to be converted completely to upper case.

3. Convert to name case: allows the selected text to be converted completely to name case, i.e. the initial character of eachword is written in upper
case, the remaining characters in lower case.

247

4. Invert case: switches betweenupper and lower case.

5. Toggle case [Shift + F3]: switches betweenupper, lower and name case.

Edit page
The Edit page appears as the active window when the SQL Editor is opened. It is the main input window for SQL commands. The SQL Editor toolbar and
right mouse button menu(SQL Editor menu) offer a wide range of operations.

IBExpert has a number of features that really make your life easier when writing SQLs. Please refer to Inserting text and Code Insight below.

The lower status bar displays the number of open queries, allowing these to be quickly loaded in the active editing window by clicking on the respective
buttons. Alternatively [Ctrl + N] can be used to load the next statement or a new window can be loaded using [Shift + F12] (IBExpert Tools menu item New SQL
Editor).

The SQL Editor allows you to prepare statements and get a statement planwithout having to execute your SQL by using [Ctrl+F9]. To prepare only a part of a
statement just select the corresponding part of the statement and press [Ctrl+F9] or click the Prepare button on the SQL Editor toolbar. Since IBExpert version
2006.10.14 it is possible to view a list of querycolumns following preparation, on the Query Columns page in the lower panel.

It is so easy to execute and analyze statements (or parts of them) before finally committing. Since IBExpert version2.5.0.61 there is the added possibility to
quickly change the Transaction Isolation Level (TIL) for a separate SQL Editor. There is a corresponding button on the SQL Editor toolbar which allows youto
select one of the following isolation levels: Snapshot, Read Committed, Read-Only Table Stability and Read-Write Table Stability.

248

It is also possible to customize the highlighting of variables. Use the IBExpert menu item Options / Editor Options / Color to select color and font style for
variables.

A Code Insight system is included to simplify command input and database objects are underlined for easyrecognition.

There is also a wide range of keyboard shortcuts available in the SQL Editor, e.g. [Ctrl + Alt + R] produces a list of all triggers which canbe selected using the
mouse or directional keys (insert using the [Tab] key); a marked block of code can be indented with [Ctrl + Shift + I] or moved back using [Ctrl + Shift + U].
Please refer to Localizing Form further keyboard shortcuts. To view the full list call the Localizing Form using [Ctrl + Shift + Alt + L].

Hyperlinks allow you to quickly reference database objects if necessary.

There are a number of options to customize the appearance of the code in the Text Editor. Please refer to SQL Code Editor for details, and to the IBExpert
Options menu item, Editor Options, to view and specify all options available.

Since IBExpert version 2005.02.12.1 there is added support for the INSERTEX command (for importing data from a comma-separated values file).
New to IBExpert version 2005.09.25 is the support for the new Firebird 2 INSERT ... RETURNING statement. IBExpert shows returnable values in the
messages area.
IBExpert version2004.04.01.1 includes added support for the EXECUTE BLOCK statement (Firebird 2). Since IBExpert version 2006.01.29 Firebird 2.0
blocks can also be debugged using the Block Debugger directly in the SQL Editor (or alternatively in the Block Editor). Simply click the Debug icon to
open the Block Editor:

249

For further information regarding this Editor, please refer to Debugger.

Following queryexecution [F9] or [Shift + F9], the returned data is displayed below the Code Editor (default setting), unless the SQL Editor has been
reconfigured to display the queryresults on a separate Results page. (This new feature was introduced in IBExpert version2006.01.29: using the IBExpert
Options menu item Environment Options / Tools / SQL Editor, simply activate the Separate Result page checkbox to display queryand results on separate
pages).

Inserting text

Objects and fields can be simply and quickly dragged and dropped from the DB Explorer and SQL Assistant into the Edit page. When an object node(s) is
dragged from the DB Explorer or SQL Assistant, IBExpert opens a Text to insert dialog.

Since version 2006.08.12 IBExpert offers youthe following choices:

Whendragging a database node from the DB Explorer tree into any code editor:
the CONNECT database statement
the CREATE DATABASE statement
IBEBlock with the ibec_CreateConnection function.

Bydragging a table or view name, all fields are automatically inserted in to the editor. Single or multiple fields can be dragged from a single table, by
selecting with the [Ctrl] or [Shift] key depressed. Here the following statements are offered:

250

Fields/Parameters list
SELECT
SELECT INTO
FOR SELECT
INSERT INTO
UPDATE
DELETE FROM
DECLARE VARIABLE
Name + Type
EXECUTE BLOCK #1

Here youcan also quickly create your table aliases by entering a table alias just once, it is then automatically inserted after the table name and as a prefix for
all relevant fields.

And check the CR+LF (Carriage Return/Linefeed) box if you'd like your code to be aligned.

The Block page is of course for IBEBlocks:

Further information can be found in the IBEBlock EXECUTE IBEBLOCK chapter.

Code Insight

A Code Insight (aka Code Completion) system is included in the IBExpert SQL Code Editors to simplify command input. When the first word characters are
typed in the SQL Text Editor, alternatives for word completion are offered in a pop-up list. Simply click the required word, or select the word using the
directional keys and insert using the [Tab] key.

251

Alternatively the keycombination [Ctrl + space bar] can be used to explicitlyactivate the Code Insight dialog. Database objects are underlined for easy
recognition. If youwish to view a list of parameters/variables, use the key combination [Ctrl + Alt + L]. This solutionhas beenoffered as it would otherwise be
necessary to parse the editor each time before the Code Insight list appears.

To call a list of certain database objects, use the logical keycombinations, for example, when the keycombination [Alt + Ctrl + T] is used, IBExpert offers a list
of all tables beginning with the initial letter(s) already entered.

IBExpert also recognizes table aliases and automatically offers a list of all fields in the alias table, e.g. by defining the JOB table with an alias J. By holding down
the [Ctrl] keyyou canselect multiple fields, e.g. job_code, job_grade and job_country. Bypressing the [Enter] key all fields would be automatically inserted
into the SQL with the alias prefixJ.

Using the IBExpert menu item, Options / Editor Options / Code Insight, this can be individually adapted as wished.

Further abbreviations and definitions canbe specified using the IBExpert menuoption, Options / Keyboard Templates.

Please note that system object information will only be offered by the Code Insight lists if these objects are visible in the Database Explorer. To list these
objects in the DB Explorer, youwill need to check the Showsystem tables and Showobjects' details options found in Database Registration Info / Additional /
DB Explorer.

Hyperlinks

As with all IBExpert editors, the SQL Editor evenoffers hyperlinks. When an object name is written on the Edit page, the respective object editor can be
opened by double-clicking on the hyperlink name.

To switchoff the automatic hyperlink option, or to change its appearance, please refer to Options / Editor Options.

Create view or procedure from SELECT

If youwish to create a view or procedure from a valid SELECT statement in the SQL Editor, simplyuse the relevant iconto the right of the toolbar. It is possible to
create a view or a procedure from an SQL statement without typing all variables and parameters.

252

Since IBExpert version 2005.12.04 there is the added possibility to turn queryparameters into the input parameters of a stored procedure:

When creating a procedure from a select it is necessary to specifywhether to select into returnparameters or local variables.

IBExpert offers some other interesting features (please refer to Special features below).

Results
The Results page is automatically generated as soonas a query is executed. Since IBExpert version 2006.01.29 the Results page is only generated as a
separate page if the default setting Separate Result page is activated in the IBExpert Options menu item Environment Options / Tools / SQL Editor. When
deactivated, the results appear in a window below the query. When using earlier versions of IBExpert, the results are always generated on a separate page in
the SQL Editor.

The Environment Options SQL Editor page can also be used to specify whether all records corresponding to the query should be extracted from the table, or
just those result sets that fit onto the Results page view.

There are three modes of view:

1. Grid View

All data is displayed in a grid (or table form). Byclicking on the column header the result set canbe sorted (in ascending or descending order) according to
that column. New data sets canalso be added, altered and deleted here. And all operations, as with anyoperations performed anywhere in IBExpert, may be
monitored by the SQL Monitor (started from the IBExpert Tools menu), particularly useful, should problems be encountered with SIUD operations.

Further information regarding the Grid Viewcan be found under Table Editor / Data.

There are many options to be found in the IBExpert Options menu item, Environment Options / Grid, whichallow the user to customize this grid view. Additional
options are offered in the IBExpert menu items Register Database or Database Registration Info, for example, Trim Char Fields in Grids.

Results can only be edited in the Grid Viewif they are a live result set. Selected record(s) can be copied to clipboard as UPDATE statement(s). This will only
work on a live query with a primary key. Since version2004.1.22.1 mandatory (NOT NULL) fields are now highlighted while working with live queries. Captions of
NOT NULL fields are displayed in bold.

A new feature introduced in IBExpert version2004.10.30.1 is the OLAP and data warehouse tool, Data Analysis, opened using the Data Analysis icon
(highlighted in red in the above illustration).

253

IBExpert version 2004.8.5.1 added the option to calculate aggregate functions (COUNT, SUM, MIN, MAX, AVG) on NUMERIC and DATETIME columns. Simply click
Showsummary footer button on the navigation toolbar in the grid view to display the summaryfooter:

Thenselect the aggregate function from the pull-down list for each NUMERIC / DATETIME columnas required.

IMPORTANT: these calculations are all done on the client side so do not use this feature on huge data sets with millions of records because IBExpert will
fetchall records from the server to the client in order to calculate aggregates.

Since IBExpert version 2004.8.26.1 it is also possible to displaydata as Unicode. Simply click the relevant icon or use [F3] (see illustrationbelow). It is not
possible to edit the data directly in the grid. To edit data in unicode, use the Form Viewor modal editor connected with string cell. And IBExpert version
2007.07.18 introduced the possiblity to convert text from/to unicode. If no text is selected here, the entire content of the code editor will be converted.

2. Form View

One data set is displayed at a time in a form-type display.

254

The Form Viewwas completely redesigned in 2004. It now also displays field descriptions. It is also possible to select alternative layouts (select Classic or
Compact from the drop-down list), the compact alternative for those who prefer a more compact and faster interface. Visual options now also include
specificationof Memo Height and Memo Word Wrap.

3. Print Data

Displays data in WYSIWYG mode, the data can be either edited and saved to file as a simple report or printed.

Messages and Query Columns

If you have checked the Separate Results page in the Environment Options / SQL Editor youwill see two pages: Messages and Query Columns below the
Results page:

If you have defined your results to appear below the Edit page, youwill find Messages and Query Columns to the left and right of the results:

The Results page also has its own right-click menu, whichcan be used to perform numerous operations upon the resulting data (please refer to Table Editor /
Data for more information).

255

Filter Panel

It is possible to work with filters on your results and also on data on the Table Editor's Data page (Grid and Form view), allowing the addition/deletion of
criteria and filters directly in the data sets resulting from the executed SQL.

The Filter Panel is opened using the ShowFilter Panel icon:

or [Ctrl + Alt + F]. A new two-part window appears. This can be split horizontally or verticallyby clicking on the Vertical Layout icon or using the key
combination [Shift + Ctrl + L].

New filter criteria can be added by placing the cursor on the field, where a filter is to be inserted, and using the +-button or [Ins] key. To delete filters use the -
button or [Ctrl + Del] key combination. Select the comparison operator from the pull-down list adjacent to the list of field names and specify the desired value(s)
.

Whena second field is marked and a new filter for this field is added, the AND columnis automatically filled (default is AND, maybe altered to OR if wished, using
the space bar or mouse click). The two right-hand columns provide check box options, to specifywhether a filter should be active or not (column A), and to
specifywhether case-sensitivity is of importance (CS column). The second panel displays the WHERE clause that has just beenspecified.

Since IBExpert version 2005.02.12.1 the number of filtered records is automatically recalculated when the filter condition is changed.

The filter area can be deactivated by re-clicking the ShowFilter Panel iconor [Ctrl + Alt + F].

256

Export Data

Please refer to Export Data for further information.

Export Data into Script

Please refer to Export Data into Script for further information.

Statements History
The History page can be found in the SQL Editor, and lists previous SQL queries that have been executed and produced a result (not necessarilycommitted),
along with their performance statistics. This saves having to reenter recurring commands, and offers a concise overview of individual SQL performances for
comparison. All statements are only visible when the same database alias is in use.

Below this list, the middle panel displays the script of a selected query.

The filter (directlyabove the statement list) can be used to displayonly those objects containing the character string entered in the filter, e.g. Find all SQLs
containing a SELECT or all SQLs containing DEPARTMENT.

The SQL History lists a record of the last 100 statements. This default quantityof 100 stored statements can be altered by using the IBExpert menu item
Database or the DB Explorer right mouse button menu: Database Registration Info / Additional / SQL Editor, where the SQL Editor History Count can be
specified as wished.

257

The SQL History list can be streamlined, as and when required, by deleting individual list entries, using the right mouse button.

This menualso allows single statements (or all) to be copied to clipboard.

Plan Analyzer
The SQL Editor Plan Analyzer (also a part of the Procedure Editor and Trigger Editor) shows how Firebird/InterBase approaches a query, e.g. with SORTS,
JOINS etc., which tables and indices are used. This information is displayed in a tree structure: firstly what and which data quantities, and secondly what is
carried out with this data and how.

The plan is an InterBase/Firebird description, showing how the Optimizer uses tables and indices to obtain the result set. If the word SORT is displayed, you
should check whether improvements upon the queryor the indices are possible.

258

The Plan Analyzer provides information in the center panel in a tree structure with statistics, and a summary of the planand performance is listed in the lower
panel.

For further information regarding the use and effects of indices in queries, please refer to Index statistics.

Performance Analysis
The Performance Analysis is part of the SQL Editor, Visual Query Builder and Stored Procedure Editor. It displays information showing how much effort was
required by InterBase/Firebird to carry out an executed query or procedure. The analysis is performed after a SELECT statement is opened or a stored
procedure started.

It is possible to deactivate the Performance Analysis, by checking the Disable Performance Analysis option, found under Database / Register Database or
Database Registration Info / Additional. This may be desirable when working remotely with a slow modem connection.

It is however often interesting to know what exactly a procedure or query does and how; and all this canbe viewed in the Performance Analysis. The main
advantage here of course, is the possibility to compare the performance of different queries and procedures.

Graphical Summary

The Graphical Summary provides an overview, brokendown by the tables involved, of the number of operations performed by the query/procedure, including
reads (indexed and non-indexed), updates, deletes and inserts. It shows whether indices have been used indicating the efficiency of the database's indices.
The figures displayed refer to the number of data sets.

The x-axis lists the names of the tables consulted by the query/procedure, with the number of operations displayed graphically. Click the performance type you
wish to view, and it will be added to the graph. Click the button again, to remove it.

259

SELECT statements will only have a Reads result, but some stored procedures will also have results for Updates, Deletes and/or Inserts.

The operation types are as follows:

1. Non-indexed reads: A non-indexed reads indicates that the data was read without the aid of an index. In most situations this canbe both time- and
memory-consuming. Non-indexed reads always include a large number of data sets, as the server needs to search through the whole table(s) to find
the relevant information. All data pages from these table(s) need to be loaded into the cache.

The SQL Editor's queryplan shows which tables were read without an index using the term NATURAL.

2. Indexed reads: An indexed read indicates that the data was selected by the InterBase/Firebird server using one or more indices (named in the query
plandisplayed on the Messages page in the lower panel).

This results in many cases in a significantly lower number of data sets being consulted thanwith a non-indexed read, saving both time and memory.

For further information regarding the use of indices, please refer to index. For details of improvements in Firebird 2.0, refer to the Enhancements to
indexing chapter in the Firebird 2.0.4 Release Notes.

3. Updates: This displays the number and type of updating operations in an executed query/procedure. The figures displayed refer to the number of data
sets, brokendown by table.

4. Deletes: This displays the number and type of deleting operations in an executed query/procedure.

5. Inserts: This displays the number and type of inserting operations in an executed query/procedure.

6. Total number of records: This displays the total number of records consulted.

In the SQL Editor the lower panel displays the queryplan, along with a summary of the performance information included on the Additional page. For further
information regarding the queryplan, please refer to the Plan Analyzer.

Additional

This displays a statistical report. The Enhanced Info displays a statistical summaryof the information shownin the Graphical Summary. Certain additional
information, such as query time, memory and operations, is also included in this section.

260

The analysis displayed on the Additional page can also be documented using the Copy Analysis to Clipboard button.

(1) Enhanced Info

The Enhanced Info displays a statistical summaryof the information shownin the Graphical summary.

The names of tables consulted during execution of the query/procedure are listed in the first column, with the number of data sets listed according to the
following criteria:

IR = Indexed Read
NIR = Non-Indexed Read
UPD = Updates
DEL = Deletes
INS = Inserts

(2) Query Time

Query time shows the time needed to prepare for the execution of the query/procedure, along with the execution time and average fetch time.

Prepare: This measures the preparation time required by InterBase/Firebird to planand prepare the query/procedure execution, i.e. from the moment when
the source text is sent to the server and is compiled on the server in binary form (it decides which indices, tables etc. need to be used to perform the query/
procedure).

When a query/procedure is executed a second time, the query time is usually 0 ms, as it has already been prepared.

Execute: This measures the direct execution time of the command.

Avg fetch time: This shows the average fetch time pro data set. This figure is calculated based only on those data sets that can be seen in the returns and
does not include those that are not yet visible. Anoptimal analysis can be attained when the query/procedure is executed using [Shift + F9] = Execute and
Fetch all.

(3) Memory

This shows the memory development during and following execution of the procedure/query.

Current: This displays the current memory used by the server.

Max.: This displays the maximum memory used by the server during execution of the query/procedure.

Buffers: This displays the number of data pages that are being held as cache on the server (from InterBase 6 onwards the standard is 2,048). This can be
found in the corresponding configuration file: since Firebird 1.5 it is called firebird.conf; in older Firebird versions or InterBase, it is called ibconfig, found
in the main InterBase directory.

This canbe altered for the current database if wished, using the IBExpert Services menu item, Database Properties / Buffers. The total KB is calculated
according to the current database page size. For an alteration to become effective, it is necessary for all users to disconnect from the database and then
reconnect. Buffers are only reserved if they are really necessary for pages loaded from the database file.

(4) Operations

Operations displays the number of data pages that were read from the database file to the memory, written and fetched, while executing the query/procedure.

Reads: This displays the number of pages read for the executed query/procedure. This is necessary when data sets have to be loaded, that are not already in
the memory.

Writes: This displays the number of pages written while executing the query/procedure. If the total cache buffers are too small to load subsequent pages, it
may be necessary for the server to save altered pages to the hard drive, in order to make room for further pages to be loaded. If these values are veryhigh, it
may be wise to increase the buffers, providing of course that physical memory is sufficient.

Fetches: When a query/procedure is started, the command (or series of commands) is sent to the database server. To obtain results, numerous data sets/
pages need to be referred to (= fetch), in order to perform the operation. Fetches are, in other words, internal operations performed by InterBase/Firebird in
order to successfully execute a query/procedure. This indicates, for example, if deleted data sets in a SELECT are recognized as deleted, theywill still appear
here in the number of fetches, as the server also searches through those data sets that have beenmarked as deleted. This can however offer an advantage
over the number of indexed and non-indexed reads, as these only display operations on undeleted data sets. If the query is executed again, the result is
quicker if the garbage collection is running simultaneously.

Using the Performance Analysis, the number of fetches in data pages could possibly indicate why one query is quicker thananother with an equal number of
data sets and the same index plan.

(5) Copy Analysis to Clipboard

The Copy Analysis to Clipboard button copies all information included in the Additional page, including both the grid contents (= Enhanced Info) and the
statistics listed in the left-hand panel (= query time, memory and operations).

The Copy Analysis to Clipboard button canbe found in the bottom left corner of the dialog in the Performance Analysis. Should this not be visible, it is
probably because the windows in IBExpert are set to Cascading. This can be easily solved by clicking the SQL/Procedure Editor dialog window to full-size
(right-hand blue icon in the dialog title bar).

261

Logs
The Log page can be found in the SQL Editor and displays a list of qualified error messages etc. It shows what Firebird/InterBase did and when it did it in
eachrespective SQL window.

Since IBExpert version 2006.14.10 it is also possible to log EXECUTE BLOCK statements.

Optimizing SQL statements
How does Firebird/InterBase process a query? SQLs are sent to the server, where the Optimizer first analyzes them: which tables are involved and which
indices are the best to use etc., preparing them for execution. The server needs to select a strategy for creating a result set. The parser selects all tables
involved and possible indices, usually selecting the index with the best selectivity, i.e. the one resulting in the smallest result set. Further information regarding
index selectivity can be found in the Index statistics chapter.

The index statistics are compared in order to choose the most selective index for eachWHERE, JOIN or ORDER BY condition.

In Firebird/InterBase it is possible to use more than one index, which isn't possible in some other databases. Compound indices should however only be used
when really necessary. An ORDER BY is no reasonfor using an index, because an ORDER BY always has something to do with output formats. UsuallyWHERE
conditions are used to limit the result set. WHERE and JOIN conditions should certainly be supported by an index. If you specifyan ORDER BY over several fields,
the index needs to be composed in exactly the same sequence as the ORDER BY. ORDER BY cannot accept compound indices composed of single indices.

The index plan is made during the preparation, and it is at this stage that the Optimizer selects in whichsequence it will use the indices chosen. If the server
cannot find a suitable index, it compiles a temporary sort quantity.

Take into consideration that when the LIKE command is used together with a wildcard (because you're searching a string that occurs somewhere in the field
and not necessarilyat the beginning), the Optimizer cannot use an index.

All table data needed is read from the cache. If the pages required are not already in the cache, theyneed to be transferred from the hard disk to the memory.
This is the most time-consuming part of the operation for the Firbird server. If this process appears to be somewhat slow, check the parameters in
firebird.conf. Please refer to Temporary files and Memory configuration in the Firebird Administration using IBExpert documentation.

After preparing your query, Firebird displays the queryplan- which canbe viewed in the SQL Editor's index plan, visible in the Plan Analyzer. If a lot of non-
indexed reads (the red ones) appear in the Performance Analysis, it is often helpful to create some indices, reopenthe query and check if it has been of help.

Following preparation, if no changes are to be made, the query canbe executed.

Whenall data has been extracted and sorted accordingly the result set is sent back to the client sending the query. If only the first n records are to be fetched,
the server only reads the required number of data pages. For certain commands such as DISTINCT and GROUP BY, the server must read all relevant data
pages. So if DISTINCT or GROUP BY are not really necessary, don't use them!

Check the Performance Analysis and use it to compare different versions of the same SQL. Analyze the reads, writes and fetches! Reads and writes are
typically0 when InterBase/Firebird can operate in the cache. Fetches are the internal operations in InterBase/Firebird, so when one query is slower thanthe
other, it may not be visible directly in the graphical view, for example when InterBase/Firebird creates external temporary sort files.

Use the Plan Analyzer to analyze how the Optimizer uses tables and indices to obtain the result set. If the word SORT is displayed, you should check whether
improvements to the queryor the indices are possible.

Althoughthe Optimizer does a verygood job, especiallysince Firebird 2.0, the programmer can oftenoffer the Optimizer hints to help improve performance;
depending on the task in hand, a small change in the SQL statement canoften improve the speed immensely. For example, consider using the +0 field
parameter to deactivate indices with a low selectivity, perhaps derived tables can reduce the number of reads or fetches. Other factors affecting the
performance of queries, such as hardware, OS and memory configuration, index selectivity, etc. canbe referred to in Firebird administration using IBExpert.

262

Special features
The IBExpert SQL Editor has two special features that allow youto:

Create a table from query results and populate it with data.
Move data between two registered databases.

Creating a table from query results

As everyone knows it is possible to insert data into anytable by executing the INSERT statement:

 INSERT INTO TARGET_TABLE
 SELECT FIELD_1, FIELD_2 FROM SOURCE_TABLE
 WHERE SOMETHING_FIELD <> 5

However this will only work if the table TARGET_TABLE already exists in the database. IBExpert enables execution of this kind of statement even if the TARGET_
TABLE does not exist in the database. First IBExpert notifies the user that TARGET_TABLE doesn't exist in the database and offers to create this table using query
structure. If confirmed, IBExpert creates the TARGET_TABLE and then populates it with data from the SELECT.

A small example illustrates how this works, based on a SOURCE_TABLE with the following structure:

 CREATE TABLE SOURCE_TABLE (
 ID INTEGER,
 SOME_TEXT VARCHAR(50),
 SOME_PRICE NUMERIC(15,4),
 SOME_DATE DATE);

When the following statement is executed:

 INSERT INTO TARGET_TABLE
 SELECT * FROM SOURCE_TABLE

and there is no TARGET_TABLE in the database, IBExpert will create TARGET_TABLE as:

 CREATE TABLE TARGET_TABLE (
 ID INTEGER,
 SOME_TEXT VARCHAR(50),
 SOME_PRICE NUMERIC(15,4),
 SOME_DATE DATE);

and after that inserts into this table records retrieved with the SELECT part.

Of course, it is possible to write different INSERT statements. For example:

 INSERT INTO [TARGET_DATABASE].TARGET_TABLE
 SELECT ID, SOME_DATE FROM TEST_TABLE

In this case IBExpert will create table TARGET_TABLE as

 CREATE TABLE TARGET_TABLE (
 ID INTEGER,
 SOME_DATE DATE);

Moving data between databases

IBExpert allows youto move data from one database to another by executing a special statement in the SQL Editor.

Syntax

 INSERT INTO <database_alias>.<table_name>
 [(<columns_list>)]
 <select_statement>

Argument Description

database_
alias

Alias of a registered database. This must be enclosed in square brackets.
This argument is case-insensitive so aliases My alias and MY ALIAS are
equivalent.

table_name Name of the table to be populated with data.

columns_list List of columns in target table. This argument is not obligatory.
select_
statement Any SELECT statement.

Examples

The following statement moves data from SOURCE_TABLE of the current database into TARGET_TABLE of the database with the alias My test DB:

 INSERT INTO [My test DB].TARGET_TABLE
 SELECT * FROM SOURCE_TABLE

263

If the table TARGET_TABLE doesn't exist in the target database, IBExpert will create it after your confirmation with the structure of the SOURCE_TABLE.

See also:
SQL Language Reference
Firebird 2 Language Reference Guide
Database Technology Articles
SQL basics

New SQL Editor
Anadditional SQL Editor can be opened using Tools / New SQL Editor, the respective icon in the Tools toolbar, or [Shift + F12].

The use of multiple SQL Editor windows does not affect the list of previous SQLs found on the Historypage, as this list is database dependent and not
window dependent.

264

Query Builder
1. (1) Criteria
2. (2) Selection
3. (3) Grouping criteria
4. (4) Sorting

Query Builder
For those not yet competent in SQL, the Visual Query Builder is there to make life easier! It allows you to create and edit queries with multiple tables without
previous knowledge of SQL, as well as prepare and execute queries, and view the results. This feature is unfortunately not included in the Personal Edition.

If you are new to Firebird/InterBase SQL, then please also refer to Firebird Development using IBExpert for a comprehensive introduction to SQL. The SQL
Language Reference and the Firebird 2 SQL Reference Guide provide comprehensive references to all Firebird/InterBase SQL keywords, syntaxand
parameters.

The IBExpert Query Builder is started using the menu item Tools / Query Builder. It can also be started directly from the SQL Editor using [Ctrl + Shift + Alt + B]
or the

icon.

A querycan be built by simplymoving the database objects (e.g. by dragging the desired table) from the right panel over to the left editing area. Objects may
also be dragged and dropped from the DB Explorer and SQL Assistant into the code editor window. Since version 2004.2.26.1 this has been greatly
improved.

When an object node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert will offer various versions of text to be inserted into the code editor. It is
also now possible to customize the highlighting of variables. Use the IBExpert Options menu item, Editor Options / Colors to choose color and font style for
variables.

The required fields canbe selected using the mouse. By clicking on the circle to the left of the table name, all fields are automaticallyhighlighted. Tables can
be linked, e.g. by keyrelationships, joins etc., using the mouse (click on the desired field in the first table and drag it across to the desired field in the second
table). This creates a JOIN.

265

Bydouble-clicking on the lines connecting two tables the optionLink Properties appears, and the developer can specify from which table all of the information
should be fetched (see JOIN for more information about joins).

Alternatively, a small context-sensitive menuappears when right-clicking on a line, offering not only the above mentioned option, but also the option to insert or
delete point or to delete the link.

Check every field which is important for the result set and use [F9] or the respective iconto execute and view the results. For information regarding the
Results page, please refer to SQL Editor / Results.

Conditions can be specified in the lower part of the Query Builder dialog using the options listed under the following tabs:

(1) Criteria

A simple conditionstring contains three fields: an argument, a condition and a second argument - if required for the condition. By clicking on the word ALL of
All of following are met, it is possible to change this condition to ALL, ANY, NONE, or NOT ALL. Byclicking on the ring to the left of All of following are met, it
is possible to add a condition. Using [Shift + Enter] or right-clicking, fields can be selected from the specified tables. Alternativelya value can be manually
entered. Byclicking on the '=' sign a list of available conditions appears.

If youwish to view the SQL statement at any time, simply switch to the Edit page.

(2) Selection

Anaggregate (SUM, MIN, MAX, AVG and COUNT) can be specified for individual fields if wished. For example, if a minimum or maximum order value needs to be
determined; or the number of unpaid invoices. Bydouble-clicking on a field in the builder area, the field source is automatically inserted. An output field name
maybe specified by double-clicking (or using the [Enter] key) on the first input field. The Aggregate pull-down list can be viewed by double-clicking or using
the [Enter] key and downward arrow key, and an optionselected.

266

The Include only unique records checkbox eliminates duplicate records when checked.

(3) Grouping criteria

Again ALL, ANY, NONE, or NOT ALL of the specified conditions can be met. Here combined criteria can be determined, i.e. aggregate and comparative
selection criteria.

(4) Sorting

Here the results can be sorted in ascending or descending order by one or more fields in order of priority. Simply move the field(s) to be used as the sorting
criteria from the list on the left to the right-hand window, by selecting and clicking the Add button or using drag 'n' drop. Use the A.Z -Z.A button to specify
ascending or descending order, and use the Up and Down buttons (when sorting by multiple fields) to specifysorting priority (i.e. which field should be sorted
first).

When the querypreparation is complete, it canbe prepared [Ctrl + F9] and analyzed, and/or executed [F9] before finally committing.

In addition to the main Builder window, there is also an Edit page, displaying the query, resulting from the drag 'n' drop and condition specification in the main
builder window, as SQL text. This is, in effect, the same as the SQL Editor's main Edit window. It can be edited directly, if wished, and all changes are
displayed on the other Query Builder pages.

A Results page appears following queryexecution, displaying the returned data resulting from the query. A Filter panel canalso be blended into the dialog to
aid data navigation and allow further filtering. For more information, please refer to the SQL Editor's Edit page and Filter Panel.

The Plan Analyzer is displayed following queryexecution and shows how Firebird/InterBase approaches a query, e.g. with SORTS, JOINS etc, which tables and
indices are used. The information is shownin the lower panel in a tree structure with statistics.

The Performance Analysis displays information showing much effort was required by InterBase/Firebird to carryout an executed queryor procedure. For
more information please refer to the SQL Editor's Performance Analysis.

Visual Query Builder is ideal for the beginner, althoughsomewhat limited for more advanced work; complex queries should be performed in the SQL Editor.

See also:
Create View or Procedure from Select
SQL Language Reference
Stored Procedure
Toolbar Query Builder
Toolbar SQL Editor
Toolbar Tools
SQLBasics

267

Data Analysis / OLAP
1. Cube Structure
2. Cube
3. Data Analysis Cube Manager
4. Data Analysis Calculated Measures Manager

DataAnalysis / OLAP
The IBExpert Tools menu item, Data Analysis, is new to IBExpert version 2004.10.30.1.

It is an ideal OLAP and data warehouse component, for analyzing data in the database quickly and easily. This sophisticated module canbe used to build
cubes, manage dimensions and measures, the technologybeing based on the building of multidimensional data sets - so-called OLAP cubes. It includes a
powerful filtering system, enabling not only dimensions but also measures to be filtered. This feature is unfortunately not included in the Personal Edition.

The PivotCubeForm can be opened using the IBExpert Tools menu, or started directly from the SQL Editor / Results page, the Table Editor / Data page or the
View Editor / Data page, using the Data Analysis icon:

We will illustrate the functionalities and options available in the Pivot Cube, using the following simple SELECT command, executed in the SQL Editor:

 SELECT * FROM SALES;

Byclicking the Data Analysis iconon the SQL Editor / Results page, the PivotCubeForm is opened:

The PivotCubeForm has its owntoolbar (please refer to Data Analysis toolbar for further information), and contains two pages: Cube Structure and Cube.

Cube Structure
The first page has three mainareas:

1. All Fields: This automatically displays all data set fields displayed on the SQL Editor's Results page.
2. Dimensions: what is to be analyzed and displayed. The field order is at this stage irrelevant.
3. Measures: which values are to be analyzed and displayed. IBExpert Data Analysis permits use of anydata types as measures; the only restriction

being that non-numeric data types can only use the ctCount aggregate type.

As with all IBExpert grids, columns can be sorted in ascending and descending order by simplyclicking on the columnheaders.

Fields can be selected from the All Fields panel and dragged 'n' dropped into the Dimensions panel. For example, CUST_NO, SALES_REP and SHIP_DATE, the
shipping date also being grouped by month. The Alias names and Display Names can be manually altered as wished, and the Forecast Method and Wrap
To periods can be selected from the pull-down lists. (Simply click on the field where a selection is to be made, and click the black downward arrow on the right
of the field to openthe list of available options.) Multiple field selection/deselection is possible since IBExpert version 2006.12.11.

268

The TOTAL_VALUE field can be dragged 'n' dropped from the All Fields panel into the Measures area. Again select Calculation Type from the options offered
in the pull-down list; the numeric Format can be manually altered if desired:

And then the cube can be generated using the Build Cube icon or [F9] (see illustration above) and displayed on the Cube Page:

Cube
The second page in the PivotCubeForm displays the cube itself in the third of four areas, so-called toolbars:

1. Dimensions
2. Columns
3. Main displayarea

269

4. Measures - the order of the items here determines how the data is displayed in the pivot grid.

These areas canall be opened or closed, by clicking on the small square buttons in the upper left-hand corner of eacharea (see rectangular marked symbols
in the illustrationbelow). The arrow buttons can be used to adjust the size of the expanded areas, and display/hide the filter, which allows values to be searched
and viewed for individual data sets.

The toggle toolbars on/off icon (see circled iconbelow) can be used to remove these areas completely leaving just the mainblue displayarea, or blending
them in again.

It is now possible to generate a summary, for example, which customer or whichsales representative has generated whichsales revenue. Or even which
representative (column) has generated which revenue in whichmonth:

The data canbe displayed graphicallywith a simple mouse click. Simply click on the desired graphics iconto the left of the Measures (here: Representative
or Shipping Date (mth)):

The Graphics window has its ownmini toolbar, with the following options:

270

allowing the graph type to be altered, the legend and notes to be blended in or out, and enabling the graph to be printed. There are numerous options to add
functional values and formulae. Please refer to Cube Manager and Calculated Measures Manager for further information.

The data and analyses generated can be saved as *.CUB files, or exported to Excel (OLE), HTML or metafile. Simply click the small black arrow directly to the
right of the Export icon, and select from the list:

Theycan evenbe quickly and easily printed - simplyclick the Print icon (or [Ctrl + P]), to go to the Print Preview, where the page layout and appearance may
be modified before finallyprinting.

In fact, IBExpert's Data Analysis offers innumerable possibilities to define reports quickly and easily, or to simplycollate the data material.

Data Analysis Cube Manager
The Cube Manager canbe opened using the PivotCubeForm icon, or by clicking the Sum button in the bottom left hand corner of the Measures toolbar on the
Cube page. This can be used to include certain alternative additional values. For example, alter the view to percentage column values:

271

Click the Apply icon to view the results:

Depending on what you wish to see, it is possible to specify an ascending or descending order by simplyclicking on the columnheaders.

Data Analysis Calculated Measures Manager
It is possible to integrate certain functionvalues by clicking on the Function button in the bottom left hand corner of the Measures toolbar on the Cube page, to
openthe Calculated Measures Manager.

272

You can add new measures and edit or delete existing measures.

A new measure name can be added by clicking the Add NewMeasure button and inserting a name. A template automaticallyappears in the Calculation
Formula input area. This canbe completed manually, the Available Measures (bottom left-hand list) and Available Views (bottom right-hand list) can be
inserted simply by double-clicking on the measure name, or clicking the [upward arrow +] button to the right of the Available Measures or Available Views
headings.

When youare satisfied with your specifications, simplyclick the

button. You will now see both the original evaluation and the new calculated measure name displayed in the status bar. Byclicking the black arrow to the right
of these names, the Cube Manager is automatically opened, displaying the specifications made for the selected measure.

Simply re-click the Function button to reopenthe Calculated Measures Manager, to make additional alterations, insertions or deletions as required.

273

Script Executive
1. Executing multiple scripts from a single script
2. Create multiple CSV files from a script
3. Script Language Extensions

1. Conditional Directives
a. $IFEXISTS
b. $IFIBEVERSION
c. $IFNOTEXISTS ($IFNEXISTS)
d. $ELSE
e. $ENDIF
f. Conditional Directives

- the complete example
2. DESCRIBE DOMAIN
3. DESCRIBE EXCEPTION
4. DESCRIBE FIELD
5. DESCRIBE FUNCTION
6. DESCRIBE PARAMETER
7. DESCRIBE PROCEDURE
8. DESCRIBE TABLE
9. DESCRIBE TRIGGER

10. DESCRIBE VIEW
11. INSERTEX (CSV file import)
12. OUTPUT
13. RECONNECT
14. REINSERT
15. SET BLOBFILE
16. SET CLIENTLIB
17. SET PARAMFILE
18. SET TRPARAMS
19. SHELL

Script Executive
The Script Executive can be used to view, edit and execute SQL scripts. It can be started from the IBExpert Tools menu, using the respective icon in the
[IBExpert ToolbarsTools toolbar or using [Ctrl + F12]. It is used for SQLs covering several rows. The Script Executive can both read and execute scripts.

AlthoughInterBase/Firebird can also process such procedure definitions in the SQL Editor, it is recommended to use the Script Executive for more complex
work, as it can do much more than the SQL Editor. There is a wealthof script language extensions including conditional directives, and it canalso be used for
executing multiple scripts from a single script.

The mainadvantage of the Script Executive is that it displays all DDL and DML scripts of a connected database. And since IBExpert version2006.01.29 the
Script Executive always uses the default client library specified in the IBExpert Options menu item Environment Options / Preferences under Default Client
Library, unless it is overriddenusing the SET CLIENTLIB command.

The Script Explorer (the left-hand panel) displays all database objects used in the current script in a tree structure. It evenallows you to find a script part rapidly
by clicking on the object in the tree. The Script Explorer can be blended in and out using the respective icon on the Script Executive toolbar. SQL scripts can
be loaded from and saved to file if wished. Since IBExpert version 2007.09.25 the Script Explorer also displays IBEBlocks and Firebird blocks.

Objects maybe dragged and dropped from the DB Explorer and SQL Assistant into the code editor window. And since version2004.2.26.1 this has been
greatly improved. When an object node(s) is dragged from the DB Explorer or SQL Assistant, IBExpert will offer various versions of text to be inserted into the
code editor. It is also now possible to customize the highlighting of variables. Use the IBExpert Options menu item, Editor Options / Colors to choose color and
font style for variables.

Complete scripts can be transferred from the SQL Editor or extracted directly from the Extract Metadata Editor into the Script Executive using the relevant
menu items (please refer directly to these subjects for further details).

274

In IBExpert version2007.12.01 the optionwas introduced to displayDML statements in the Script Explorer tree. Simply right-click to open the context-
sensitive menuand check/uncheck as wished.

The Script Type may be selected from the Script Executive toolbar pull-down list (options include InterBase/Firebird or MySQL).

The Script page includes other features, such as code completion (please refer to Code Insight for details) - familiar from the SQL Editor. The SQL Editor
menucan be called by right-clicking in the script area. Following statement execution, the Script page displays any errors highlighted in red. Using the

icon, the script canbe executed step by step.

Any errors appearing in the lower Messages box maybe saved to file if wished, using the right-click menu item Save Messages Log ...

The Statements page displays a list of individual statements in grid form:

275

These statements maybe removed from the script simplyby unchecking the left-hand boxes. One, several or all statements may be checked or unchecked
using the right-click menu. Breakpoints can be specified or removed simply by clicking (or using the space bar) to the left of the selected statement in the BP
column.

IBExpert version 2004.04.01.1 includes added support for the EXECUTE BLOCK statement (Firebird 2).

The following features were introduced in IBExpert version 2005.03.12.1:

Executing of INSERT/UPDATE/EXECUTE PROCEDURE statements WITHOUT parameters is up to 10 times faster now. Added support for the following Firebird 2
features:

 CREATE SEQUENCE
 DROP SEQUENCE
 ALTER SEQUENCE

Extended syntaxof OUTPUT command. Please refer to OUTPUT for futher information and examples.

Introduced in IBExpert version2005.09.25:

Added support for COMMENT ON statements (Firebird 2).
Added possibility to delete/comment several script statements at once. Simply select the items to be deleted/commented in the Script Explorer, and
choose the corresponding action in the right-click context menu.

Introduced in IBExpert version2006.10.14 (also in IBEScript):

Added support for BATCH BEGIN/BATCH EXECUTE statements (InterBase 2007). If the server does not support this feature all statements betweenBATCH BEGIN
and BATCH EXECUTE will be executed in the regular way.

276

Executing multiple scripts from a single script
Simply use the following syntax:

 connect 'server:c:\my_db.gdb' ...;

 input 'c:\my_scripts\f2.sql';
 input 'c:\my_scripts\f1.sql';
 input 'c:\my_scripts\f3.sql';

Create multiple CSV files from a script
The following is an example illustrating the creation of multiple csvfiles from a script:

 shell del C:\list.dat nowait; --deleting the old file
 shell del C:*.csv nowait; --deleting the old csv files

 connect 'localhost:C:\employee.fdb' user 'SYSDBA' password 'masterke';
 --connect to employee example database

 output 'C:\list.dat'; --record the following result as a simple text file,

 based on each unique employee, we create a new output ...;select ... ;output; line in the dat file

 SELECT distinct
 'OUTPUT C:\'||EMPLOYEE.last_name||'.csv delimiter ́ ´;´´;'||
 'SELECT distinct EMPLOYEE.last_name, customer.customer,customer.phone_no '||
 'FROM SALES INNER JOIN CUSTOMER ON (SALES.CUST_NO = CUSTOMER.CUST_NO) '||
 'INNER JOIN EMPLOYEE ON (SALES.SALES_REP = EMPLOYEE.EMP_NO) where

 EMPLOYEE.last_name=´´´||EMPLOYEE.last_name||´´´;'||
 'OUTPUT;'
 FROM SALES INNER JOIN CUSTOMER ON (SALES.CUST_NO = CUSTOMER.CUST_NO) INNER JOIN EMPLOYEE ON

 (SALES.SALES_REP = EMPLOYEE.EMP_NO);

277

 output; --close the dat file
 input 'C:\list.dat'; --execute them

The data file is created automatically.

The outer query gets one record for each employee, in the inner select, all phone numbers for the employees’ customers are selected.

Please also refer to IBEBlockExamples Importing data from a CSV file.

Script Language Extensions
Script language extensions are unique to IBExpert, and offer the developer a number of additional language options. These include, among others, conditional
directives, DESCRIBE database objects, as well as SET, SHELL, INSERTEX, OUTPUT and RECONNECT.

Conditional Directives

Conditional directives control conditional execution of parts of the script. Four types of conditional directives are supported:

$IFEXISTS
$IFIBEVERSION
$IFNOTEXISTS ($IFNEXISTS)
$ELSE
$ENDIF

IBExpert version 2005.12.04 introduced added support for the new conditional directive:

 {$IfExists INDEX <index_name>}
 {$IfNotExists INDEX <index_name>}

$IFEXISTS

This tests the existence of the specified database object or data and executes the following block of the script if the object or data do exist in the database.

Syntax

1. {$IFEXISTS DOMAIN|TABLE|VIEW|TRIGGER|PROCEDURE|
 EXCEPTION|GENERATOR|UDF|ROLE object_name}

2. {$IFEXISTS select_statement}

Example

The following script drops the exception InvalidUserID if it exists in the database:

 {$IFEXISTS EXCEPTION "InvalidUserID"}

 DROP EXCEPTION "InvalidUserID";

The next script alters a procedure:

 {$IFEXISTS SELECT RDB$PROCEDURE_NAME
 FROM RDB$PROCEDURES
 WHERE RDB$PROCEDURE_NAME = 'GETDBVER'}

 ALTER PROCEDURE GETDBVER
 RETURNS (
 VER INTEGER)
 AS
 begin
 ver = 2;
 suspend;
 end;

$IFIBEVERSION

The $IfIBEVersion conditional directive was implemented in IBExpert version 2007.07.18. This allows youto check the current version of IBExpert/IBEScript.

Syntax

 {$IfIBEVersion <relational_operator> <version_number>}
 ...
 ... <relational_operator> = < | > | =< | >= | = | <> |

<version_number> - version number string without quote char.

Example

 {$IfIBEVersion < 2007.7.16.0}
 execute ibeblock

278

 as
 begin
 ibec_ShowMessage('Please, update your version of IBExpert/IBEScript!');
 end;
 quit;

$IFNOTEXISTS ($IFNEXISTS)

This tests the existence of the specified database object or data and executes the following block of the script if the object or data does not exist in the
database.

Syntax

1. {$IFNOTEXISTS DOMAIN|TABLE|VIEW|TRIGGER|PROCEDURE|
 EXCEPTION|GENERATOR|UDF|ROLE object_name}

2. {$IFNOTEXISTS select_statement}

Example

The following script creates a table CUSTOMERS if there is no such table in the database:

 {$IFNOTEXISTS TABLE CUSTOMERS}

 CREATE TABLE CUSTOMERS (
 ID INTEGER NOT NULL PRIMARY KEY,
 FIRST_NAME VARCHAR(30),
 MIDDLE_NAME VARCHAR(30),
 LAST_NAME VARCHAR(30));

The next script creates an exception:

 {$IFNOTEXISTS SELECT RDB$EXCEPTION_NAME
 FROM RDB$EXCEPTIONS
 WHERE RDB$EXCEPTION_NAME = 'InvalidUserID'}

 CREATE EXCEPTION "InvalidUserID" 'Invalid User Identifier!';

$ELSE

Switches between executing and ignoring the script part are delimited by the previous or and the next .

Syntax

Example

The following script tests the existence of domain DOM_BOOL in the database. If domain DOM_BOOL cannot be found in the database it will be created. If domain
DOM_BOOL already exists in the database it will be altered.

$ENDIF

Ends the conditional execution initiated by the last or directive.

Syntax

279

Example

The following script creates a generator:

Conditional Directives - the complete example

This example illustrates the use of conditional directives for upgrading databases. Let's assume there is an initial version of your database (version 1):

The next script will upgrade a database of any version< 4 to version4.

280

DESCRIBE DOMAIN

This changes a domain description.

Syntax

 DESCRIBE DOMAIN domain_name 'description';

Argument Description
domain_name Name of an existing domain.

'description' Quoted string containing a domain description.

Description

DESCRIBE DOMAIN changes the description of an existing domain domain_name. When the IBExpert Script Executive executes this statement it modifies the
value of the RDB$DESCRIPTION columnin DB$FIELDS connected with the specified domain name.

Actually the following statement is executed:

 UPDATE RDB$FIELDS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$FIELD_NAME = 'domain_name'

where DESC parameter is filled with the description.

Example

281

 DESCRIBE DOMAIN DOM_BOOL
 'Boolean value:
 0 - FALSE
 1 - TRUE';

DESCRIBE EXCEPTION

This changes an exception's description.

Syntax

 DESCRIBE EXCEPTION exception_name 'description';

Argument Description
exception_name Name of an existing exception.

'description' Quoted string containing a new description of specified exception.

Description

DESCRIBE EXCEPTION changes the description of an existing exception exception_name. When the IBExpert Script Executive executes this statement it
modifies the value of the RDB$DESCRIPTION column in RDB$EXCEPTIONS connected with the specified exception. Actually the following statement is executed:

 UPDATE RDB$EXCEPTIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$EXCEPTION_NAME = 'exception_name'

where the DESC parameter is filled with the description.

Example

 DESCRIBE EXCEPTION MISSING_USER
 'There is no such user!';

DESCRIBE FIELD
 This changes a column description.

Syntax

 DESCRIBE FIELD column_name TABLE table_name 'description';

Argument Description
column_name Name of an existing column of table table_name.

table Name of an existing table.
'description' Quoted string containing a columndescription.

Description

DESCRIBE FIELD changes the description of an existing column column_name of table table_name. When the IBExpert Script Executive executes this statement
it modifies the value of the RDB$DESCRIPTION column in RDB$RELATION_FIELDS connected with the specified columnand table names. Actually the following
statement is executed:

 UPDATE RDB$RELATION_FIELDS
 SET RDB$DESCRIPTION = :DESC
 WHERE (RDB$RELATION_NAME = 'table_name') AND
 (RDB$FIELD_NAME = 'column_name')

where the DESC parameter is filled with the description.

Example

 DESCRIBE FIELD FULL_USER_NAME TABLE USERS
 'Full user name.
 Computed, concatenation of FIRST_NAME, MIDDLE_NAME and LAST_NAME';

DESCRIBE FUNCTION

This changes an UDF description.

Syntax

 DESCRIBE FUNCTION function_name 'description';

282

Argument Description
function_name Name of an existing user-defined function.
'description' Quoted string containing an UDF description.

Description

DESCRIBE FUNCTION changes the description of an existing user-defined functionfunction_name. When the IBExpert Script Executive executes this statement
it modifies the value of the RDB$DESCRIPTION columnin RDB$FUNCTIONS connected with the specified function. Actually the following statement is executed:

 UPDATE RDB$FUNCTIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$FUNCTION_NAME = 'function_name'

where the DESC parameter is filled with the description.

Example

 DESCRIBE FUNCTION COMPARE_BLOBS
 'Compares two blob values and returns 1
 if both values are equal. In other case returns 0';

DESCRIBE PARAMETER

This changes a procedure parameter description.

Syntax

 DESCRIBE PARAMETER parameter_name PROCEDURE procedure_name 'description';

Argument Description
parameter_name Name of an existing parameter of stored procedure.

procedure_name Name of an existing stored procedure.

'description' Quoted string containing a parameter description.

Description

DESCRIBE PARAMETER changes the description of an existing parameter parameter_name of a specified stored procedure procedure_name. When the IBExpert
Script Executive executes this statement it modifies the value of the RDB$DESCRIPTION column in RDB$PROCEDURE_PARAMETERS connected with the specified
parameter and procedure names. Actually the following statement is executed:

 UPDATE RDB$PROCEDURE_PARAMETERS
 SET RDB$DESCRIPTION = :DESC
 WHERE (RDB$PROCEDURE_NAME = 'procedure_name') AND
 (RDB$PARAMETER_NAME = 'parameter_name')

where the DESC parameter is filled with the description.

Example

 DESCRIBE PARAMETER USER_ID PROCEDURE CALC_TRAFFIC
 'User ID';

DESCRIBE PROCEDURE

This changes a stored procedure description.

Syntax

 DESCRIBE PROCEDURE procedure_name 'description';

Argument Description
procedure_name Name of an existing stored procedure.
'description' Quoted string containing a procedure description.

Description

DESCRIBE PROCEDURE changes the description of an existing stored procedure procedure_name. Whenthe IBExpert Script Executive executes this statement it
modifies the value of the RDB$DESCRIPTION columnin RDB$PROCEDURES connected with the specified procedure. Actually the following statement is executed:

 UPDATE RDB$PROCEDURES
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$PROCEDURE_NAME = 'procedure_name'

283

where the DESC parameter is filled with the description.

Example

 DESCRIBE PROCEDURE CALC_TRAFFIC
 'Calculates the summary traffic';

DESCRIBE TABLE

This changes a table description

Syntax

 DESCRIBE TABLE table_name 'description';

Argument Description
table_name Name of an existing table.

'description' Quoted string containing a table description.

Description

DESCRIBE TABLE changes the description of an existing table table_name. When the IBExpert Script Executive executes this statement it modifies the value of
the RDB$DESCRIPTION column in RDB$RELATIONS connected with the specified table. Actually following statement is executed:

 UPDATE RDB$RELATIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$RELATION_NAME = 'table_name'

where the DESC parameter is filled with the description.

Example

 DESCRIBE TABLE CUSTOMERS
 'Customers of our excellent application';

DESCRIBE TRIGGER

This changes a trigger description

Syntax

 DESCRIBE TRIGGER trigger_name 'description';

Argument Description
trigger_name Name of an existing trigger.

'description' Quoted string containing a trigger description.

Description

DESCRIBE TRIGGER changes the description of an existing trigger trigger_name. When the IBExpert Script Executive executes this statement it modifies the
value of the RDB$DESCRIPTION column of RDB$TRIGGERS connected with the specified table. Actually the following statement is executed:

 UPDATE RDB$TRIGGERS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$TRIGGER_NAME = 'trigger_name'

where the DESC parameter is filled with the description.

Example

 DESCRIBE TRIGGER USERS_BI
 'Generates an unique identifier';

DESCRIBE VIEW

This changes a view description

Syntax

 DESCRIBE VIEW view_name 'description';

Argument Description

284

view_name Name of an existing view.
'description' Quoted string containing a view description.

Description

DESCRIBE VIEW changes the description of an existing view view_name. When the IBExpert Script Executive executes this statement it modifies the value of
the RDB$DESCRIPTION columnof RDB$RELATIONS connected with the specified view. Actually the following statement is executed:

 UPDATE RDB$RELATIONS
 SET RDB$DESCRIPTION = :DESC
 WHERE RDB$RELATION_NAME = 'view_name'

where the DESC parameter is filled with the description.

Example

 DESCRIBE VIEW ALL_USERS
 'Just all users...:)';

INSERTEX (CSV file import)

This imports data from a CSV-file into a database table.

Syntax

 INSERTEX INTO table_name [(columns_list)]
 FROM CSV file_name
 [SKIP n]
 [DELIMITER delimiter_char]

Argument Description
table_name Name of a table into which to insert data.

columns_list List of columns into which to insert data.

file_name Name of CSV-file from which to import data.

SKIP n Allows the first n lines of CSV-file to be skipped while importing
data.

DELIMITER delimiter_
char

Allows a delimiter to be specified, which will be used for parsing
data values.

If this argument isn't specified IBExpert will use a colon as a delimiter.

Description

INSERTEX imports data from a CSV-file into a database table. Values within the CSV-file must be separated with a colon CHAR or anyother char. In the latter
case it is necessary to specify a delimiter CHAR using the DELIMITER argument. It is also possible to specify non-print characters as a delimiter. For example, if
values are separated with tab char (ASCII value $09) it may be specified as DELIMITER #9 or DELIMITER $9.

To ignore unwanted quotes use the QUOTECHAR '"' option.

If a table table_name is missing in the database, it will be created automatically. In this case the number of columns in the newlycreated table will be equal to
the number of values in the first line of the CSV-file. Columns will be named F_1, F_2 etc. The data type of each columnis VARCHAR(255).

If the columns_list isn't specified IBExpert will insert data from the very first column. Otherwise data will only be inserted into specified columns. It is possible
to skip the first several lines of the CSV-file using the SKIP argument. This maybe useful if the first line contains column captions or is empty.

Since IBExpert version 2005.02.12.1 it is possible to use the INSERTEX command in the SQL Editor.

Examples

Let's consider the use of INSERTEX in the following examples. Assume there is a CSV-file with the following data, delimited with a colon:

 C:\Mydata.csv
 ===
 ID:FIRST_NAME:LAST_NAME:SEX
 1:John:Doe:M
 2:Bill:Gates:M
 3:Sharon:Stone:F
 4:Stephen:King:M
 ===

The following INSERTEX statement creates a table PEOPLE (if it doesn't already exist) and fills it with data from C:\Mydata.csv:

 INSERTEX INTO PEOPLE FROM CSV 'C:\Mydata.csv' DELIMITER ':';

The structure and contents of PEOPLE after the data import are shown below:

285

F_1 (VARCHAR(255)) F_2 (VARCHAR(255)) F_3 (VARCHAR(255)) F_4 (VARCHAR(255))

ID FIRST_NAME LAST_NAME SEX
1 John Doe M

2 Bill Gates M

3 Sharon Stone F

4 Stephen King M

The following INSERTEX statement is almost identical to the one above, but here the first line of the CSV-file has beenskipped:

 INSERTEX INTO PEOPLE FROM CSV 'C:\Mydata.csv' DELIMITER ':' SKIP 1;

The structure and content of the PEOPLE table after import is shownbelow:

F_1 (VARCHAR(255)) F_2 (VARCHAR(255)) F_3 (VARCHAR(255)) F_4 (VARCHAR(255))
1 John Doe M

2 Bill Gates M

3 Sharon Stone F

4 Stephen King M

In the next example the PEOPLE table is created first, and thensubsequently populated with the data from C:\Mydata.csv:

 CREATE TABLE PEOPLE (
 ID INTEGER NOT NULL,
 FIRST_NAME VARCHAR(30),
 LAST_NAME VARCHAR(30),
 SEX CHAR(1));

 INSERTEX INTO PEOPLE FROM CSV 'C:\Mydata.csv' DELIMITER ':' SKIP 1;

Below the structure and content of the PEOPLE table after import:

ID (INTEGER) FIRST_NAME (VARCHAR(30)) LAST_NAME (VARCHAR(30)) SEX (CHAR(1))
1 John Doe M

2 Bill Gates M

3 Sharon Stone F

4 Stephen King M

In the next example only three columns (ID, FIRST_NAME and LAST_NAME) are affected:

 CREATE TABLE PEOPLE (
 ID INTEGER NOT NULL,
 FIRST_NAME VARCHAR(30),
 LAST_NAME VARCHAR(30),
 SEX CHAR(1));

 INSERTEX INTO PEOPLE (ID, FIRST_NAME, LAST_NAME)
 FROM CSV 'C:\Mydata.csv'
 DELIMITER ':' SKIP 1;

The structure and content of the PEOPLE table after import can be seen below:

ID (INTEGER) FIRST_NAME (VARCHAR(30)) LAST_NAME (VARCHAR(30)) SEX (CHAR(1))
1 John Doe NULL

2 Bill Gates NULL

3 Sharon Stone NULL

4 Stephen King NULL

OUTPUT

This redirects the output of SELECT statements to a named file.

Syntax

 OUTPUT [filename [DELIMITER delim_char]
 [QUOTECHAR 'quote_char']
 [TIMEFORMAT 'time_format']
 [DATEFORMAT 'date_format']
 [DECIMALSEPARATOR 'dec_sep']
 [NULLS]
 [FIELDNAMES]
 [ASINSERT [INTO table]]]

286

Argument Description
filename Name of the file in which to save output.

DELIMITER delim_
char

Determines a delimiter character which is used for separating field values. If the delimiter is not specified, or the
empty string is specified as a delimiter, outswapping of the data will be carried out in the format with the fixed
positions of fields. It is also possible to specifya delimiter character as a decimal or hexadecimal value of the
character code. For example, to set the tab character (ASCII value $09) as a delimiter, simplyspecify DELIMITER #9
or DELIMITER $9.

QUOTECHAR 'quote_
char'

Defines the character whichwill be used for quoting string values. If this argument is not specified or an empty string is
specified, string values will not be quoted.

TIMEFORMAT 'time_
format'

Defines the string which will be used for formatting the values of time fields and the time slice of datetime values. If the
argument is not defined, time values will be unloaded in the native InterBase format (for example, 17:15:45).

DATEFORMAT 'date_
format'

Defines the string which will be used for formatting values of date fields and the date part of datetime values. If the
argument is not defined, date values will be unloaded in the native InterBase format (for example, 17-FEB-2001).

DECIMALSEPARATOR
'dec_sep'

Defines the decimal separator which is used when outswapping the data. If this argument is not defined, the system
decimal separator is used.

NULLS Defines howNULL values will be output. If the argument is not specified, NULLs are output as an empty string.
Otherwise NULLs will be unloaded as the string <null>.

FIELDNAMES If this argument is specified, the first line in the resulting file will be a line with names of SELECT columns.

ASINSERT This argument allows data to be unloaded as a set of INSERT operators, i.e. to get a usual SQL script.

INTO table It is used together with ASINSERT for redefining the name of the table in INSERT operators. If the argument is not given,
the name of the first table in the record set will be used.

AsUpdateOrInsert Produces a script containing UPDATE OR INSERT statement. Added in IBExpert version2008.02.19.

Description

The OUTPUT operator is intended for redirecting the output of SELECT statements in an external file. With the help of the given operator it is possible to export the
data easily into a file with separators or with a fixed column position. OUTPUT without parameters closes the file which was opened with the previous OUTPUT
command, and resets all export customizations to default.

If ASINSERT is not specified, blob fields are ignored when outswapping the data. Using ASINSERT evenblob values are exported, i.e. an additional file with the
extension .lob is created, in whichall blob fields are stored.

While outputting into SQL script (ASINSERT is specified) DELIMITER, QUOTECHAR, NULLS and FIELDNAMES arguments are ignored.

Examples

The following script creates a MyData.txt file in the current directoryand outputs the data of the SELECT into it, with a fixed column position format. If MyData.txt
file already exists in the current directory, the data will be appended to it.

 OUTPUT MyData.txt;
 SELECT * FROM MY_TABLE;
 OUTPUT;

In the next example the data will be exported in the comma-separated values (CSV) format:

 OUTPUT 'C:\MyData\MyData.csv' DELIMITER ';'
 FIELDNAMES
 QUOTECHAR '"'
 DECIMALSEPARATOR '.';
 SELECT * FROM MY_TABLE;
 OUTPUT;

In the following script the data will be exported into SQL script as a set of INSERT operators:

 OUTPUT 'C:\MyScripts\Data.sql' ASINSERT INTO "MyTable";
 SELECT * FROM MY_TABLE;
 OUTPUT;

The next example illustrates usage of the OUTPUT statement together with SHELL.

 /* First create a folder C:\MyData*/
 SHELL MKDIR C:\MyData;

 /* Try to delete mydata.csv */
 SHELL DEL C:\MyData\mydata.csv;

 /* Redirect output of SELECTs into mydata.csv */
 OUTPUT C:\MyData\mydata.csv DELIMITER ';'
 DATEFORMAT 'MMMM-dd-yyyy'
 TIMEFORMAT 'hh:nn:ss.zzz'
 QUOTECHAR '"';

 SELECT * FROM MY_TABLE;

 /* Close C:\MyData/mydata.csv */
 OUTPUT;

 /* Try to open just created CSV-file with Windows Notepad */
 SHELL notepad.exe C:\MyData\mydata.csv NOWAIT;

287

 /* Try to open C:\MyData\mydata.csv with the application
 associated with CSV files */
 SHELL C:\MyData\mydata.csv NOWAIT;

Example using the AsUpdateOrInsert option:

 OUTPUT 'C:\MyScripts\data.sql' ASUPDATEORINSERT;
 SELECT * FROM MYTABLE ORDER BY ID;
 OUTPUT;
 COMMIT;

New in IBExpert version 2.5.0.61:

1. The NOFIELDNAMES option is obsolete now. This means that there will be no columncaptions in the output file by default. If youwish to include column
captions use FIELDNAMES option.

2. Added possibility to customize delimiter char for INSERTEX command (DELIMITER option). If the DELIMITER option is missing a comma will be used as
the delimiter char.

New in IBExpert version 2005.03.12:

Extended syntaxof OUTPUT command:

1.
 output 'E:\data.sql'
 as insert into mytable commit after 1000;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

2.
 output 'E:\data.sql'
 as reinsert into mytable
 commit after 2000;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

3.
 output 'E:\data.sql'
 as execute procedure myproc;
 select * from IBE$$TEST_DATA where F_INTEGER < 3000;
 output;

ASINSERT option is available for compatibility.

RECONNECT

RECONNECT closes the current connection and creates a new one with the same parameters (database, user name, password etc.).

Syntax

 RECONNECT;

REINSERT

IBExpert has introduced the newREINSERT statement. Directly following an INSERT it is possible to perform further INSERTs with new contents.

SET BLOBFILE

IBExpert uses an original mechanism to extract values of blob fields into a script. This allows you to store the entire database (metadata and data) into script
files and execute these scripts with IBExpert. A small example illustrates the method used to extract blob values.

For example, your database has a table named COMMENTS:

 CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

This table has three records:

COMMENT_ID COMMENT_TEXT
1 First comment

2 NULL
3 Another comment

If the Extract BLOBs option is not checked, you will receive the following script:

288

 CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

 INSERT INTO COMMENTS (COMMENT_ID) VALUES (1);
 INSERT INTO COMMENTS (COMMENT_ID) VALUES (2);
 INSERT INTO COMMENTS (COMMENT_ID) VALUES (3);

... and, of course, you will lose your comments if you restore your database from this script.

But if the Extract BLOBs option is checked IBExpert will generate quite a different script:

 SET BLOBFILE 'C:\MY_SCRIPTS\RESULT.LOB';

 CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (1, h0000000_0000000D);
 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (2, NULL);
 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (3, h000000D_0000000F);

Also IBExpert generates a special file with the extension .lob where blob values are stored. In the current example result.lob will be 28 bytes long and its
contents will be the first commentAnother comment.

SET BLOBFILE is a special extension of script language that allows IBExpert's Script Executive to execute scripts containing references to blob field values.

SET CLIENTLIB

This defines the client library to be used while executing a script.

Syntax

 SET CLIENTLIB file_name;

Argument Description
file_name Client library file name.

Description

SET CLIENTLIB defines client library whichwill be used while executing a script. The default client library is gds32.dll.

Example

 SET CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll';

SET PARAMFILE

PARAM file is an ini-file with param values.

For example, if your script contains some parameterized INSERT/UPDATE/DELETE statements youcan define parameter values in an external file (params file):

 param1=12-FEB-2003
 param2=John Doe
 param3=35
 ...

When IBEScript finds a querywith parameters it looks for the values of these parameters in the specified params file.

SET TRPARAMS

The SET TRPARAMS command was implemented in IBExpert version 2007.07.12. It allows youto specify your own parameters of the script transaction instead of
default ones.

Syntax

 SET TRPARAMS '<params>';
 where <params> is a list of transaction parameters separated by commas or
 spaces.
 Example:
 SET TRPARAMS 'isc_tpb_concurrency, isc_tpb_nowait';

Note: If the current transaction is active SET TRPARAMS will commit it and, following that, change the transaction parameters.

289

SHELL

This allows execution of an operating system command.

Syntax

 SHELL os_command [NOWAIT];

Argument Description
os_
command Anoperating system command.

NOWAIT
Optional argument. If specified, execution of a script will be continued right after
creation of the process executing the command of operating system, not waiting
its completion.

Description

The SHELL operator tries to execute the command os_command. If NOWAIT is not specified, the further execution of a script stops before completion of the
process created by SHELL operator. Otherwise script execution will be continued immediately after beginning the execution of the command os_command.

Examples

The following script tries to create a folder MyFolder in the current directory:

 SHELL mkdir MyFolder;

The following example shows the use of the SHELL command to start Notepad.exe and the loading of C:\MyTexts\Shedule.txt file in it. It is necessary to use
NOWAIT here, otherwise it is not possible to execute the script further, and it will be impossible to resume work in IBExpert until the Notepad is closed.

 SHELL "notepad.exe C:\MyTexts\Shedule.txt" NOWAIT;

The next example illustrates the use of the SHELL statement together with OUTPUT.

 /* First create a folder C:\MyData*/
 SHELL MKDIR C:\MyData;

 /* Try to delete mydata.csv */
 />SHELL DEL C:\MyData\mydata.csv;

 /* Redirect output of SELECTs into mydata.csv */
 OUTPUT C:\MyData\mydata.csv DELIMITER ';'
 DATEFORMAT 'MMMM-dd-yyyy'
 TIMEFORMAT 'hh:nn:ss.zzz'
 QUOTECHAR '"';

 SELECT * FROM MY_TABLE;

 /* Close C:\MyData\mydata.csv */
 OUTPUT;

 /* Try to open just created CSV-file with Windows Notepad */
 SHELL notepad.exe C:\MyData\mydata.csv NOWAIT;

 /* Try to open C:\MyData\mydata.csv with the application
 associated with CSV files */
 SHELL C:\MyData\mydata.csv NOWAIT;

See also:
DB Registration Info / Log Files / Script Executive
Extract Metadata
IBEBLOCK (EXECUTE IBEBLOCK)
IBEScript
SQL Monitor
Stored Procedure
Trigger

IBEScript.exe
IBEScript.exe can be used to execute any valid IBExpert script in batch files. For example a scheduled import or export job can be started without the need of
anyuser input.

IBEScript.exe can also be used to encrypt script files, so that they are unreadable for the user, but executable together with IBEScript.exe.

Since IBExpert version 2007.09.25 it is possible to work with scripts larger than2 GB. The newest version of IBEScript.exe was released with IBExpert
version2008.05.03.

?

290

IBEScript.dll
When youwant to integrate IBExpert's scripts in your ownapplication, you canuse IBEScript.dll. A simple example for Delphi can be found in IBExpert's
IBEScriptDll subdirectory. It can also be used from all other programming languages that canhandle DLL calls. The newest version of IBEScript.dll was
released with IBExpert version 2008.05.03.

IBEScript.dll exports following functions:

ExecScriptFile - executes script from file.
ExecScriptText - executes script from string buffer.
Connect - connects to the database if there is no CONNECT statement in the script.

For examples of usage of the ExecScriptFile and ExecScriptText please view the demo application found in the IBExpert/IBEScriptDll/DemoApp
directory.

The following is an example using the Connect function:

 procedure TForm1.Button2Click(Sender: TObject);
 var
 Hndl : THandle;
 ESP : TExecuteScriptProc;
 CP : TConnectDBProc;
 s : string;
 Res : integer;
 begin
 ErrCount := 0;
 StmtCount := 0;
 mLog.Lines.Clear;
 s := mScript.Text;
 if Trim(s) = ´´ then
 begin
 ShowMessage('Nothing to do!');
 Exit;
 end;
 try
 Hndl := LoadLibrary(PChar('IBEScript.dll'));
 if (Hndl > HINSTANCE_ERROR) then
 begin
 ESP := GetProcAddress(Hndl, 'ExecScriptText');
 CP := GetProcAddress(Hndl, 'Connect');
 if (@ESP <> nil) and (@CP <> nil) then
 begin
 Pages.ActivePage := tsOutput;
 Res := CP(PChar('db_name=localhost:c:\empty.fdb; password=masterkey; user_name=SYSDBA;' +
 'lc_ctype=win1251; sql_role_name=ADMIN; sql_dialect=3;' +
 'clientlib="c:\program files\firebird\bin\fbclient.dll"'), @CEH);
 if Res = 0 then
 ESP(PChar(s), @HandleError, @BeforeExec, @AfterExec);
 end;
 end;
 finally
 if Hndl > HINSTANCE_ERROR then
 FreeLibrary(Hndl);
 end;
 end;

291

Copy database object
Copy Database Object was implemented in IBExpert version 2007.05.03. This feature is available as a new menu item in the IBExpert Tools menu and also in
the Database Explorer context-sensitive menu: Copy object

Simply select the database (Master Database) and database object (Object to be copied) youwish to copy, thenspecify the database where this object is to
be copied to (Target Database). The original object name automatically appears in the Newobject name field; this can of course be altered if wished.

Depending uponthe object selected, a number of checkbox Copy options are offered, including options for exactly which contents should be copied, and how
IBExpert should proceed should the object already exist.

Start the copyprocess by clicking the green arrow iconor using [F9]. The Output script appears:

Onthe Blocks page, the default IBEBlock is displayed. You can of course load your ownIBEBlock from file or from the IBExpert User Database. Further
options include Select block, allowing the various database object scripts to be copied.

292

The Copy Database Object feature is based on IBEBlock functionalityand is therefore is fully customizable.

See also:
IBEBlock

293

SQLMonitor
SQL Monitor Options

SQLMonitor
The SQL Monitor can be started in the IBExpert Tools menu, using the respective icon in the Tools toolbar or using the keycombination [Ctrl + M].

The SQL Monitor can be used if a detailed protocol is required. Once opened, it logs everything performed in IBExpert, allowing the user to view all actions as
SQL code.

It provides detailed background information for those wishing to learn and analyze the way IBExpert works. It is also an ideal tool for analyzing certain
problems or error messages that can otherwise not easily be solved.

The SQL Monitor always includes a timestamp, regardless of whether this option is checked in the Database Registration Info / Log Files or not.

The SQL code cannot be edited directly; it can however be copied to clipboard, saved to file or printed, using the right-click SQL Editor menu. Further
operations, such as Incremental Search, are explained under SQL Editor Menu.

Please note that the SQL Monitor is not able to log all SQL calls to the database server; it only logs IBExpert calls.

Please refer to SQL Monitor Options for details of customization.

See also:

SQL Monitor Options
The Monitor Options icon:

allows the user to specifyexactly what should be monitored or not monitored:

294

Connect/Disconnect: whether the database connection should also be protocolled.
Prepare / Execute / Fetch: whichphases of the SQL queries should be monitored.
Transactions: whether each individual transaction should be monitored.
Services: monitoring of the individual commands at API level
API calls: direct InterBase/Firebird calls (ICE files). This optionmay really only be of interest to hardcore C programmers!

See also:

295

Dependencies Viewer
The IBExpert Dependencies Viewer is an ideal tool for ascertaining anydependencies uponan object or an object's dependencyupon other objects -
particularly important before deleting objects!

It can be found in the IBExpert Tools menu.

Database objects can be simplymoved from the DB Explorer into the Viewer using drag 'n' drop.

IBExpert version 2006.12.11 introduced the possibility to run the SP/Trigger/View Analyzer for selected objects, using the dependencies tree context-sensitive
menu item, Database Analyzer.

The Referenced By page displays whichobjects reference the selected object, i.e. the higher-ranking objects (in the above illustrationEMPLOYEE) are
referenced by the subordinate objects (in the above example: DEPARTMENT, PROJECT, EMPLOYEE_PROJECT, SALARY_HISTORY, EMPLOYEE (references itself = direct
recursion), SET_EMP_NO and SALES).

The References page:

shows which objects are used by the selected object. In the above example, this includes, among others, the EMPLOYEE and DEPARTMENT tables.

296

It is possible to specify whether domains should be displayed or not, by simplychecking the Don't ShowDomains box in the toolbar. As it is possible for
domains to reference other domains, and each table field is based either on a user-defined or system domain, this mayslow work with the Dependencies
Viewer if it is not checked.

Further object displaycriteria are offered by the icons in the toolbar (please refer to |Dependencies Viewer toolbar for details).

Direct recursion indicates that an object references itself.
Indirect recursion indicates that an object references itself indirectly via one or more other objects, for example EMPLOYEE references itself indirectly
via DEPARTMENT (eachemployee belongs to a department; each department has a manager, who is an employee).

Double-clicking on anyof the objects in the Viewer opens the respective object dialog.

297

SP/Triggers/Views Analyzer
The Stored Procedure/Trigger/Views Analyzer canbe found in the IBExpert Tools menu. (This feature is unfortunately not included in the Personal Edition.)

It allows the user to view and analyze how the database performs individual operations/statements in a stored procedure, trigger or view. For example, certain
indices perhaps maynot be used by the database server as the statistics are too high; this canbe solved simply by using the IBExpert Database menu item
Recompute selectivity of all indices to update the selectivity. Or when backing up an older InterBase version and restoring to a new InterBase/Firebird version,
the procedures and triggers appear not to work as it is often necessary to first Recompile all stored procedures and triggers (also found in the IBExpert
Database menu).

The database to be analyzed can be selected from the pull-down list of all connected databases (the first toolbar item). Byclicking on the Start Analyzing
icon, it loads all stored procedures and triggers for the active database.

Theyare all automatically analyzed, i.e. each procedure/trigger is split up into its individual statements (the first SQL row is displayed in the Statement column;
the full code is displayed in the lower Statement window). All statements with any sort of problems (no index, compiler warning etc.) are highlighted, and need
looking at more closely.

The indices used for each operation are displayed in the right-hand Expected Plan column; details are displayed in a tree form in the lower Expected Plan
window. Possible compatibility problems are indicated in the Compatibility column with details in the Compatibility of Types window below:

298

The last columndisplays compiler warnings, again with details in the lower window (see illustrationbelow).

The user can specifyexactly what he would like to analyze by deactivating or activating the toolbar icons:

S All SELECT statments are selected, analyzed and displayed.
U All UPDATE statments are selected, analyzed and displayed.
I All INSERT statments are selected, analyzed and displayed.

D All DELETE statments are selected, analyzed and displayed.
P Analysis of plans and indices.

TC Analysis of the compatibility of types of return values and variables for SELECT...INTO and OR
SELECT...INTO statements.

CW Displays all compiler warnings.
PK Checks primary keys.

299

The analysis results can be filtered by the criteria listed in the drop-down Filter by list:

SP/Trigger name
Operation
Table View
Statement
Expected Plan
Compatibility
Compiler warnings

and supplemented by the user-specified filter string to the right, to search for specific objects, operations or problems. This filter can evenbe inverted (check
boxoption on the right).

As with all IBExpert grids the contents canbe sorted by clicking on the desired columnheader (e.g. sort according to Name, Table/View, statement etc.). By
clicking on the left-hand columnheader (the unnamed column to the left of the SP/Trigger column), the red highlighted objects (i.e. those with any sorts of
problem that need looking at more closely) are grouped together.

The Procedure, Trigger, Table or View editors can be quickly started by double-clicking on a selected field, allowing the user for example, to quickly and easily
insert an index.

Columnheaders can also be dragged to the gray area below the toolbar, to group by the column selected:

The above illustrationdisplays all stored procedures and triggers grouped by the procedure or trigger name. By clicking '+' or '-', or double-clicking on the list
name, the individual operations can be easily blended in or out.

It is also possible to group by more than one criteria:

300

The lower window displays the SQL text for a selected operation on the Statement page, in the lower half of the window. The statements can easily be copied
and inserted into a text editor or the IBExpert SQL Editor, using the context-sensitive right-click menu(please refer to SQL Editor Menu for further details).

In case it is of interest, the SP/Triggers/Views Analyzer was realized using the Developer Express component.

See also:
Debug Procedure or Trigger

301

Database Comparer
1. Options page
2. Log page
3. Statements page

Database Comparer
The IBExpert Database Comparer canbe found in the IBExpert Tools menu. Unfortunately it is not included in the Personal Edition.

It allows developers to compare database versions or database SQL scripts. This is particularly useful, for example, before installing an updated client
application, which contains new tables, procedures, exceptions, etc. etc., as it is possible to compare the databases, and - by analyzing the resulting script,
view both the changes to the software, as well as those data changes made by the client, erasing any irrelevant alterations, and applying those whichare
relevant, by executing the script.

Options page
Onthe Options page, first select the Source (Master/Reference) Database or SQL script, by clicking the icons to the right of the path/file input area, to specify
drive, path and database name. This is the reference database, to which the second database is to be compared. Thenselect the Target (Comparative)
Database or script, i.e. the database which needs to be assessed and altered in order to conform with the reference database. Instead of searching for the
pathand directory of the databases youwish to compare, youcan simplydrag 'n' drop both databases from the DB Explorer into the respective fields in the
Database Comparer dialog.

Scripts can also be selected and compared (since IBExpert version 2004.04.01.1). And it is possible to store into or load from an external file (using the
toolbar icons at the top of the dialog), and use this together with IBECompare (IBExpert command-line tool). Since IBExpert version 2006.10.14 when settings
are saved into an INI file, IBExpert also saves the server version.

The Server version (introduced in IBExpert version 2005.12.04) offers a drop-down list to allow specificationof the Firebird or InterBase server versionand
therefore whichsyntax should be used while comparing the two selected databases.

There are a number of options, which can be checked if theyshould be included in the comparison. Since IBExpert version2007.07.18 all the options canbe
selected or deselected simplyand quickly using the right-click context-sensitve menu. These options include:

Objects to compare
Domains
Tables
Views
Procedures

302

Triggers
Generators
Exceptions
UDFs
Roles
Indices

Character sets and collations
Descriptions

Keys and constraints
primary keys
foreignkeys
uniques
checks

Privileges
User privileges
Role privileges
Database object privileges

Miscellaneous
Safe datatype conversion only: introduced in IBExpert version 2006.12.1. If this option is enabled, only safe datatype conversion ALTER
<column> TYPE <new_type> will be performed. Otherwise system tables are updated directly. InterBase 2007 is also supported.
Ignore column positions
Ignore IBE$ objects
Verbose: this displays each step that IBExpert performs and when, allowing a detailed comparison.

Array fields are also supported since IBExpert version 2005.12.04.

After selecting all features to be (or not to be) compared, click the Compare icon to start the comparison:

Log page
The Log page logs the comparison, whichcan be halted and restarted at any time by using the Stop and Compare icons.

303

The results are automatically loaded in the Script Executive. Here it is easyto see which operations need to be performed, in order to make the comparative
database identical to the reference database.

Since IBExpert version 2005.08.02 there is added support for new Firebird 2.0 features such as SELECT ... FROM (SELECT ...), IS DISTINCT FROM etc.

Statements page

It is simple to unselect or select individual statements using point and click. Please refer to Script Executive for further details. Byexecuting all SQL
statements the comparative database becomes identical to the master database.

Please note that certain alterations may cause serious problems with your database, due to restrictions and limitations in Firebird/InterBase. For example,
changing a datatype from CHAR to INT. Also: Firebird seems to have problems with certain dependencies. For example, when dropping a view with dependent
procedures, the Firebird server removes records from RDB$DEPENDENCIES and doesn't recreate them when the view is recreated.

We at IBExpert are aiming to generate comments for all such items that cannot be modified. Please mail us (documentation@ibexpert.com) if you incur
problems which are not yet reported by IBExpert.

Support was introduced for Firebird 2.1 in IBExpert version2007.12.01 .

See also:
Table Data Comparer

304

mailto:documentation@ibexpert.com

Table Data Comparer
1. General
2. Options
3. Log

Table Data Comparer
The Table Data Comparer can be found in the IBExpert Tools menu. It allows youto compare data of two tables in different databases and obtaina script
detailing all discrepancies which includes corresponding INSERT, UPDATE and DELETE statements. This feature is unfortunately not included in the Personal
Edition.

General
The General page displays the default file path and name for the resulting comparison script. This can of course be altered as wished.

The first step is to select the Master or Reference Database from the pull-down list of all registered databases. This is the reference database, to which the
second database and its table(s) are to be compared. Thenselect the Target Database, i.e. the database whose table(s) need to be assessed and altered in
order to conform with the reference database and table(s). The databases and tables must already exist.

Then select the tables to be compared. Tables with the same name in both databases are listed next to each other in the Tables to be compared list. If you
wish to compare tables with different names, click the arrow to the right of the table field and select the desired table from the list of all tables in this database.
Tables with different names must have the same structure. An error is raised if there is no primary key defined for the reference table.

To select all tables use the right-click context-sensitive menu.

305

As you will see in the illustration, system tables are not selected, even when using this funtion.

Selected generators/sequences canalso be synchronized as part of the table comparison.

If youwish you can save your current settings into a file and load previouslysaved settings from file using the toolbar icons.

Options

The Options page allows:

Selectionof INSERT, UPDATE or DELETE records.
Option to include milliseconds into time/timestamp values.
The options Use ALTER SEQUENCE instead of SET GENERATOR and Use UPDATE OR INSERT instead of INSERT/UPDATE are relevant for
Firebird 2.0 and Firebird 2.1 respectively.

To start the table comparison simply click the Compare button (green arrow) or [F9].

Log
The Table Data Comparer resolves dependencies between master and detail tables while creating the script.

The resulting log:

306

displays whether the database connections were successful, records searched, time takenand the number of discrepancies found. The resulting script file
may thenbe loaded into the Script Executive if wished.

See also:
Database Comparer
IBECompare

307

Log Manager
The IBExpert Log Manager canbe found in the IBExpert Tools menu. This tool is new to IBExpert version 2.5.0.47. This feature is unfortunately not included in
the Personal Edition.

Select the database to be logged from the drop-down list of registered databases. When initially opened, the Log Actions page displays check options for
logging INSERT, UPDATE and DELETE actions,

below which the selected table's fields and field types are displayed. The logging options, for example whichINSERT, UPDATE and DELETE actions on which
tables, canbe checked individually or alternatively, the Log Manager pull-down menu canbe used to either Prepare All Tables or to Unprepare All Tables.
Take into consideration however, that when all actions on all tables are to be logged, this could slow the database performance somewhat.

Please note: all tables which are to be logged must be prepared for logging and committed, before anytransactions canbe logged! When new tables are
added to a database, the log needs to be updated (simplyselect the transaction types whichshould be logged by double-clicking on the check boxes and
compile).

Once the actions have been selected, the Log Actions page displays the SQL code:

whichcan be copied to clipboard, if wished, using the right-click SQL Editor Menu.

New in version 2004.6.17 - templates have beenadded for data logging triggers. These canbe altered as wished using the IBExpert IBExpert Options menu
item, General Templates (Data Logging Triggers).

308

The Log Data page displays the new and old values:

In IBExpert version2004.12.12.1 a new feature was added, allowing you to generate a log script for several tables simultaneously. Simply select the required
tables using the [Ctrl + Shift] keys. And since IBExpert version 2005.02.12.1 64-bit IDs are now used when working with SQL Dialect 3 databases.

If a system error message appears when clicking on this page, stating that an IBExpert system table is missing, open any table from the DB Explorer and click
on the Logging page in the Table Editor. You will then be automatically asked, whether IBExpert should generate certain system tables. After confirming and
committing, youshould have no further problems!

On the Log Data page the following can be user-specified: Start Date, End Date (both with timestamp), individual or all users and individual or all actions. The
specified log canalso be logged to file if wished, by clicking on the Log to Script button, whichproduces a new dialog box:

where the Script File Name can be specified, and on the Options page, how often a COMMIT-command should be inserted. Finally the Script Details page
enables the user to write his ownStart of Script and End of Script.

This Log file caneven be used as a sort of replication. This is because, as opposed to the logging specified in the Database Registration, whichonly logs all
IBExpert actions, the Log Manager logs all actions and operations on the database itself, including those of all users.

Back to the Log Manager Editor, the Options page:

309

allows the user to specify the following options:

Immediately compile after Prepare or Unprepare
Autogrant privileges when compiling (generally this should be activated).

The item Allow comparing BLOBS in AFTER UPDATE trigger introduced in IBExpert version 2004.1.22.1, is now obsolete, because all actions with Blob fields
are now customizable using trigger templates.

IBExpert version 2007.12.01 saw the introductionof the logging of trigger bodies based on the IBEBlock feature:

310

Search in metadata
The Search in Metadata optioncan be found in the IBExpert Tools menu, using the respective icon in the Tools toolbar, or started using the key combination
[Shift + Alt + F]. It is identical to the Edit menu's Find option- Find in Metadata page.

This option is useful for finding individual words/digits or word/digit strings in metadata (and since IBExpert version 2004.8.5 also in object descriptions). It
evensearches for and displays field names, as opposed to the DB Explorer Filter, whichonly searches for object names. The Find Metadata dialog offers a
number of options:

Here the user can specify what he is looking for; the pull-down list displays previous search criteria. A single active database may be selected from the
second pull-down list; alternatively the Search in all Active Databases option canbe checked, in the bottom left-hand corner of the dialog.

Further Search options include:

Case sensitive: differentiates betweenupper and lower case
Whole words only: as opposed to whole or parts of words
Regular Expression: recognizes regular expressions in the search string.
Search in: determines whichobject types should be searched - domains, tables, views, stored procedures, triggers, exceptions, UDFs.

After clicking on the Find button, a new Search dialog is opened:

The Search Options button in the toolbar canbe used to restart the Find dialog, in order to specifynew Search conditions. The arrow to the right of this
produces a drop-down overview of the search criteria specified.

The results of the Metadata Search are displayed in the usual IBExpert tree form, sorted by database object type. Byclicking on an object, the object editor is
opened in the Search in Metadata dialog, and can be edited as wished. Alternatively, a double-click on the tree object opens the object editor.

311

312

1. Extract metadata
1. Meta Objects Page
2. Data Tables Page
3. Extract Metadata Options Page

a. General Options
b. Metadata Options
c. Data Options
d. Grants

4. Output Page
2. Metadata
3. Select Objects Tree
4. How does IBExpert extract objects descriptions?
5. How does IBExpert extract blobs?
6. Obtain current generator values
7. Database repair using Extract Metadata

Extract metadata
The Extract Metadata menu item can be found in the IBExpert Tools menu, or started using the respective icon in the Tools toolbar.

The Extract Metadata module can be used to generate a partial or full database metadata script, including table data, privileges and objects descriptions if
wished. It allows the user to extract metadata to file or clipboard. It is even possible to extract blob data and, since IBExpert version2006.12.11, array fields'
data (as blob data into a LOB file).

IBExpert version2004.04.01.1 introduced the possibility to extract table data into separate files (TABLE_1.sql, TABLE_2.sql, TABLE_3.sql etc.). This version
also includes support for default values of input parameters (Firebird 2). This option is particularly useful with extremely large scripts, as problems are often
encountered executing scripts larger than2 GB.

And since version2004.1.22.1, it is also possible to extract date/timestamp/time values with ANSI-prefixes:

 INSERT INTO MY_TABLE (DATE_FIELD, TIME_FIELD, TIMESTAMP_FIELD)
 VALUES (date '01.01.2004', time '12:15:45',timestamp '01.01.2004 12:15:45');

IBExpert version2006.10.14 altered the formatting of TIME values to HH:MM:SS.zzz.

Support for the InterBase 7.5 temporary tables feature was added in IBExpert version 2004.12.12.1, and IBExpert version 2006.06.05 introduced support for
the Firebird 2.0 NULL clause.

IBExpert version2007.02.22 introduced support for secondary database files information; the corresponding ALTER DATABASE statements are included into the
result script as comments.

First a database needs to be selected from the toolbar's pull-down list of all registered databases. The toolbar's Extract to options include:

File
Clipboard
Script Executive (default)
VCS Files (previously, before IBExpert version2004.9.12.1, named Separate Files)
Separate Files (new to IBExpert version 2004.9.12.1)

313

The Separate Files mode extracts metadata (and data if specified) into a set of files: two files with metadata (_ibe$start_.sql and _ibe$finish_.sql), files
containing table data (one or more files for each database table) and a runme.sql file, that consists of a number of INPUT <file_name> statements in the
correct order.

If either the File, VCS Files or Separate Files options are chosen, it is of course necessary to specifya file path and name (*.sql or Metadata Extract
Configuration *.mec).

Meta Objects Page
The first dialog page Meta Objects displays the (please refer to this subject for further information).

Data Tables Page
The Data Tables page canbe used to specify whether data should also be extracted. This allows both user-defined and system tables to be selected - either
all or individually:

againusing the <, >>, > or >> buttons, drag 'n' dropping or double-clicking.

Byselecting one of the tables in the Selected Tables list, it is possible to add a WHERE clause, if wished.

Extract Metadata Options Page
The Extract Metadata Options page offers a wide range of further options:

314

These include:

General Options

Generate 'CREATE DATABASE' statement: this determines whether a CREATE DATABASE statement should be included at the beginning of the
generated script. If this option is unchecked, the CONNECT statement will be included instead.
Generate 'CONNECT' statement: specifies the CONNECT statement.
Include password into 'CONNECT' and 'CREATE DATABASE' statements: this determines whether the password should be included into the
CREATE DATABASE or the CONNECT statement in the resulting SQL script.
A Limit File Size optionwas added in IBExpert version 2004.9.12.1. This defines the maximum file size of the resulting script(s). When this option is
specified and the maximum file size is reached, IBExpert automaticallycreates the next file with suffixes 0001, 0002 etc.

Metadata Options

Set Generators: If this option is checked, the SET GENERATOR statement for each generator will be included into the resulting script.
Include object descriptions: this determines whether database objects descriptions should be included into the generated script. See How does
IBExpert extract objects descriptions? for more details.

Use UPDATE instead of DESCRIBE: New to IBExpert version2005.04.24.1, this optionallows you to check the new Firebird 2 feature
Extract Metadata / Use UPDATE instead of DESCRIBE. If it is enabled, IBExpert will generate an UPDATE RDB$xxx SET RDB$DESCRPTION ...
statement instead of DESCRIBEwhile extracting metadata. You first need to check the option, Use UPDATE instead of DESCRIBE when
extracting object descriptions, found in the IBExpert Database menu item, Register Database or Database Registration Info under Additional /
Extract Metadata. Bydefault it corresponds to the value specified in the Database Registration Info.
Use COMMENT statement (Firebird 2): was introduced in IBExpert version 2005.09.25. This forces object descriptions to be extracted as a
set of COMMENT statements.

Extract COMPUTED BY fields separately: this option canbe used to specify whether computed fields should be extracted separately (useful if there
are bugs in the database; realistically however this option is seldom used).
Always include the CHARACTER SET for domains/fields/parameters.

315

Exclude IBExpert (IBE$*) objects: check option.
Exclude TMP$* objects (InterBase 7.x): check option.
Since version 2004.2.26.1 there is also the added optionDecode domains. If enabled, the domain types will be inserted as comments just after
domain names. For example:

CREATE TABLE Z (
 B BOOL /* INTEGER DEFAULT 0 CHECK (VALUE IN(0,1)) */

);

Use CREATE OR ALTER for procedures and triggers: compliant to Firebird 2.x. Introduced in IBExpert version 2007.09.25.
Do not use SET TERM command: SET TERM is not necessary for scripts executed by IBExpert/IBEScript but may be necessary when working with
other tools. Introduced in IBExpert version 2007.09.25.
Use SEQUENCE instead of GENERATOR: compliant to Firebird 2.x.

Data Options

Date Format: this canbe used to specify the date format and datetime format, with options to use an ANSI prefix for date/time values and to set the
specified format as default.
Remove trailing spaces and control characters from string values
Extract Blobs: IBExpert cannot "read" blobs; it therefore uses a detour to make a reference to a separate database file containing such blobs. Only
IBExpert has been able to do this so far. Other products only extract the definitionof the blobs, and not the contents themselves.
Use REINSERT instead of repeated INSERTs: uses the IBExpert REINSERT command, to insert multiple data records.
Insert 'COMMIT WORK' after number of (records): this optiondefines the number of records before inserting the COMMIT statement into the script.
The default value is 500, i.e. 500 INSERT commands are performed and then committed.

Grants

Extract privileges: for all or only for selected objects.

Finally, if wished, use the toolbar icon Save Configuration to File or the key combination [Ctrl + S] to save this configurationas a template for future use. The
next time round, the template canbe quickly and easily loaded using the Load Configuration icon (or [Ctrl + L]); the template specifications amended if
necessary, and the extract started!

Once all objects have beenselected, and all options specified, the extract canbe started using the green > button or [F9].

Output Page
The Output page displays the IBExpert log during the extraction. Following completion, if a file was specified, IBExpert asks whether the file should be loaded
into the script editor. Since IBExpert version 2007.09.25 it is possible to create scripts larger than 2 GB.

316

If the Script Executive has been specified as the output option, the Script Executive is automatically loaded. The object tree on the left-hand side can be
opened to display the individual statements relating to an object. By clicking on any of these statements, IBExpert springs to that part of SQL code, which is
displayed on the right:

The statements display what IBExpert is doing and in which order. The script displays the creation of all objects, and thenthe subsequent insertion of the
content data, using the ALTER command.

Extract Metadata is a great tool, and canbe useful in a variety of situations. For example, it can be used to perform an incremental backup, should it be
necessary for example, to back up just the EMPLOYEE table every evening.

Any number of configurations maybe saved in various formats:

Metadata extract configuration (*.mec): this allows you to quickly and simply load a specified configuration in the Extract Metadata dialog.
IBEBlock (*.ibeblock): new to IBExpert version 2006.06.05, this enables you to save the current settings as an EXECUTE STATEMENT statement.
IBExpert creates a valid IBEBlock with the ibec_ExtractMetadata function, which maybe used later in scripts.
All files (*.*).

Metadata
Metadata includes the definition of the database and database objects such as domains, generators, tables, constraints, indices, views, triggers, stored
procedures, user-defined functions (UDFs), blob filters. Metadata is stored in system tables, whichare themselves part of every InterBase/Firebird database.

Metadata includes all those SQL statements necessary to recreate the database object. It includes the following elements:

CREATE DATABASE statement
CREATE DOMAIN statements
CREATE TABLE statements
declarative referential integrityusing the ALTER TABLE statement
CREATE GENERATOR statements
CREATE VIEW statements
check constraints using ALTER TABLE statements
CREATE EXCEPTION statements
procedure definitions using CREATE PROCEDURE or [[DDL - Data Definition Language[[#Alter |ALTER PROCEDURE

317

trigger definitions using CREATE TRIGGER statements
granting of user authorizations for tables, views and stored procedures.

Metadata for a table includes all domains and generators used by these tables plus the CREATE TABLE statement. It does not include anyreferential integrity
definitions from this table to other tables or from other tables to this table.

Metadata for a view only includes the CREATE VIEW statement.

The current metadata definitions can be viewed on the DDL page in the individual object editors.

The IBExpert menu item Tools / Extract Metadata can be used to extract all metadata for a database. The resulting script canbe used to create a new empty
database. When the Options Data Tables and Options - Extract Blobs are used, the script contains the complete database with all data.

Select Objects Tree
The Select Objects Tree dialog can be found in the following editors:

Extract Metadata Editor on the first page, Meta Objects,
Generate HTML DocumentationEditor, also on the Objects page,

318

Print Metadata dialog.

The Select Objects Tree feature offers the user the choice whether to extract all database objects (check option), or specify individual objects, (using the < or
> buttons, drag 'n' dropping the object names or double-clicking on them), or object groups (using the << or >> buttons, drag 'n' dropping the object headings
or double-clicking on them).

Multiple objects can be selected using the [Ctrl] or [Shift] keys. There is eventhe option to Add Related Objects by using the button above the Selected
Objects window.

How does IBExpert extract objects descriptions?
IBExpert uses a special extension of script language that enables it to extract objects' descriptions into script and then execute one using the Script Executive.

How does IBExpert extract blobs?
IBExpert uses an original mechanism to extract values of blob fields into a script. This allows youto store an entire database (metadata and data) in script files
and execute these scripts with IBExpert. The following small example illustrates out method to extract blob values.

For example, a database has a table named COMMENTS:

 CREATE TABLE COMMENTS (COMMENT_ID INTEGER NOT NULL PRIMARY KEY, COMMENT_TEXT BLOB SUBTYPE TEXT);

This table has three records:

COMMENT_ID COMMENT_TEXT
1 First comment

2 NULL

3 Another comment

If the Extract BLOBs option is unchecked you will get the following script:

 CREATE TABLE COMMENTS (COMMENT_ID INTEGER NOT NULL PRIMARY KEY, COMMENT_TEXT BLOB SUBTYPE TEXT);

 INSERT INTO COMMENTS (COMMENT_ID) VALUES (1);
 INSERT INTO COMMENTS (COMMENT_ID) VALUES (2);
 INSERT INTO COMMENTS (COMMENT_ID) VALUES (3);

... and, of course, you will lose your comments if you restore your database from this script.

But if the Extract BLOBs option is checked, IBExpert will generate a somewhat different script:

 SET BLOBFILE 'C:\MY_SCRIPTS\RESULT.LOB';

319

 CREATE TABLE COMMENTS (
 COMMENT_ID INTEGER NOT NULL PRIMARY KEY,
 COMMENT_TEXT BLOB SUBTYPE TEXT);

 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (1, h0000000_0000000D);
 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (2, NULL);
 INSERT INTO COMMENTS (COMMENT_ID, COMMENT_TEXT) VALUES (3, h000000D_0000000F);

IBExpert also generates a special file with the extension LOB, where blob values are stored. In the current example result.lobwill be 28 bytes long and its
contents will be First commentAnother comment.

SET BLOBFILE is a special extension of script language that allows the IBExpert Script Executive to execute scripts containing references to blob field values.

Obtain current generator values
There are two methods to obtain the current generator values in a database. The first is using the IBExpert menu item Tools / Extract Metadata, where there is
an option to set generators on the Options page.

In Firebird this can also be done using a stored procedure:

 CREATE PROCEDURE GET_GENERATORS
 RETURNS (
 GENERATOR_NAME CHAR(31),
 CURR_VAL BIGINT)
 AS
 declare variable sql varchar(100);
 BEGIN
 FOR
 select r.rdb$generator_name generator_name, cast(0 as bigint) curr_val from rdb$generators r
 where r.rdb$generator_name not containing '$'
 INTO :GENERATOR_NAME,
 :CURR_VAL
 DO
 BEGIN
 sql='Select gen_id('||GENERATOR_NAME||',0) from rdb$database';
 execute statement :sql into :curr_val;
 SUSPEND;
 END
 END

Database repair using Extract Metadata
The Firebird core package has no dump tool. So it's important to analyze your metadata scripts to trace what started to go wrong, where and when.

If your backups are failing regularlyon the same table(s) due to irreparable data damage, and you've not beenable to solve the problem using GFIX, this is an
alternative way to save at least all remaining healthydata and the database itself.

First attempt to restrict the problem to as few data sets as possible, using the SELECT command on the table ID field.

1. Thenuse the IBExpert Tools menu item, Extract Metadata. Connect to your database and select all tables for metadata and data.

2. Extract into - select separate files from the drop-down list.

3. Extract all objects and data from all tables.

4. If anyerror occurs on specific data, add a WHERE condition for the table concerned. For example, click on the table name in the right-hand column of
Selected Objects and add your WHERE clause to exclude the range of damaged data, e.g. WHERE ID>1000 AND ID<1100.

5. Generate your script.

6. Delete the original database file.

7. If required, add the missing data as far as possible from an older extract file or backup copyof the database.

8. Execute runme.all.bat (don't forget to add the path to IBEScript.exe. This starts IBExpert's IBEScript, runme.all.sql, which loads the files from IBE
$Start, then the data files and finally IBE$Finish.

This will create a new database with all objects and data, even including blob data.

320

IBE$Start funs the operations such as creating the database and metadata. Tables are generated, without anyprimary keys, foreign keys, constraints,
triggers, etc. This is followed by a series of insert commands, using the IBEBlock function, REINSERT. IBE$Finish then inserts all primary keys, foreignkeys etc.

You can, of course carry all this out at script level, using ibec_ExtractMetadata.

This method can of course also be used, if you wish to make an alteration to an existing database, for example, update from SQL dialect 1 to 3, or specify a
character set if no default character set was specified at the time of database creation. For example, to alter the default character set from NONE to ISO8859_1,
simply openIBE$Start, search CHARACTER SET NONE and replace with CHARACTER SET ISO8859_1, and then run the runme.all.sql script, as mentioned
above.

See also:
IBEExtract
IBEScript
ibec_ExtractMetadata

321

Print metadata
Print Metadata prints the database metadata, along with dependencies, description, and other options for anydatabase object or object group, providing a
quick and yet extremely comprehensive database documentation. The information is printed as a report, using IBExpert's report templates. Using the Report
Manager, these reports can also be customized (the Print Metadata standard report templates can be found in the IBExpert\Reports\ directory). This is of
particular importance for those businesses working according to DIN certification/ISO standards.

The Print Metadata menu item can be found in the IBExpert Tools menu, or started using the Printer icon in the Tools toolbar.

The Print Metadata Editor is similar to the Extract Metadata Editor. First select one of the registered databases using the top left toolbar button. Thenselect
the objects to be printed. It is possible to check Print All, or specify individual database objects (using the < or > buttons, drag 'n' dropping the object names or
double-clicking on them), or object groups (using the << or >> buttons, drag 'n' dropping the object headings or double-clicking on them). Multiple objects can
be selected using the [Ctrl] or [Shift] keys.

There is eventhe option to Add Related Objects by using the button above the Selected Objects window.

Whenone of the selected database objects or object groups is highlighted, a number of check options appear in the lower right panel. These include:

fields
constraints
indices
dependent objects
depend on objects
parameters
DDL
description

In order to print a complete database documentation it is of course necessary to select all database objects, and thencheck all options for each object group.
This could however lead to difficulties in the case of very large databases, despite the Report Manager's amazing speed!

322

It is possible to print the report directly from this dialog or preview it first, using the Magnifying Glass icon.

This opens the Fast Report Previewpage, whichdisplays the report as it will be printed, and furthermore offers options such as saving the report to file and
searching for text.

323

Generate HTML documentation
CSS - Cascaded Style Sheets

Generate HTML documentation
Using the IBExpert Tools menu, HTML documentation canbe generated for a named, connected database. This option is an excellent feature for software
documentation, particularly if an object description was always inserted as objects were created. For those working with an older versionof IBExpert: versions
before 2.5.0.47 do not include all of the features detailed here.

The toolbar displays the selected connected database. The pull-down lists offers a choice of all connected databases.

The default output directory canbe overwritten if wished.

The Generate HTML Documentation Editor is similar to the Extract Metadata Editor. The Objects page allows single or groups of database objects to be
selected for the HTML documentation. Database objects can be specified individually using the < or > buttons, drag'n'dropping the object names or double-
clicking on them, or object groups may be specified using the << or >> buttons, drag 'n' dropping the object headings or double-clicking on them. Multiple
objects can be selected using the [Ctrl] or [Shift] keys. Alternatively the Extract All box can be checked, allowing documentation to be generated for the
complete database.

There is eventhe option to Add Related Objects by using the button above the Selected Objects window.

The Options page lists a series of check boxes including:

single file (i.e. whether one complete file, as opposed to several smaller files should be generated)

and whether:

indices

324

foreignkeys
check constraints
database object descriptions
syntaxhighlighted object definitions
hyperlinks in object definitions

should be included.

The CSS or cascaded style sheets page displays the code for the HTML page template.

325

The Output page displays the code used to generate the HTML documentation.

Byclicking on one of the object subjects, such as triggers, a table of all such objects (i.e. all triggers) for this database appear. Clicking on the individual
objects then automatically displays the description (if existent) and the definition.

CSS - Cascaded Style Sheets

326

Cascaded style sheets (CSS) are an option included in the Generate HTML Documentation menu(second page in the main dialog). With knowledge of HTML
these style sheets can be adapted as wished.

327

1. User Manager
1. User rights for the database
2. Users page

Password
3. Roles page
4. Membership page

2. Server security ISC4.GDB / SECURITY.FDB
3. Server security SECURITY2.FDB

1. Classic Server on POSIX
2. Dealing with the new security database
3. Doing the security database upgrade
4. Nullability of RDB$PASSWD
5. Caution with LegacyHash

4. Change user password per batch

User Manager
The User Manager administrates database users and their roles. Here individual users can be allocated database and server access. The User Manager
applies to the database server and not the individual database (please refer to database securityand Server securityISC4.GDB / SECURITY.FDB for further
information).

To start the User Manager select the IBExpert Tools / User Manager menu item, or click the relevant icon in the Tools toolbar. The User Manager Editor
displays all databases (drop-down list) on the current connected InterBase/Firebird server. The server connection maybe altered using the pull-down list.

Select the database and server (local or remote) to administrate.

User rights for the database
All users must be logged in, in order to access the server. What they are actually allowed to do on the server is then determined using the InterBase/Firebird
GRANT and REVOKE commands (see Grant Manager for further details), or the front-end program.

Please note! To create, edit and delete users and roles youshould have the rights of server administrator.

Users page
Onthe Users page, a full list of users registered for the named server connection is displayed. Even if the selected database is not currently connected, the
user list can still be seen. This is because the users are registered directly in the securitydatabase on the server, and cantherefore be granted rights for all
databases on this server. Since version2.5.0.61 there is the additional column AC (Active Users) displayed in the users list. It shows how many active
connections a user has to the specified database. This works only with active databases. And since version 2005.02.12.1 the Refresh button has been added
to refresha list of all users.

You maybe asked for a password, when selecting an unconnected database, in order to ascertainyour authority.

A user can be added by the SYSDBA (not a database owner, as users are created for all databases on the server). Simply click the Add button, and complete
the NewUser form:

328

Support for the InterBase 7.5 embedded user authentication was added in IBExpert version2004.12.12.1.

Again, only the SYSDBA or is allowed to edit or delete users. When editing, only the user name used for logging in may not be changed. It is here that a new
password may be entered, if the user has forgotten his old one; or a change of name be input, for example, if a user marries.

This list contains currently existing users. To add, edit or delete users click buttons at the right of the list. In the Add / Edit User window set the user name and
password and (optionally) his first, middle and last name.

Password

The password is always user-oriented. Passwords are stored encrypted in the server database. When a user enters his password, this is passed onto the
server, which compares the string entered with the string of the encrypted password stored on the server. The password is NEVER passed on from the server
to the client.

If a user forgets his password, the SYSDBA can enter a new one to replace the old one. Alternativelya UDF can be incorporated into the program, to allow the
user to change his password himself, without having to disturb the SYSDBA or reveal the new password to a third person.

An example of such a UDF can be found in the FreeUDFlib.dll, whichcan be downloaded from http://www.ibexpert.com/download/udf/.

Users can be entered and assigned rights directly, although it oftenmakes more sense if the majority of users are assigned user rights using roles. Roles are
used to assign groups of people the same rights. When changes need to be made, only the role needs to be altered and each user individually.

Roles page
The Roles page can be used to create and delete roles exactly in the same way as with the database object roles. All roles and their owners are displayed for
the selected database. Other databases on the same server may be selected to display their full range of existing roles.

This list contains existing roles. To add or delete roles click buttons at the right of the list. When creating or deleting a role the Compile Window appears.
Commit the transaction and if it is successful the new role is created or dropped. After the role has been created, users need to be added to the role. Role
users and rights canbe specified, edited and deleted using IBExpert's Grant Manager.

Roles can only be altered at system table level. They canhowever be deleted and new roles added using the User Manager.

329

http://www.ibexpert.com/download/udf/

Membership page
The Membership page shows whichusers have been granted rights to which roles.

The abbreviations G and AO stand for Granted and With Admin Option. Users can be assigned roles simplyby selecting the user, and checking either the
Grant boxes or the Admin Option boxes. For example, all sales staff could be given the user name SALESwith the role SALES. When logging into the system,
both these names need to be entered. Checking the Admin Option automaticallyentitles the user to pass his rights on to other users.

Server security ISC4.GDB / SECURITY.FDB
WhenInterBase/Firebird is installed on a server, a database of authorized users is also installed. This is vital for server security, to protect the server from
being accessed, manipulated or damaged by unauthorized users.

The database's securitydatabase is called ISC4.GDB; since Firebird 1.5 SECURITY.FDB, the change of suffix being due to Windows XP's eternal copying
problems with .GDB files. The SECURITY.FDBwas renamed SECURITY2.FDB in Firebird 2.0 (Please refer to Server securitySECURITY2.FDB below for details of
mainchanges).

The ISC4.GDB provides a user page detailing rights for the InterBase/Firebird server. Here all users are entered, that are allowed to use the server. The user
password is server-oriented and not database-oriented. It is important to employusers and rights to limit access and control manipulation, and is particularly
advantageous, for example, to trace who has done what and when, as user names are included in the log.

Any user listed in the server securitydatabase's user list canopen a database by providing the appropriate user name and password. If a user name and
password is specified when the database is created, this user becomes the database owner. Only the SYSDBA and database owner are allowed to drop the
database. If no database owner is specified at the time of database creation, thenonly the SYSDBA is authorized to drop the database.

If a user creates a table, InterBase/Firebird appoints that user as the table owner, and only the table owner and the SYSDBA are authorized to drop the table.

The SYSDBA and database owner canGRANT, REVOKE and grant access rights to users in the database; the SYSDBA and table owner can GRANT, REVOKE and
grant access rights for tables. These rules also apply to views and stored procedures.

Simply allowing users into the database is not particularly helpful if they have not been granted access to the objects in this database. Therefore server
security is administrated in IBExpert using the User Manager; user rights can thenbe assigned and controlled using the IBExpert Grant Manager.

Further security features include the following:

1. Views: as theycan be used to hide many table details from users; the users only have access to those columns and rows that theyreally need to see.
2. Referential integrity: protects the data against orphaned rows and other operations, whichcould possibly damage the database integrity.
3. GRANT and REVOKE statements: can be used in the IBExpert Grant Manager to specifywhich users may access which tables and views, and whether

theyare also allowed to manipulate data.
4. An object may not be dropped if it is referenced elsewhere in the database. For example, a table cannot be dropped if it is referenced in a view,

check constraint, trigger, stored procedure or other object.

Server security SECURITY2.FDB
The new securitydatabase is renamed as security2.fdb. Inside, the user authentication table, where user names and passwords are stored, is now called
RDB$USERS. There is no longer a table named "users" but a new view over RDB$USERS that is named "USERS". Through this view, users canchange their
passwords.

For instructions on updating previous securitydatabases, refer to the section Dealing with the new securitydatabase at the end of this section.

The following is a summaryof the major changes, the details of whichcan be found in the Firebird 2.0.4 Release Notes in the Security in Firebird 2 chapter:

Better password encryption
Users canmodify their ownpasswords
Non-server access to security database is rejected
Active protection from brute-force attack

330

Vulnerabilities have beenclosed

Classic Server on POSIX

The main reasonto restrict direct access to the securitydatabase was to protect it from access by old versions of client software. Fortuitously, it also
minimizes the exposure of the embedded Classic on POSIX at the same time, since it is quite unlikely that the combination of an old client and the new server
would be present on the productionbox.

Caution: However, the level of Firebird security is still not satisfactory in one serious respect: an important securityproblem with Firebird still remains
unresolved: the transmissionof poorly encrypted passwords "in clear" across the network. It is not possible to resolve this problem without breaking old
clients.

The immediate problem can be solved easilyby using anyIP-tunneling software (such as ZeBeDee) to move data to and from a Firebird server, for both 1.5
and 2.0. It remains the recommended way to access your remote Firebird server across the Internet.

Dealing with the new security database

If you try to put a pre-Firebird 2 security database, security.fdb or a renamed [[#ServerSecISC4 |isc4.gdb], into Firebird's new home directory and then try to
connect to the server, youwill get the message "Cannot attach to password database". It is not a bug: it is by design. A security database from an earlier
Firebird version cannot be used directly in Firebird 2.0 or higher.

In order to be able to use an old securitydatabase, it is necessary to run the upgrade script security_database.sql, that is in the ../upgrade sub-directoryof
your Firebird server installation, or in the Appendix to Firebird 2 Release Notes to these notes: Security Upgrade Script.

Doing the security database upgrade

To do the upgrade, follow these steps:

1. Put your old securitydatabase in some place known to you, but not in Firebird's new home directory. Keep a copyavailable at all times!
2. Start Firebird 2, using its new, native security2.fdb.
3. Convert your old securitydatabase to ODS11 (i.e. backup and restore it using Firebird 2.0). Without this step, running the security_database.sql

script will fail!
4. Connect the restored securitydatabase as SYSDBA and run the script.
5. Stop the Firebird service.
6. Copy the upgraded database to the Firebird 2 home directoryas security2.fdb.
7. Restart Firebird.

Now you should be able to connect to the Firebird 2 server using your old logins and passwords.

Nullability of RDB$PASSWD

In pre-2.0 versions of Firebird it was possible to have a user with NULL password. From v.2.0 onward, the RDB$PASSWD field in the securitydatabase is
constrained as NOT NULL.

However, to avoid exceptions during the upgrade process, the field is created as nullable by the upgrade script. If you are really sure youhave no empty
passwords in the security database, you maymodify the script yourself. For example, you mayedit the line:

 RDB$PASSWD RDB$PASSWD,

to be

 RDB$PASSWD RDB$PASSWD NOT NULL,

Caution with LegacyHash

As long as you configure LegacyHash = 1 in firebird.conf, Firebird's security does not work completely. To set this right, it is necessary to do as follows:

1. Change the SYSDBA password.
2. Have the users change their passwords (in 2.0 each user canchange his or her ownpassword).
3. Set LegacyHash back to default value of 0, or comment it out.
4. Stop and restart Firebird for the configurationchange to take effect.

Source: Firebird 2.0.4 Release Notes

Change user password per batch
To alter a user's password at command-line level, use the following syntax:

 gsec -modify SYSDBA -pw password

or:

 gsec -user SYSDBA -password oldpassword -modify SYSDBA -pw newpassword

An example for a batch:

331

 set isc_user=sysdba
 set isc_password=masterke
 gsec -add username -pw password

See also:
GSEC
Referential Integrity

332

Grant Manager
1. Granting access to stored procedures
2. Using the GRANT AUTHORITY option

Grant Manager
The Grant Manager is used to administrate database securityby controlling user permissions for a specific database. It allows youto specify the access rights
for users, roles and database objects.

To start the Grant Manager select the IBExpert menu item, Tools / Grant Manager, use the respective icon in the Tools toolbar, or double-click on a role in the
DB Explorer. Alternatively use the DB Explorer's right mouse-click menu item Edit Role or key combination [Ctrl + O]. This feature is unfortunately not included
in the IBExpert Personal Edition.

The Grant Manager Editor appears:

(1) Select Database: The toolbar displays the alias name for the current selected connected database. Another database on this server can be selected
from the drop-down list at the top of the window.

(2) Privileges for: The pull-down list (default = Users) allows a group for the processing of privileges to be selected. The options include:

users
roles
views
triggers
procedures

Once a database object has been selected, a full list of such users/objects in this database is displayed in the panel directly below.

333

(3) Grants toolbar: The Grants toolbar enables the user to quickly assign or revoke rights to one or more objects, or for one or more operations. These can
also be found in the right-click pop-up menu(see below).

(4) Filters: It is possible, using the pull-down lists, to specifyexactly which grants should be displayed, i.e. for all database objects (default), just the tables, just
the views or just the procedures. Furthermore the user candetermine whether all of the selected objects should be displayed, or only those with grants, or only
those not granted. To the right of these pull-down lists is an empty filter field for user-defined filters. It is also possible to specify whether system tables should
be included or the user-defined filter inverted, using the check boxes provided.

(5) The main window displays the object grants in a grid, displaying the granted operations Select, Update, Delete, Insert, Execute and Reference) for the
listed objects. A green circle indicates that access for this operation on this database object has beengranted; a green circle held by a hand indicates that the
GRANT WITH GRANT AUTHORITY optionhas been granted. Anempty field indicates logically that either no rights have been granted, or theyhave beenrevoked.

The right-click pop-up menu offers the various GRANT and REVOKE options also displayed in the Grant Manager toolbar.

A further menuoptionhere is ShowColumn Privileges (checkbox). This blends the lower window in and out (6), which displays the individual columns for
tables and views, allowing Update and Reference rights to be granted and revoked for individual fields in the selected object.

Rights can be simply granted and revoked by double-clicking (or using the space bar) on the grid fields (in both the upper (object) and lower (column)
windows). Alternatively, to assign several rights (i.e. select, update, delete and insert) to a single object or to assign one operative right to all objects displayed,
use either the Grant Manager toolbar or the right-click menu.

Please note that Reference rights only allow the user to read data sets, if there is a foreignkeyrelationship to other data. And the Grant All to All command
mayonly be performed by the database owner or the SYSDBA.

The majorityof these operations can also be performed in the Grants pages, found in the individual database object editors. These were introduced to remind
the developer not to forget the assignment of rights! They allow the developer to check existing rights for the object concerned and, if necessary, subsequently
assign rights for a new or existing object.

Rights are however in practice usually administered at the front end. There is, as a rule, only one system user, with which the program can log into the
database. For those preferring direct SQL input, please refer to GRANT and REVOKE.

Granting access to stored procedures
To grant a user the right to execute stored procedures, use the IBExpert Grant Manager EXECUTE column:

or the SQL EXECUTE statement. For example, to grant Janet and John the right to execute the stored procedure SP_Delete_Employee, use the following:

 GRANT EXECUTE
 ON PROCEDURE SP_Delete_Employee
 TO Janet, John;

InterBase/Firebird considers stored procedures as virtual users of the database. If a stored procedure modifies a table, the procedure needs the relevant
privileges on that table. So the user only needs EXECUTE privileges on the procedure and not anyseparate rights for the table. In this situation, the stored
procedure performs the changes on behalf of the user.

If a stored procedure needs the ability to execute another stored procedure, simply select Procedures from the Privileges For list and Procedures from the
Grants On list, to grant the EXECUTE privilege on the desired procedure. Using SQL the GRANT statement is necessary, naming the procedure instead of one or
more users (<user_list>).

Using the GRANT AUTHORITY option
A user, that has beengranted certain privileges, mayalso be assigned the authority to grant those privileges in turn to other users. This is known as assigning
grant authority. InterBase/Firebird allows by default only the creator of a table and the SYSDBA to grant additional privileges onto other users.

Grant authoritycan be assigned in the IBExpert or the Grants pages in the relevant object editors, using the Grant All with GRANT OPTION or the Grant to All
with GRANT OPTION icons or right-click menu items:

334

It is also simple to see which grant authorities have already been assigned to whichusers and roles.

In SQL the WITH GRANT OPTION clause maybe used in conjunction with a grant of privileges, to assign users the authority to grant their privileges in turn to other
users (refer to GRANT statement for the full syntax and examples).

See also:
GSEC
Server securityISC4.GDB / SECURITY.FDB
Table Editor / Grants page
REVOKE ADMIN OPTION FROM

335

Secondary Files Manager
1. Primary file
2. Secondary files

Secondary Files Manager
The SecondaryFiles Manager can be found in the IBExpert Tools menu.

First select the database for which the secondary files are to be created, from the pull-down list of connected databases.

Thensimply click on the NewFile button (bottom left corner) to specifya secondary file. As a database file is being created here, it is important not to forget to
also specify the drive and path, as well as the file name and suffix (usually .GDB). Otherwise the file will be created and stored anywhere on the system (usually
in the Windows System32 folder). Should this happen, the file drive and path can be viewed when the SecondaryFiles Manager is restarted.

After specifying the secondary file's name, either the starting page (File Start) or length in pages (File Length) can be specified by selecting the field, and
clicking or using the space bar to activate the counter or allow numerical entry. Specifying both these parameters is unnecessary, and only provides an error
source, as the starting pages of two files must of course concur with the number of pages of the first file.

Whenusing the IBExpert Secondary Files Manager, the first secondary file starts at the current position in the primary file, i.e. the primary file is immediately
considered to be "full", and all new data and metadata from this point onwards is stored in this first secondary file. This can be viewed in the IBExpert Services
menu item, Database Statistics. See below for the specificationof the primary file size at the time of database creation. Of course, multiple secondary files
maybe specified here if wished. It is not necessary to specify the length of the last secondary file; this cantherefore become as large as the physical disk
space allows.

Whenall files have beenspecified satisfactorily, simplyclick the Apply button,

and check before finally committing or rolling back.

There are no performance advantages to be expected by distributing the database across several files, so it is not recommended that secondary files be
used, unless the disk storage space and database size absolutely require it.

The secondary files' size, pathand name can only be altered when the database is restored, as this is the only optionwhich allows secondary files to be
redefined.

For those preferring direct SQL input the syntax is as follows:

 CREATE DATABASE "database name"
 LENGTH <number > PAGES
 FILE <secondary file 1> LENGTH <number> PAGES
 FILE <secondary file 2> LENGTH <number> PAGES
 ...
 FILE <secondary file N>;

The alternative syntax, using STARTING (AT PAGE), is as follows:

 CREATE DATABASE "database name"
 FILE <secondary file 1> STARTING AT PAGE <number>
 FILE <secondary file 2> STARTING AT PAGE <number>
 ...
 FILE <secondary file N> STARTING AT PAGE <number>;

The AT and PAGE keywords are optional. InterBase/Firebird recognizes any of the following variations:

 STARTING AT PAGE 5000
 STARTING AT 5000
 STARTING 5000

Please note that when a database is dropped/deleted, all secondary and shadow files are also deleted. The complete structure and all the data is
permanentlydeleted!

Primary file
A database's primary file is the maindatabase file. If no secondary files are specified, it is the only database file.

Whensecondary files are used, the length in pages needs to be specified for the primary file, or alternatively the first secondary file needs to be specifies with
the STARTING (AT PAGE) parameter.

Primaryand secondary files canbe specified in the IBExpert Tools menu item, Secondary Files Manager.

Secondary files
One or more secondary files may be specified by the database creator, to be used for database storage once the primary file has reached its specified limit.
The database canbe distributed across as many secondary files as wished.

336

Usually InterBase/Firebird databases grow dynamically, when database objects, program code or data are added. The only limitations are the physical limits
of the hard disk or file system on which the database is stored.

Some file systems such as, for example, HP UNIX have additional limitations whichdo not enable the partition size to go over two Gigabytes. To avoid such a
limitation, the InterBase database can be spanned across multiple file systems. Each file can be assigned a maximum size. Due to the automatic
administration in InterBase/Firebird, the primary file is first filled until the maximum page size has been reached. Subsequent information is then packed into
the secondary files until their capacityhas beenreached. As many secondary files canbe created as wished.

Since InterBase 6.5/Firebird secondary files are really no longer necessary. In those particular cases, where secondary files may need to be considered,
please consult the respective database Release Notes.

There are no performance advantages to be expected by distributing the database across several files, so it is not recommended that secondary files be
used, unless the disk storage space and database size absolutely require it.

Secondary files can be simply and easilycreated using the IBExpert Tools menu item, Secondary Files Manager.

Please note that when a database is dropped/deleted, all secondary and shadow files are also deleted. The complete structure and all the data is
permanently deleted!

To-do list
This feature was introduced in IBExpert version 2007.12.01 and can be used to organize your database development.

After allowing IBExpert to create the necessary system objects:

you canadd to-do items for eachobject in the database, using the right mouse-click context-sensitive menuor the [Ins] key. This menu also allows you to Edit a
to-do item ([F2]), Delete a to-do item ([Ctrl # Del]), Hide done to-do items (or click the icon in the toolbar) and Refresh to-do list (also found in the toolbar).

The fields in the Newto-do item dialog are not mandatory, but maybe completed as wished. Pull-down options lists and a calendar are provided where
relevant, and the Description field in the lower part of this window allows youto include as much information as you wish or need.

337

Once a to-do item has beencompleted, it canbe checked as Done and, if wished, either hidden from view or deleted.

338

Localize IB Messages
Localize IB Messages can be found in the IBExpert Tools menu. It enables the user to translate InterBase/Firebird messages into another language.

The InterBase/Firebird messages can be loaded by clicking on the Open File iconand specifying the drive and path (Firebird\interbase.msg or
InterBase\interbase.msg).

The messages are displayed in tabular form. The first columndisplays the message number (the total number of messages is displayed in the status bar).
The second column shows the editable text; the third column the original English text.

To translate a message, simplydouble-click to open the Edit window, enter the desired translation, confirm to return to the mainwindow, and save (or undo).
When saving it is recommended a new file name be specified, for example interbase_german.msg, as otherwise the original English text is overwritten by the
translation.

Other options offered in the Localize IB Messages toolbar include:

Save to File: saves all changes to the file named in the title bar.
Undo: allows the message text to be reverted to the original, provided it has not yet beensaved to file.
Goto Message Number: spring to specified message number.
Find and Search Again: search options for finding message texts.
Export to Text File: enables the message list to be exported to a text file.
Import from Text File: allows a message list to be loaded from a text file as opposed to loading the interbase.msg file).

See also:
IBExpert Edit menu
Toolbar Localize IB Messages

339

Localize IBExpert
Find IBExpert Message

Localize IBExpert
Localize IBExpert can be found in the IBExpert Tools menu. It enables the user to translate InterBase/Firebird messages into another language.

The InterBase/Firebird messages are automatically loaded. Analternative Font Character Set maybe selected if necessary from the pull-down list offered in
the Localize IBExpert toolbar.

The Localizing Form displays all IBExpert messages in a tabular form. The first column displays the ID number (there are 2,999 ID records altogether). The
second columnshows the message type (e.g. string), the third the editable item text; and the fourth columnthe respective shortcut. Initiallypink highlighted
records show messages already created and assigned in the original English version. Blank rows (non-highlighted) indicate non-assigned messages.

To translate a message, simply select it, enter the desired translation in the lower editing panel and save. When saving it is recommended an new file name
be specified, for example interbase_german.msg, as otherwise the original English text is overwritten by the translation.

Other options offered in the Localize IBExpert toolbar include:

Save to File: saves all changes to the file named in the title bar.
Find and Search Again: search options for finding message texts.
Export to Text File: enables the message list to be exported to a text file.
Import from Text File: allows a message list to be loaded from a text file (as opposed to loading the standard IBExpert original English file).

If youhave succeeded in translating this file into a language that IBExpert does not yet offer, please contact info@ibexpert.biz. We would love to hear from you!

Find IBExpert Message
This Search dialog is useful for finding individual words or word strings in the long lists of IBExpert language translations. It can be called using the Binocular
icon in the Localizing Form toolbar. The dialog offers a number of options:

340

mailto:pleasecontactinfo@ibexpert.biz.Wewouldlovetohearfromyou

The Text to Find field allows direct input, or the pull-down list maybe used to select a text recentlysearched for.

The Direction: forward (default) or backward maybe selected, as well as the area to be searched (from a selected area or across the entire scope).

Use the OK button to spring to the first occurrence of the text specified.

The

icon canbe used to search for further occurrences, should any exist, of the specified string.

See also:
IBExpert Edit Menu
Localize IB Messages

341

Report Manager
Using the menu item Tools / Report Manager or the respective icon in the Tools toolbar, the Report Manager dialog is opened. (This feature is unfortunately
not included in the IBExpert Personal Edition.)

A new report can be created on any volume or in the database (double-click on a database entry to create the necessary objects automatically). To edit the
report, just use [Ctrl+D] and the editor will open. To create a new report, simply right-click on the Page1 header and add a new dialog form. On this form you can
add a database and one or more querycomponents. Go back to Page1 and insert some bands and rectangular objects. All data connections can be viewed in
the Object Inspector or following a double click.

In IBExpert version 2005.09.25 the Report Engine was upgraded to FastReport 3. In this version all metadata reports have been redesigned and printing of
unicode strings is now supported. There are many export filters available. And the integration of user reports with IBExpert registered databases has been
improved. There is a sample report, \Reports\Sample1.fr3, provided which illustrates how to connect database access components within a report with
registered databases.

Take a look at http://www.fast-report.com/ to view some examples and the original components, which can be used in anyDelphi/CBuilder project as an
extremely powerful, quick and stable replacement for Quickreport and other report tools.

Since IBExpert version 2008.05.08 we have introduced some new IBEBlock commands for executing reports created with the IBExpert Reportmanager in
command-line mode, for example with batch files. The monthly sales report, invoices or other reports can be designed in the Report Manager and executed
with simple SQL statements. The result can be saved in the database as a pdf or other formats and sent by e-mail. Please refer to ibec_CreateReport and
ibec_ExportReport for further information.

We personally have still not found anything that Fast Report cannot do!

See also:
Report Manager toolbar
Tools toolbar

342

http://www.fast-report.com/

Blob Viewer/Editor
The IBExpert Blob Viewer/Editor canbe found in the IBExpert Tools menu. (This feature is unfortunately not included in the IBExpert Personal Edition.)

It enables blob fields in an opengrid (e.g. the Table Editor / Data page, the SQL Editor / Results page) to be viewed as Text, Hex, Picture, RTF or As Web
Page or As Unicode Text.

And since IBExpert version 2005.08.08 array values canalso be viewed and edited here (HEX format).

The individual fields in the blob column canbe viewed and navigated using the editor's navigational toolbar (please refer to Blob Viewer/Editor toolbar for
details).

New to IBExpert version 2003.11.6.1 is the added syntaxhighlighting for SQL. This is useful if your blobs contain SQL queries. And IBExpert version
2007.09.25 introduced syntaxhighlighting for Delphi forms (dfm). Furthermore, there is now a new As BLR page. This allows blobs with subtype 2 data to be
displayed:

This shows what is really physically in the database.

Since IBExpert version 2005.03.12 there is also added support for PNG (Portable Network Graphics) images, and IBExpert version 2008.02.19 added support
for TIFF images.

See also:
Toools toolbar

343

Database Designer
1. Database Designer right-click menus
2. Reverse Engineer
3. Generate Script
4. Export
5. Print
6. Manage Subject Areas
7. Manage Subject Layers
8. Model Options

1. Domains
2. Exceptions
3. Procedures
4. Generators
5. Selected Table / Selected View
6. Comment Box

Database Designer
The IBExpert Database Designer is a comprehensive tool, which allows database objects to be managed visually. It can be used to represent an existing
database visually, or create a new database model, and thencreate a new database, based uponthis model. It is possible to add, edit and drop tables and
views, edit table fields, set links between tables, edit and drop procedures, and so on. This feature is unfortunately not included in the IBExpert Personal
Edition.

The Database Designer canbe started from the IBExpert Tools menu.

The Designer Menu offers the following options:

Reverse Engineer ...
Generate Script...
New Diagram
Load Diagram from File
Save Diagram
Export...
Print
Manage Subject Areas
Manage Subject Layers
Model Options...

There are also a number of toolbars (please refer to Database Designer toolbars for further information).

Should IBExpert not load the toolbars automatically after starting the Database Designer, delete IBExpert.tb from the \Documents and Settings\<user>
\Application Data\HK-Software\IBExpert\ directory and restart IBExpert.

Using the Designer menuitems or icons, an existing diagram can be opened from file, or a new diagram created.

Reverse Engineering will be used here for the sake of demonstration. By simplycreating a model of the sample EMPLOYEE database using the Reverse
Engineer ... menu item, it is possible to view and test the many features the Database Designer has to offer.

The magnifying glass icons in the Menuand Palette toolbar can be used to increase or reduce the diagram size. Using the pointer icon(= normal editing
mode), tables and views can be selected by clicking on them with the mouse, or dragged'n'dropped as wished; the connecting lines (= links) automatically
move as well.

Insert new tables or views by simply clicking on the relevant icon in the Palette toolbar, and positioning in the maindiagram area. Since IBExpert version
2004.10.30.1 templates can be used (IBExpert menu item Environment Options / Templates) to create foreignand constraint names automatically.

Alternatively, existing objects maybe dragged and dropped from the DB Explorer and SQL Assistant into the main editing area. When an object node(s) is
dragged from the DB Explorer or SQL Assistant, IBExpert will offer various versions of text to be inserted into the Code Editor. It is also possible to customize
the highlighting of variables. Use Options / Editor Options / Color to choose color and font style for variables. Since IBExpert version 2007.05.03 custom colors
are saved in and restored from a grc file. And since IBExpert version 2007.02.22 objects can also be dragged and dropped from the DB Explorer Project
View tree.

IBExpert version 2004.9.12.1 introduced the Model Navigator in the SQL Assistant, enabling you to navigate models quickly. Use the corresponding page in
the SQL Assistant (Model Navigator). The Database Explorer now offers an additional Diagrams page, displaying all objects in the database model in a tree
form. Simply click on anyobject, and it is automatically marked for editing in the mainDatabase Designer window.

The Comment box iconallows comments to be added to the diagram. Insert and position a comment box, double-click to add the comment text in the Model
Options window on the Database Designer Comment Box page.

Reference lines, i.e. foreignkeyrelationships canbe drawn betweentables/views using the right-hand icon in the Menu and Palette toolbar, and dragging the
mouse from one table to the next.

Context-sensitive right-click menus offer a number of options for selected tables, views or links (please refer to Database Designer Right-Click Menus for
further information).

Double clicking on anytable or view opens the Model Options menu item in the lower window, where information can be viewed, altered or specified.

Bydouble-clicking on the line between two tables, the relationships are shownin detail. The name and automatic tracing of links are options, as already
mentioned, included in Model Options.

344

Database objects may be grouped using the [Shift] key and selecting objects with the mouse, and thenusing the respective Layout toolbar icons to group or
ungroup objects.

Objects can also be aligned (left, center, right, top, middle, bottom), againby holding the [Shift] keyand selecting objects with the mouse, and using the
respective Layout icons. Using these keycombinations, it is also possible to select a group of objects, and make them the same size, height or width, size to
grid, or center horizontally or vertically.

And since IBExpert version 2005.03.12 there is the added option, using the right-click context-sensitive menus, to lock visual objects, to protect them against
casual modification of size and position.

Don't forget, the white pointer iconreturns the mouse to the normal editing mode!

It is also possible to Manage Subject Areas and Manage Subject Layers.

When the database model has been designed/altered as wished, a script can be generated (please refer to Generate Script) and executed, to apply these
alterations to the database itself.

Database Designer right-click menus
The main Database Designer design area offers a selection of context-sensitive right-click menus. When a table is selected, the following options are offered:

345

These include options to Select All, Copy and Paste; Columns, Indexes, Keys, Checks, Triggers and SQL Previeware those options also offered in the
Model Options dialog in the lower part of the screen; a check box to specifywhether a selected table should be depicted with a shadow or not; and Format.
This menu item opens a new dialog - for tables however, this only offers the shadow option, also listed as a check option in the menu.

The Lock / Unlock option is new to IBExpert version 2005.03.12, and allows visual objects to be locked, to protect them against casual modification of size and
position.

Whena view is selected, the right-click menu offers the following options:

Again the option to Select All, Copy and Paste is offered, along with the Format option. This dialog must be opened and the shadow option checked or
unchecked, if the appearance of the view is to be altered.

Whena link is selected, the following options are offered:

Again there is the option to Select All, Copy and Paste. Furthermore, it is possible to spring to either the Parent or Child (i.e. primary keytable or foreign key
table), and again the Format option opens a new dialog, where, on the Links page, the rounded corners option maybe checked or unchecked as wished.

Reverse Engineer
Reverse engineering creates a diagram of an existing database.

Whenreverse engineering, select the database to be visually displayed from the list of registered databases.

In the case of the selection of an unconnected database, IBExpert asks whether it should connect. Specify whether a new diagram should be created or an
existing one updated, and check the Clear Diagram option if necessary:

The optionDo not remove foreign keys marked as non-Generate was added in IBExpert version 2004.12.12.1 and is useful to prevent fake relationships
from being deleted.

Start the reverse engineering, and see how quickly IBExpert creates a diagram of the database:

346

Generate Script
It is also possible to generate a script for the model using the Generate Script menuitem. This is necessary in order to apply any changes made to the model
to the database itself.

347

The script can be generated into the Script Executive, to a file or to clipboard. The Script Type options include:

Create new database
Update existing database
Difference script (for testing only)

Specify the file name if saving to file and check/uncheck the options

Don't quote identifiers if possible
Don't analyze IBExpert (IBE$*) objects
Include object descriptions (and since IBExpert version2005.04.24 also including the option Use UPDATE instead of DESCRIBE
Set Generators (new to IBExpert version 2005.06.07) as wished, and run.

Since version IBExpert 2004.8.5.1 generators and triggers are now processed during generation of the update database script. View dependencies are also
now taken into account when the script is generated.

Since IBExpert version 2004.9.12.1 the SET NAMES, SET SQL DIALECT, CREATE DATABASE statements were removed from the resulting CREATE DATABASE script.
You now need to use the model prescript (Model Options) to specifynecessary INIT statements.

The generationof update scripts was improved in IBExpert version 2004.12.12.1. to include analysis of exceptions and procedures.

Export
The database model can be exported, either as a bitmap (.bmp) or an enhanced metafile (.emf). This is new to IBExpert version 2.5.0.61. Simply load the
model to be exported, click the Export menuitem, and specify the name and format.

Print
The database model can be printed, using the respective Database Designer menu item or icon. This option firstly produces a print preview, allowing
adjustments to be made before printing.

New Features

Since IBExpert version 2.5.0.61 it is possible to store printing options between sessions. Since version2003.12.18.1 it is now possible to displayborders of
pages (printable parts) with dashed lines. You can customize the page options (size, headers and footers etc.) using the Print Previewform.

348

Manage Subject Areas
The IBExpert Database Designer menu item Manage Subject Areas is particularlyuseful, for example, to administrate or visualize certain sub-areas of the
database, e.g. Sales or Administration, independently or separately from the rest of the database. Use the Manage Subject Areas menuitem.

349

Using the two dialog icons, new subjects canbe defined by entering a name and checking those tables to be included; or existing subjects altered or deleted.
Since IBExpert version 2004.12.12.1 it is possible to drag 'n' drop objects from the DB Explorer (Diagrams page) to the subject areas to include them as
members of this area. It is also possible to drag objects from the list of objects in the Subject Areas Manager.

Several subject areas can be opened and administrated simultaneously; switch from subject to subject by clicking on the window buttons underneath the main
editing area.

These subject areas are stored with the main subject area when the diagram is saved to file.

Manage Subject Layers
This filter optionallow certain specified tables and their relationships to be viewed. Simply click the NewLayer icon, name the layer, and check those objects
to be included. In order to view everything again, it is necessary to reopen the Manage Layers dialog, and click the iconShowAll.

350

The diagram created maybe saved to file or exported using the respective Designer menu item or Save icon.

Model Options
The Model Options menu item opens a new window in the lower half of the Database Designer dialog. Here the following visual display and script options may
be selected:

When a table or view is double-clicked in the mainediting area, an additional window appears automatically in the model options dialog.

General: Since version2004.6.17 it is possible to specify the font character set for model objects. Simply click General on the left-hand list, and
specify the character set using the pull-down list.
Table: Options to display the following: Table Name and Description, Field Name, Domain (since IBExpert version 2006.08.12), Type, Not Null and
Description, Primary Key and Foreign Key Marks and Expand Marks. It is evenpossible to specify the maximal description length.
Links: Display Link Names (i.e. displayFK relationships) and Automatically Trace Links (displays the links as horizontal/vertical lines with 90°
corners).

Bydouble-clicking on the line betweentwo tables, the relationships are shown in detail. The name and automatic tracing of links, are options already
mentioned, included in the Model Options menu item.

New to IBExpert version 2005.04.24 is the added support for following reference notations: IDEF1X, DM, IE. Simply click the Notation drop-down list and select
as required. Close the Model Options window, and your model ist notated to the norm specified:

351

The pre- and postscript options were added in IBExpert version 2003.12.18.1. This offers the possibility to define pre- and postscripts for your database
model. The prescript will be inserted into the model script just after the CREATE DATABASE or CONNECT statement. The postscript will be added to the end of the
model script. There is also an added option allowing youto define pre- and postscripts for each table separately.

IBExpert version 2007.02.22 introduced added support for autoincrement fields based on the IBEBlock feature. To automatically create generators and
triggers for autoincrement fields youhave to mark the necessary fields as autoincrement and define for eachautoincrement field block (Model Options /
Blocks):

 execute ibeblock (
 HModel variant comment 'Current model handle',
 HTable variant comment 'Current table handle',
 HColumn variant comment 'Current column handle')
 returns (
 GenScript variant,
 TrgScript variant,
 ProcScript variant)
 as
 begin
 LF = ibec_CRLF();

 TblName = ibec_dbd_GetObjectProp(HTable, 'NAME');
 FldName = ibec_dbd_GetObjectProp(HColumn, 'NAME');

 GenName = 'GEN_' || TblName || '_' || FldName;
 GenName = ibec_AnsiUpperCase(GenName);

 TrgName = TblName || '_BI';
 TrgName = ibec_AnsiUpperCase(TrgName);

 GenScript = 'CREATE GENERATOR ' || GenName || ';' || LF ||
 'SET GENERATOR ' || GenName || ' TO 0;' || LF;

 TrgScript = 'CREATE TRIGGER ' || TrgName || ' FOR ' || TblName || LF ||
 'ACTIVE BEFORE INSERT POSITION 0' || LF ||
 'AS' || LF ||
 'BEGIN' || LF ||
 ' IF (' || FldName || ' IS NULL) THEN' || LF ||
 ' NEW.' || FldName || ' = GEN_ID(' || GenName || ', 1);' || LF ||
 'END^' || LF || LF;
 end

352

The Model Options window maybe closed by clicking the small black X in the top left-hand corner.

Domains

The Model Options also included a Domains page with various insert, alter and delete options, similar to the DomainEditor in the DB Explorer.

Exceptions

The Model Options also included an Exceptions page with various insert, alter and delete options, similar to the Exception Editor in the DB Explorer. The
support of exceptions and stored procedures has been included since IBExpert version 2.5.0.6.1.

Procedures

The Model Options also included a Procedures page, similar to the Procedure Editor in the DB Explorer. The support of stored procedures has been
included since IBExpert version 2.5.0.6.1.

It is possible to insert a new procedure or delete a selected procedure, using the relevant icons. Procedures canbe selected from the pull-down list to the right
of these icons. The code can be altered as wished; the editing page offering all those features included in all IBExpert Edit pages (such as Code Completion,
comprehensive right-click menu(SQL Editor Menu) etc).

Generators

The Model Options also include a Generators page with various insert, alter and delete options, similar to the Generator Editor in the DB Explorer. The
support of generators has been included since IBExpert version 2004.1.22.1.

Selected Table / Selected View

Table <selected table>: The options allow columns, indices, keys, checks and triggers to be added, amended or deleted. This version of the IBExpert Table
Editor can be used to create a new table or view, or alter an existing selected table. For details please refer to Create Table and Table Editor.

View <selected view>: A new view canonly be created in the Database Designer using SQL. Alternativelycreate a new view in the DB Explorer, and update
an existing diagram using Reverse Engineer.... For further information regarding view creation in the IBExpert DB Explorer, please refer to New View.

353

The Definitions page displays the table or view name, allows a description to be displayed/entered and the Generate check optionallows the selected table
or view to be updated in the diagram.

The Selected Table options: Columns, Indexes, Keys, Checks, Triggers and Preview, and the Selected Viewoptions, SQL, Triggers and Preview, are
based on those pages found in the Table Editor and View Editor in the DB Explorer. There is however a number of abbreviations included in these frames,
whichare not included in the DB Explorer editors. These have the following meaning:

G = generate, i.e. include into the result script.
U = unique (for indices)
A = active (for triggers)
M = mandatory (for columns, i.e. NOT NULL)

IBExpert version 2006.12.11 introduced the possibility to specify expressions for indices (new columnon the Indexes page).

Since version 2003.12.18.1 there is also the possibility to define pre- and postscripts for each table separately. The prescript will be inserted into the model
script just after the CREATE DATABASE or CONNECT statement. The postscript will be added to the end of the model script. You can also define pre- and
postscripts for eachtable separately.

Since version 2.5.0.61 IBExpert has increased the flexibilitywith regard to customizing table layout. It is possible to toggle on/off displaying of field name, field
type, NOT NULL flag, field description and foreign key mark in anycombination. It is also possible to display the table description instead of, or together with
the table name.

In IBExpert version 2003.11.6.1 the ViewEditor and Note Editor were redesigned. Theyare now no longer modal.

Comment Box

Whena Comment Box is inserted into the main diagram, double-clicking uponthis boxproduces a new Comment Box page in the Model Options dialog. This
canbe used to insert, alter or delete a comment text as wished.

In IBExpert version 2003.11.6.1 the ViewEditor and Note Editor were redesigned. Theyare now no longer modal.

See also:
Database Design

354

Test Data Generator
The IBExpert Test Data Generator canbe found in the IBExpert Tools menu. (This feature is unfortunately not included in the IBExpert Personal Edition.)

A database connection must already exist. Select the database for which test data is to be generated, if more thanone database is connected. To generate
data for a specific table, select the table, thenselect the number of data sets to be generated. Over 100,000 data sets are not a problem for IBExpert here,
evenwhen working locally, although it may take a little time. Click on the individual fields and specify the contents on the right. It is possible to specify the
following:

Data Generation Type: options here include:

Generate randomly: User-defined constraints include the following:
Integer: the minimum and maximum value.
Float: check optionFixed Float Number, and user specificationof number of digits and level of precision.
String: the minimum and maximum length; the range of characters within the character set whichmay be used for the data content.
Date: the minimum and maximum date, and a check option, whether a time slice should also be included.

Get from another table: Specify table, field and number of records. This is a useful way of generating test data for a foreignkey field.
Get from a list: A list can be typed or pasted in the panel.
Autoincrement: This option is of course only offered for integral fields, and enables the developer to specifyan initial value, and the interval (step).

Finally execute (green > icon or [F9]), and watch the counter generate the test data!

The data can finallybe viewed in the Table Editor on the Data page:

355

356

ODBC Viewer
New to IBExpert version 2007.09.25 the ODBC Viewer allows you to browse data from anyODBC source available on your PC and also export data from an
ODBC source into an SQL script or directly into a Firebird/InterBase database.

Simply select the database from the selection of formats: dBASE or Excel files, or Microsoft Access databases, to load the database tables.

The navigational buttons and icons displayed on the tool bar running across the head of the table data are explained in detail under: Table Editor / Data Grid.
The ODBC Viewer's right-click menu is also detailed in this chapter.

The IBExpert Blob Viewer/Editor is automatically opened by double-clicking on anyBlob field.

Double-click on a table from the list on the left, to view the data contents. The view type can be easily altered by clicking on the buttons at the bottom left: Grid
View, Form View and there is eventhe possibility to print the data. More information regarding these options can be found under: IBExpert Tools Menu/ SQL
Editor / Results.

In Excel it is possible to define a specific area (a whole table or just parts of the data contents) and give this marked area a name (in the upper left area):

357

This defined data can then be used as a table in the ODBC Viewer (our example has been defined in Excel as TBL):

Alternativelyan Excel file which is connected via ODBC can be viewed by typing the query:

 select * from "sheet1$"

where sheet1$ is the name of the spread sheet (visible on the tab at the bottom of the sheet). To view our example above:

358

The first line is used always used for the column names.

359

IBExpert command-line tools
1. IBECompare
2. IBEExtract
3. IBEScript

1. IBEScript.dll
2. IBEScriptDll Readme.txt

IBExpert command-line tools
Please note that from IBExpert version 2005.06.07 IBEExtract and IBECompare will no longer be supported as their functionality is now available via
IBEScript.exe and EXECUTE IBEBLOCK.

For those of youworking with older versions of IBExpert, the following command-line tools are available:

IBECompare
IBEExtract
IBEScript

These cover the majority of the options offered by the InterBase command-line utilities and much more.

To be allowed to distribute any of the IBExpert Modules (ibexpert.exe, ibescript.exe, ibescript.dll, ibeextract.exe and ibecompare.exe) together with
your application, youneed:

IBExpert Site License, if the distribution is located only on computers in your owncompany.
IBExpert VAR License, if the distribution is located on anycomputer outside your company.
IBExpert Junior VAR a "slim" VAR version for those not requiring all IBExpert command-line modules.

If youare already an IBExpert customer, youcan upgrade to a Site or VAR License and directlybuy the 24 month ExtensionProduct. See http://ibexpert.net/
ibe/pmwiki.php?n=Main.Upgrade for details.

Some functions of the new IBExpert Modules do not work on non-licensed computers, so youcan only use them where your IBExpert license is valid.

Customers with a Site License are allowed to use them on every computer in their company just by copying the License file to the path, where the module
(such as ibescript.exe) should run.

VAR License customers mayalso integrate these modules and the License file in their software installation.

IBECompare
Please note that from IBExpert version 2005.06.07 IBECompare will no longer be supported as its functionality is now available IBEScript.exe and EXECUTE
IBEBLOCK.

For those of youworking with older versions of IBExpert, IBECompare is a command-line tool to compare databases, scripts and table data. It is new to
IBExpert version 2004.04.01.1. The current version (04/2005) is 2005.04.24.1.

IBECompare.exe canbe found in the IBExpert root directory, and needs to be started from DOS:

 c:\Program Files\HK-Software\IBExpert 2004>ibecompare

IBECompare offers the following options:

-C<config_file>= config file
-O<output_file>= output file (Result.sql if not specified)
-V<verbose_file> = verbose file
-D= compare database metadata and script
-T= compare table data
-S= silent mode
-s= create a config file sample (config_sample.ini)

WARNING: All options are case-sensitive!

Example

 IBECompare -D -Cconfig.ini -OC:\Scripts\result.sql -Vlog.txt

In bothcases (i.e. options -D or -T) IBECompare produces an SQL script file. It is necessary to specifyan input settings file using the -C option.

You canobtain the template of this file starting IBECompare with the -s option(IBECompare -s). In this case IBECompare will create a config_sample.ini file
within the current directory, which is simple and quick to modify.

It is also possible to create a settings file using Save configuration button in the IBExpert Tools menu/ Database Comparer.

The following is an example of an .ini file, for comparing table data:

 [MasterDB]
 ConnectString=LOCALHOST:C:\MyData\Master.gdb

360

http://ibexpert.net/

 Username=SYSDBA
 Password=masterkey
 Charset=WIN_1251
 ClientLib=gds32.dll
 ; Next item will be used while comparing tables
 TableName=CUSTOMER

 ; Instead of MasterDB section you can use MasterScript section:
 ;[MasterScript]
 ; ScriptFile=D:\MyScripts\MyData.dql

 [TargetDB]
 ConnectString=MYSERVER:D:\Data\customer.gdb
 Username=SYSDBA
 Password=masterkey
 Charset=WIN_1251
 ClientLib=gds32.dll
 ; Next item will be used while comparing tables
 TableName="Customer"

 ; Instead of TargetDB section you can use TargetScript section:
 ;[TargetScript]
 ;ScriptFile=D:\MyScripts\MyData.dql

 [CompareObjects]
 Domains=1
 Tables=1
 Views=1
 Triggers=1
 Procedures=1
 Generators=1
 Exceptions=1
 Functions=1
 Roles=1
 Indices=1
 Grants=1
 Descriptions=1
 PrimaryKeys=1
 ForeignKeys=1
 Uniques=1
 Checks=1

 [Options]
 ; Next items will be used while comparing tables
 ProcessINSERTs=1
 ProcessUPDATEs=1
 ProcessDELETEs=1

Should the script generated by IBECompare include a

 SET BLOBFILE 'xxx.lob';

command, it is necessary to execute the script using IBEScript or the IBExpert Script Executive.

SET BLOBFILE is a special extension of script language that allows insert or update blob values via script.

See also:
Script Executive
Database Comparer
Table Data Comparer

IBEExtract
Please note that from IBExpert version2005.06.07 IBEExtract will no longer be supported as its functionality is now available IBEScript.exe and EXECUTE
IBEBLOCK. Please refer to ibec_ExtractMetadata if you are using a version post 2005.06.07.

For those of you working with older versions of IBExpert, IBEEXtract.exe can be found in the IBExpert root directory, and needs to be started from DOS. The
current version (04/2005) is 2005.04.24.1.

Syntax

IBEExtract database [options]

-U<user_name>= user name (SYSDBA if not specified).
-P<password> = password (masterkey if not specified).
-C<character_set> = character set.
-O<output_file>= output file (Result.sql" if not specified).
-F<output_folder>= output folder (for Separate Files mode; current directory, if not specified).
-G= set generator values.
-D= extract data.
-B= extract blobs (please refer to blob fields for further information about blobs).
-S= silent mode.
-V<verbose_file>= verbose file.
-M<config_file>= use config file.

361

-T= generate CREATE DATABASE statement.
-N= generate CONNECT statement.
-W= include password into CREATE DATABASE or CONNECT statement.
-R= extract object descriptions.
-A<integer_value>= commit after <integer_value> records.
-Y= extract computed fields separately.
-X= extract privileges.
-L= extract privileges only for selected objects.
-d= date format (native InterBase/Firebird date format <DD-MMM-YYYY>, if not specified).
-f= extract into separate files (new to IBExpert version 2004.9.12.1/IBEExtract version 2.02).
-s= extract into separate files.
-r= use REINSERT instead of repeated INSERTs.
-l= client library file (gds32.dll, if not specified).
-z= maximum size of resulting files in megabytes (new to IBExpert version2004.9.12.1/IBEExtract version 2.02).
-u= Use UPDATE instead of DESCRIBE option(new to IBExpert and IBEExtract versions 2005.04.24)

WARNING! All options are case-sensitive!

Example 1

 IBEExtract localhost:c:\mydata\mydatabase.gdb -OC:\scripts\result.sql -USYSDBA -Pmasterkey -CWIN1251

Example 2

 IBEExtract "C:\IB Data\my.gdb" -O"My Script.sql" -V"Extract Log.txt"

Since IBExpert version 2003.11.6.1, the problem with extracting exceptions has been solved.

All options listed here can also be found in IBExpert under Tools / Extract Metadata.

See also:
Extract Metadata ibec_ExtractMetadata

IBEScript
IBEScript.exe can be found in the IBExpert root directory, and needs to be started from DOS. The current version(04/2005) is 2005.04.24.1.

Syntax

 IBEScript script_filename [options]

-S = silent mode
-V<verbose_file> = verbose output file. If <verbose_file> exists, IBEScript will overwrite it.
-v<verbose_file> = verbose output file. If <verbose_file> exists, IBEScript will append message to this file.
-E = display only error messages
-N = continue after error.
-T = write timestamp into log.
-D = connections string (use it if your script does not containCONNECT or CREATE DATABASE statements).
-P = connection password (use only with -D option).
-R = connection role (use only with -D option) (new to IBExpert version 2005.08.08)
-U = connection user name (use only with -D option).
-C = character set (use only with -D option).
-L<1|2|3> = SQL dialect (use only with -D option; 1 if not specified)
-i = idle priority (new to IBExpert version2004.9.12.1 / IBEScript version 2.02).

WARNING! All options are case-sensitive!

Since IBExpert version 2003.11.6.1 there is the added possibility to encrypt/decrypt scripts and to execute encrypted scripts. There are two possible ways to
encrypt:

1. Encrypting without the password. In this case there is no possibility to decrypt an encrypted script but it is possible to execute this script with IBEScript.
2. Encrypting with the password. In this case it possible to decrypt the script and execute it with IBExpert if the correct password is specified.

The following options control the encrypting and decrypting:

-e = encrypts a script file and create a file with the extension .esql if the output file is not specified (no execution will be performed).
-d = decrypts an encrypted script file if it was encrypted with password (no execution will be performed).
-p<password> = encrypt/decrypt password.
-o<file_name> = output file name for encrypted and decrypted scripts.

Again: all options are case-sensitive!

Please note that IBExpert cannot work with scripts larger than 2 GB. Should the script exceed 2 GB, you will need to split it into two or more smaller ones.

Example 1

 IBEScript "C:\MyScripts\CreateDB.sql"

362

Example 2

 IBEScript C:\MyScripts\CreateDB.sql -S -UScriptLog.txt

Support for EXECUTE IBEBLOCKwas implemented in IBEScript version 2.02 (released with IBExpert version 2004.9.12.1). This is unfortunately not available in
the free version of IBEScript.

Support was added for the COMMENT ON statement (Firebird 2) in IBExpert version 2005.09.25.

See also:
IBEBlock
Script Executive

IBEScript.dll

New to IBExpert version 2004.12.12.1: IBEScript.dll (for registered customers only).

For registered customers we've included the IBEScript.dll in the installation archive. You can use it in your applications to execute scripts from file or from a
string buffer. There is a small demo application illustrating its use in the IBEScriptDll folder. Please also refer to the IBEScriptDll Readme.txt.

To be allowed to distribute anyof the IBExpert modules (ibexpert.exe, ibescript.exe, ibescript.dll, ibeextract.exe and ibecompare.exe) together with
your application, please refer to the beginning of this chapter.

IBEScriptDll Readme.txt

1. IBEScript.dll exports the following functions:

ExecScriptFile: executes script from file.
ExecScriptText: executes script from string buffer.
CONNECT: connects to the database if there is no CONNECT statement in the script.

2. Examples of the use of ExecScriptFile and ExecScriptText: see demo application in the IBEScriptDll folder.

3. Example using the CONNECT function:

 procedure TForm1.Button2Click(Sender: TObject);
 var
 Hndl : THandle;
 ESP : TExecuteScriptProc;
 CP : TConnectDBProc;
 s : string;
 Res : integer;
 begin
 ErrCount := 0;
 StmtCount := 0;
 mLog.Lines.Clear;
 s := mScript.Text;
 if Trim(s) = '' then
 begin
 ShowMessage('Nothing to do!');
 Exit;
 end;
 try
 Hndl := LoadLibrary(PChar('IBEScript.dll'));
 if (Hndl > HINSTANCE_ERROR) then
 begin
 ESP := GetProcAddress(Hndl, 'ExecScriptText');
 CP := GetProcAddress(Hndl, 'Connect');
 if (@ESP <> nil) and (@CP <> nil) then
 begin
 Pages.ActivePage := tsOutput;
 Res := CP(PChar('db_name=localhost:c:\empty.fdb; password=masterkey; user_name=SYSDBA;'

 +
 'lc_ctype=win1251; sql_role_name=ADMIN; sql_dialect=3;' +
 'clientlib="c:\program files\firebird\bin\fbclient.dll"'), @CEH);
 if Res = 0 then
 ESP(PChar(s), @HandleError, @BeforeExec, @AfterExec);
 end;
 end;
 finally
 if Hndl > HINSTANCE_ERROR then
 FreeLibrary(Hndl);
 end;
 end;

See also:
InterBase and Firebird command-line utilities

363

InterBase and Firebird command-line utilities
1. fbguard.exe
2. fbserver.exe
3. fb_inet_server.exe
4. New on-line incremental backup
5. NBAK
6. NBACKUP

1. Backing up
2. Restoring
3. Usage

7. GBAK and GSPLIT
8. GBAK - Firebird backup and restore
9. GFIX

1. Database shutdown using GFIX
2. Database repair and sweeping using GFIX
3. GFIX - miscellaneous parameters
4. New GFIX -shut[down] options in Firebird 2

10. GSEC
1. Invoking GSEC

11. GSTAT
12. IBLOCKPR (Windows) and GDS_LOCK_PRINT (Unix)
13. IBMGR
14. ISQL - Interactive SQL

InterBase and Firebird command-line utilities
Several command-line tools are provided with InterBase/Firebird. They perform the same range of functions as the Server Manager and run on both UNIX and
Windows platforms. Like the Server Manager, theycan access servers on any platform that InterBase supports. The command-line tools include the following:

fbguard.exe
fbserver.exe
fb_inet_server.exe
NBAK
NBACKUP
GBAK
GFIX
GSEC
GSTAT
IBLOCKPR (Windows) GDS_LOCK_PRINT (Unix)
IBMGR
ISQL - Interactive SQL

The majorityof the options provided by these command-line tools are also offered by IBExpert. Please refer to IBECompare, IBEExtract and IBEScript for
further information.

fbguard.exe
The FBGuardianmonitors the server process. Should the server go down for whatever reasonthe Guardianautomatically restarts it. Please refer to
FBGuardian in the Download and Install Firebird chapter for further information.

fbserver.exe
This is the Firebird SuperServer binary.

fb_inet_server.exe
This is the Firebird Classic binary.

On-line incremental backup
New to Firebird 2.0: the implementation of new, fast, on-line, page-level incremental backup facilities. The backup engine comprises two parts:

NBAK, the engine support module and
NBACKUP, the tool that does the actual backups.

NBAK
The functional responsibilities of NBAK are:

1. to redirect writes to difference files when asked (ALTER DATABASE BEGIN BACKUP statement),
2. to produce a GUID for the database snapshot and write it into the database header before the ALTER DATABASE BEGIN BACKUP statement returns,
3. to merge differences into the database when asked (ALTER DATABASE END BACKUP statement),
4. to mark pages written by the engine with the current SCN [page scan] counter value for the database,
5. to incrementSCN on eachchange of backup state.

The backup state cycle is:

 nbak_state_normal -> nbak_state_stalled -> nbak_state_merge -> nbak_state_normal

In normal state writes go directly to the main database files.

364

In stalled state writes go to the difference file only and the main files are read-only.
In merge state new pages are not allocated from difference files. Writes go to the main database files.

Reads of mapped pages compare both page versions and return the version which is fresher, because we don't know if it is merged or not.

Note: This merge state logic has one quirky part. Both Microsoft and Linux define the contents of file growth as "undefined" i.e., garbage, and both zero-
initialize them.

This is why we don't read mapped pages beyond the original end of the main database file and keep them current in difference file until the end of a merge.
This is almost half of NBak fetchand write logic, tested by using modified PIO on existing files containing garbage.

NBACKUP
The functional responsibilities of NBackup are:

1. to provide a convenient way to issue ALTER DATABASE BEGIN/END BACKUP,
2. to fix up the database after filesystem copy(physically change nbak_state_diff to nbak_state_normal in the database header),
3. to create and restore incremental backups.

Incremental backups are multi-level. That means if youdo a Level 2 backup every day and a Level 3 backup every hour, eachLevel 3 backup contains all
pages changed from the beginning of the day till the hour when the Level 3 backup is made.

Backing up

Creating incremental backups has the following algorithm:

1. Issue ALTER DATABASE BEGIN BACKUP to redirect writes to the difference file.
2. Look up the SCN and GUID of the most recent backup at the previous level.
3. Stream database pages having SCN larger thanwas found at step 2 to the backup file.
4. Write the GUID of the previous-level backup to the header, to enable the consistency of the backup chain to be checked during restore.
5. Issue ALTER DATABASE END BACKUP.
6. Add a record of this backup operation to RDB$BACKUP_HISTORY. Record current level, SCN, snapshot GUID and some miscellaneous stuff for user

consumption.

Restoring

Restore is simple: we reconstruct the physical database image for the chain of backup files, checking that the backup_guid of each file matches prev_guid of
the next one, then fix it up (change its state in header to nbak_state_normal).

Usage

 nbackup <options>

Valid Options

-L <database>: Lock database for filesystem copy
-N <database>: Unlock previously locked database
-F <database>: Fixup database after filesystem copy
-B <level> <database> [<filename>]: Create incremental backup
-R <database> [<file0> [<file1>...]]: Restore incremental backup
-U <user>: User name
-P <password>: Password

Note:

1. <database> mayspecify a database alias.
2. incremental backups of multi-file databases are not supported yet.
3. "stdout"may be used as a value of <filename> for the -B option.

A user manual for NBak/NBackup has been prepared. It can be downloaded from the documentation area at the Firebird website: http://www.firebirdsql.org/
pdfmanual/ - the file name is Firebird-nbackup.pdf.

Source: Firebird 2.0.4 Release Notes: Command-line utilities

GBAK and GSPLIT
(GBAK.EXE and GSPLIT.EXE)

GBAK is an InterBase/Firebird command-line utility, which canbe used to back up and restore databases. GSPLIT backs up and restores multiple file
databases. Please refer to GBAK - Firebird backup and restore for further information.

The parameters and options offered by GBAK canbe found in the IBExpert Backup Database and Restore Database menus.

Many thanks to Stefan Heymann (http://www.destructor.de) for the following overview of options and examples.

GBAK is Firebird's/InterBase's command-line tool for online backup and [Restore Database | restore]] of a complete database.

365

http://www.firebirdsql.org/
http://www.destructor.de

General Syntax

 gbak <options> -user <username> -password <password> <source> <destination>

Backup

For backups, <source> is the database youwant to back up, <destination> is the file name of the backup file. The usual extension is .fbk for Firebird
and .gbk for InterBase.

Only the SYSDBA or the database owner can perform a backup. For multi-file databases, specify only the name of the first file as the database name.

Restore

For restores, <source> is the backup file and <destination> is the name of the database that is to be built up from the backup file. You will have to specify the
-C option for restore. Please note that if you run the GBAK restore in verbose mode, it can take an awful long time.

For new and altered Firebird 2 parameters, please refer to: Firebird 2.0.4. Release Notes: gbak Backup/Porting/Restore Utility.

Options

(Parts in square brackets are optional)

-b[ackup_database] Back up. This switch is optional. Backup
only

-bu[ffers] Set cache size for restored database. Restore
only

-c[reate_database Restore (mandatory). Restore
only

-co[nvert] Converts external tables to internal tables. Backup
only

-e[xpand] Creates an uncompressed backup. Backup
only

-fa[ctor] n Blocking factor for tape device. Backup
only

-g[arbage collect] Does not perform garbage collection (sweeping) during backup. Backup
only

-i[nactive] All indices will be restored as INACTIVE. Restore
only

-ig[nore] Ignores checksum errors while backing up. Backup
only

-k[ill] Does not create shadows that are defined in the backup. Restore
only

-l[imbo] Ignores Limbo transactions while backing up. Backup
only

-m[etadata] Onlybacks up metadata (schema). No table data will be stored. Backup
only

-mo[de] read_write Restores to a read/write database (This is the default). Restore
only

-mo[de] read_only Restores to a read-only database. Restore
only

-n[o_validity] Does not restore validity constraints. So youcan restore data that does not meet these constraints
and could not be restored otherwise.

Restore
only

-nt Non-transportable format (use only when youknow you will restore on same platform and database
version).

Backup
only

-o[ne_at_a_time] Restores one table at a time. You canuse this to partially restore databases with corrupt table data. Restore
only

-ol[d_descriptions] Old-style format. Backup
only

-p[age_size] <size> Sets page size of new database. <size> canbe one of 1024, 2048, 4096, 8192. Default is 1024. Restore
only

-pa[ssword] <password> Database password.

-r[eplace_database] * Restores over an existing database. This can only be performed by the SYSDBA or the owner of
the database hat is overwritten. Do NOT restore over a database that is in use!

Restore
only

-role <role> Connect as role.

-se[rvice]
<hostname>:service_mgr

Backup: creates the backup file on the database server, using the Service Manager. Restore:
creates the database from a backup file on the server, using the Service Manager.

-t[ransportable] Creates a transportable backup (transportable between platforms and server versions). Backup
only

-u[ser] <username> Database user name.

366

-use_[all_space]
Normally, on restore, database pages will be filled to about 80 %. With the use_all_space option,
database pages will be filled to 100 %. (Useful for read-only databases whichwill see no more
modifications).

Restore
only

-v[erbose]** Verbose output of what GBAK is doing.

-y <filename> Redirect all output messages to <filename>. NOTE: the file must not exist before running GBAK!
-y suppress_output Quiet mode.

-z Show GBAK version and server version.

*New to Firebird 2.0: Change to gbak -R semantics

An important change has been done to prevent accidental database overwrites as the result of users mistakenly treating -R as an abbreviation for restore.
gbak -Rwas formerly a shortcut for -REPLACE_DATABASE. Now the -R switch no longer restores a database by overwriting an existing one, but instead reports
an error. If youactually want the former behaviour, you have two alternatives:

Specify the full syntaxgbak -REPLACE_DATABASE. There is a new shortcut for the -REPLACE_DATABASE switch: gbak -REP

or
Use the new command -R[ECREATE_DATABASE] OVERWRITE. The -R shortcut now represents the -R[ECREATE_DATABASE] switch and the OVERWRITE
keyword must be present in either the full or the abbreviated form.

Warning: If youuse the full syntax, you are expected to know what this restore mode actually means and have some recoverystrategy available if the backup
subsequently turns out to be unrestorable.

** New to Firebird 2.0: gbak -V and the counter parameter

During Firebird 1 development, an optional numeric <counter> argument was added to the -V[erbose] switchof gbak for bothbackup and restore. It was
intended to allow youto specifya number and get a running count of rows processed as the row counter passed each interval of that number of rows. It caused
undesirable side-effects and was removed before Firebird 1.0 was ever released. So, although it never happened, it was documented as "implemented" in
the release notes and other places.

GBAK Examples

A "normal" backup:

 gbak -v -t -user SYSDBA -password "masterkey" dbserver:/db/warehouse.fdb c:\backups\warehouse.fbk

Backup with output to a logfile:

 gbak -v -t -user SYSDBA -password masterkey -y c:\backups\warehouse.log dbserver:/db/warehouse.fdb c:\backups\warehouse.fbk

A "normal" restore:

 gbak -c -v -user SYSDBA -password masterkey c:\backups\warehouse.fbk dbserver:/db/warehouse2.fdb

Restore to an already existing database:

 gbak -c -r -v -user SYSDBA -password masterkey c:\backups\warehouse.fbk dbserver:/db/warehouse.fdb

Create a read-only database:

 gbak -c -v -mode read_only -use_all_space -user SYSDBA -password masterkey c:\backups\warehouse.fbk c:\files\warehousedb.fdb

Multi-file backups

Syntax for backup:

 gbak [options] <database> <target file 1> <size 1> <target file 2> <size 2> ... <target file n>

NOTE: Do not specifya size for the last file. It will always be filled to take up what is left over, no matter how large. Size canbe given in bytes (8192), kilobytes
(1024k), megabytes (5m), or gigabytes (2g)

Syntax for restore:

 gbak -c [options] <source file 1> <source file 2> ... <source file n> <database>

Restoring to a multi-file database

 gbak -c [options] <source file> <db file 1> <size 1> <db file 2> <size 2> ... <db file n>

NOTE: do not specifya size for the last database file. It canalways grow unlimited to take up the rest. Size can be given in bytes (8192), kilobytes (1024k),
megabytes (5m), or gigabytes (2g) Restoring from a multi-file backup to a multi-file database:

 gbak -c [options] <source file 1> <source file 2> ... <source file n> <db file 1> <size 1> <db file 2> <size 2> ... <db file n>

See also:
Why is a database backup and restore important?
Firebird 2.0.4. Release Notes: gbak Backup/Porting/Restore Utility

367

GFIX
(GFIX.EXE)

GFIX is an InterBase/Firebird command-line utility, offering a number of options to validate and repair databases. These options are included in the IBExpert
menu items Services / Database Validation and Database Properties.

The following articles are published here with the kind permission of Stefan Heymann(http://www.destructor.de/).

General Syntax

 gfix [options] -user <username> -password <password> <database> [options]

Should your database ever suffer from corruption, we recommend taking the following procedure:

Copy your database file somewhere safe: employee.gdb database.gdb
Validate database: gfix -v -full database.gdb
Onerror try to mend: gfix -mend -full -ignore database.gdb
Check again: gfix -v -full database.gdb
Onerror try backup without garbage collection: gbak -backup -v -ignore -garbage database.gdb database.gbk
Finally try a restore: gbak -create -v database.gbk database.gdb

GBAK - Firebird backup and restore

Further information and examples canbe found under the following subjects:

Database shutdown using GFIX
Database repair and sweeping using GFIX
GFIX - miscellaneous parameters
Using GFIX
New to Firebird 2

Database shutdown using GFIX

by StefanHeymann.

Database Shutdown

Whena database has beenshut down, only SYSDBA and the database owner are able to connect to the database in order to perform administrative tasks.

Options

-at[tach]
<seconds>

Used with the -shut option. Waits <seconds> seconds for all current connections to end. If after <seconds> seconds there
are still connections open, the shutdown will be cancelled.

-f[orce]
<seconds>

Used with the -shut option. Waits <seconds> seconds for all connections and transactions to end. After this time, all
connections and transactions are cancelled and the database is shut down. Use with caution.

-o[nline] If a -shut operation is pending, it is cancelled. Otherwise, takes a database back online.

-sh[ut] Shut down database. Must be used together with -attach, -force or -tran.

-tr[an]
<seconds>

Used with the -shut option. Waits <seconds> seconds for all running transactions to end. If after <seconds> seconds there
are still running transactions, the shutdownwill be cancelled.

Examples

Shut down database, wait 60 seconds until all connections are closed:

 gfix -user SYSDBA -password "masterkey" dbserver:/db/mydb.fdb -shut -attach 60

Note that GFIX will terminate with an error if there are still connections open after 60 seconds.

Shut down database, force shutdown after 60 seconds:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -force 60

Shut down database, force shutdown NOW:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -force 0

Put database online again:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -online

Database repair and sweeping using GFIX

368

http://www.destructor.de/

by Stefan Heymann.

Options

-f[ull] Use with the -v option. Examines all records and pages and releases unassigned record fragments.
-h[ousekeeping] 0 Switch off automatic sweeping.

-h[ousekeeping] <n> Set sweep interval to <n> transactions (default is 20000).
-i[gnore] Ignores checksum errors during a validate or sweep.

-m[end] Marks corrupt records as unavailable so theyare skipped on a subsequent backup.
-n[o_update] Use with the -v option. Examines all records and pages and reports errors but does not repair them.

-s[weep] Forces an immediate sweep.
-v[alidate] Check database for validity. At the same time, errors are reported and repaired.

Examples

Validate database:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -v -f

Sweep database now:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -s

Set sweep interval to 50000 transactions:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -h 50000

Switch off automatic sweeping:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -h 0

See also:
Repairing a corrupt database
Database sweep/Sweep interval
Firebird for the Database Expert: Episode 4 - OAT, OITand Sweep

GFIX - miscellaneous parameters

by Stefan Heymann.

Options

-b[uffers] <pages> Default cache buffers for the database will be set to <pages> pages.
-c[ommit] <id> Commits limbo transaction specified by the given <id>.

-c[ommit] all Commits all limbo transactions.
-k[ill] Drops shadows and unavailable shadows. Syntax is gfix -k (no database name).

-l[ist] Display IDs of all Limbo transactions and what would happen to each transaction if you would use -t on it.
-mo[de] read_write Set mode of database to read/write (default). Requires exclusive access to database (shutdown).

-mo[de] read_only Set mode of database to read-only. Requires exclusive access to database (shutdown).
-pa[ssword] <password> Database password.

-p[rompt] Use with -l. Prompts for action.
-r[ollback] <id> Rolls back limbo transaction specified by the given <id>.

-r[ollback] all Rolls back all limbo transactions.
-s[ql_dialect] 1 Sets SQL dialect 1 for the database.

-s[ql_dialect] 3 Sets SQL dialect 3 for the database.
-t[wo_phase] <id> Performs automated two-phase recovery for limbo transaction with the given <id>.
-t[wo_phase] all Performs automated two-phase recovery for all limbo transactions.
-user <name> Database username.

-w[rite] sync Enables Forced Writes.
-w[rite] async Disables Forced Writes.

-z Show GFIX and server version.

Examples

Set database to read-only:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -attach 60g

369

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -shut -force 0

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -mode read_only

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -online

Set database to SQL dialect 3:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -sql_dialect 3

Enable forced writes:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -write sync

Disable forced writes:

 gfix -user SYSDBA -password masterkey dbserver:/db/mydb.fdb -write async

See also:
Database Corruption

New GFIX -shut[down] options in Firebird 2

The options for gfix -shut[down] have been extended to include two extra states or modes to govern the shutdown.

Syntax

 gfix <command> [<state>] [<options>]
 <command> ::= {-shut | -online}
 <state> ::= {normal | multi | single | full}
 <options> ::= {-force <timeout> | -tran | -attach}

normal state: online database.
multi state: multi-user shutdown mode (the legacyone, unlimited attachments of SYSDBA/owner are allowed).
single state: single-user shutdown (only one attachment is allowed, used by the restore process).
full state: full/exclusive shutdown (no attachments are allowed).

Note: Multi is the default state for -shut, normal is the default state for -online.

The modes can be switched sequentially:

 normal <-> multi <-> single <-> full

Examples

 gfix -shut single -force 0
 gfix -shut full -force 0
 gfix -online single
 gfix -online

You cannot use -shut to bring a database one level more "online" and you cannot use -online

to make a database more protected (an error will be thrown).

These are prohibited:

 gfix -shut single -force 0
 gfix -shut multi -force 0
 gfix -online
 gfix -online full
 gfix -shut -force 0
 gfix -online single

Source: Firebird 2.0.4 Release Notes: gfix server utility

GSEC
(GSEC.EXE)

GSEC is an InterBase/Firebird command-line utility, whichmanages server security. It can be used to add, modify, and delete authorized users on the server.
GSEC commands apply to the database server and not to individual databases, as with the majorityof other command-line utilities.

All options offered by GSEC canbe found in the IBExpert User Manager and Grant Manager.

Many thanks to Stefan Heymann(http://www.destructor.de) for the following overview of commands, options and examples.

370

http://www.destructor.de

All database users are stored in the securitydatabase named security.fdb (since Firebird 2 this file is now called security2.fdb) in the Firebird directory.
There is at least one user, the system database administrator, SYSDBA.

After installation, the SYSDBA password is masterkey. (Exception: Firebird 1.5 for Linux). Only the first 8 characters of a password are significant. The
password should not contain space characters.

Invoking GSEC

GSEC can only be run by the SYSDBA.

To use GSEC for the local machine, use:

 gsec -user sysdba -password <password> [options]

To use GSEC for a remote machine, use:

 gsec -user sysdba -password <password> -database <databasename>

where <databasename> is the database name of the remote security.fdb database.

You can use GSEC as an interactive command line tool or give all commands on one command line.

Commands

di[splay] Displays all users.

di[splay] <username> Displays all information for the given user.
a[dd] <username> -pw <password> [options] Add a new user.

mo[dify] <username> [options] Modify user.
de[lete] <username> Delete user.

h[elp] Display help.
? Display help.

q[uit] Quit interactive mode.
z Display GSEC versionnumber.

If you don't want to invoke the interactive mode, youcan enter all commands directly in the command line. To do that, precede the commands with a dash.

Options

-pa[ssword] <password> Password of the user who is performing the change.

-user <username> User name of the user who is performing the change.

-pw <password> Password of target user (or new password).

-fname <first name> Target user's first name.

-mname <middle name> Target user's middle name.

-lname <last name> Target user's last name.

Examples

Add user Elvis Presley as user ELVIS, password is "Aaron":

 gsec -user SYSDBA -password masterkey
 GSEC> add elvis -pw Aaron -fname Elvis -lname Presley
 GSEC> quit

Change password of user ELVIS to chuck":

 gsec -user SYSDBA -password masterkey
 GSEC> modify elvis -pw chuck
 GSEC> quit

Change password of SYSDBA on remote Linux server harry to hamburg:

 gsec -user SYSDBA -password masterkey -database harry:/opt/firebird/security.fdb -modify sysdba -pw hamburg

Change password of SYSDBA on remote Windows server sally to hannover:

 gsec -user SYSDBA -password masterkey -database sally:"C:\Program Files\Firebird\security.fdb" -modify sysdba -pw hannover

Change password of SYSDBA on remote server jake on TCP port 3051 to london:

 gsec -user SYSDBA -password masterkey -database "jake/3051:/opt/firebird/security.fdb" -modify sysdba -pw london

Delete user Joe on local server:

 gsec -user SYSDBA -password masterkey -delete joe

371

Notes:On InterBase systems, the securitydatabase is named isc4.gdb. There will be a warning when a new password is longer than8 characters.

See also:
Security in Firebird 2
User Manager
Grant Manager

GSTAT
(GSTAT.EXE)

GSTAT is an InterBase/Firebird command-line utility, which canbe used to display database statistics related to transaction inventory, data distribution within a
database, and index efficiency.

All information offered by this tool can be found in the IBExpert Services menu item, Database Statistics.

IBLOCKPR (Windows) and GDS_LOCK_PRINT (Unix)

IBLOCKPR.EXE on Windows and gds_lock_print on UNIX.

These utilities display statistics for the InterBase Lock Manager.

IBMGR
(IBMGR.EXE)

IBMGR is a windows-based server management program, and includes the functionalities found in GSEC, GBAK and GFIX.

ISQL - Interactive SQL

ISQL is a command-line utilityprogram whichcan be used to run SQL queries on the database. ISQL supports data definitions and data manipulation
commands as well as SQL scripts with multiple SQL commands withinone script. It can be used to create and modify the database's metadata, insertion,
alterationand deletion of data, data queries and the display of results (all this can be done in the IBExpert SQL Editor), adding and removal of user database
rights (see the IBExpert User Manager and Grant Manager) and execution of other database administrative functions. It is verysimilar to DSQL, with some
omissions, such as cursors, and a few additions, for example, SET and SHOW.

ISQL commands end with ;. Each command must be explicitly committed using the commit statement.

For new features and switches introduced in Firebird 2 please refer to Firebird 2.0.4. Release Notes: ISQL query utility

See also:
Firebird 2 SQL Reference Guide
Firebird administration

IBExpert Services menu
The IBExpert Services menuoffers the following range of services:

Backup Database
Restore Database
Server Properties/Log
Server ActivationCertificates
Database Validation
Database Statistics
Database Properties
Database Shutdown
Database Online
CommunicationDiagnostics
HK-Software Services Control Center

Database monitoring

Database monitoring
... coming soon.

372

373

Backup Database
1. Why is a database backup and restore important?
2. Garbage collection

Backup Database
The IBExpert Services menu item Backup Database allows you to create a backup or copy of the database, saving it to file. This database copymay be kept
simply for security reasons, or restored for the reasons detailed in Whyis a database backup and restore important?.

A database backup maybe performed without having to disconnect the database; users maycontinue their work as InterBase/Firebird uses its
multigenerational architecture to take a snapshot of the database at a moment in time the backup is requested. All information generated by committed
transactions and present at this moment, is backed up.

First select the database to be backed up from the pull-down list of registered databases. Then select either an existing backup file name, or add a new
backup file using the Insert File icon (or [Ins] key).

The [...] button to the right of this row allows you to find an existing file or specify the drive, path and backup file name for a new file. Please note that IBExpert
will only create a file name on the server, and not locally (as with GBAK), because IBExpert uses the Services API. A local backup can only be performed using
GBAK. The suffixes .GBK and .FBK are traditionally respectively used for InterBase and Firebird backup files. A file size only needs to be specified when working
with secondary files . All files in a multifile database are backed up (i.e. bothsecondary files and shadow files). InterBase/Firebird understands the links that
exist with secondary database files and with shadows. Whereas the operating system backup works on a file-by-file basis, InterBase/Firebird always backs
up all files in a database.

Backup Options

Ignore check sum: If this option is checked, check sum errors in the database header pages, where the database connection properties are stored,
are ignored in the backup. As InterBase and Firebird normally abort the backup when check sum errors are discovered, this is a way to force a backup
when there are problems. Note that UNIX versions do not use check sums.
Ignore transactions in Limbo: If this option is checked, transactions in limbo, i.e. transactions, that can't be defined as executed or aborted, are
ignored in the backup. Only those most recent, committed transactions are backed up. It allows a database to be backed up before recovering
corrupted transactions. Generally in limbo transactions should be recovered before a backup is performed.
Backup Metadata only: If this option is checked, only the database's definition (i.e. the metadata, whichprovides an empty copy of the database) is
saved. (If a database copy with certain data content is required, then use the IBExpert Script Executive.)
Garbage collection: If this option is checked, garbage collection is executed during the backup. By disabling this option, the backup can be speeded
up considerably. (Refer to garbage collection for further information.)
Old metadata description: If this option is checked, old metadata descriptions are included into the backup database. This is included for
compatibility reasons for older InterBase versions.
Convert to Tables: This optionconverts the database data to tables in the backup. This concerns external files. It is possible in InterBase/Firebird to
create a table as an external file - this optionconverts them to internal database tables.
Format: Select the data format for the backup database file. Transportable is the recommended default option, as it allows a restore into different
InterBase/Firebird Versions if wished, i.e. it saves the data and metadata to a generic format, as opposed to the optionNon-Transportable. (Please
note that when backing up and restoring, for example, from InterBase 4 to Firebird 1.5, stored procedures are restored as blobs, so that they maynot
initially work.)

?

374

Verbose: Checking Verbose provides a detailed protocol of the current database backup process, by writing step-by-step status information to the
output log. Select the optionOn Screen or Into File (not forgetting to select or specify a file name for this protocol) before starting the backup. This
option is useful if the backup is failing and the reasonneeds to be analyzed.

Then start the backup. If the protocol option On Screen was selected, the backup is logged on the Output page.

Using the IBExpert menu item Database / Database Registration Info, default backup file names, paths and drives maybe specified if wished, along with
default backup and restore options. This information may be specified when initially registering a database in IBExpert (see Register Database) or at a later
date (see Database Registration Info).

In normal circumstances, the backup should run smoothly without anyof the above options having to be checked. If however, corrupt or damaged data is
suspected or problems have been encountered, alter the Format to Non-Transportable and check the options Ignore Check Sum and Ignore Transactions
in Limbo. Although this will not provide the usual database compression, it does provide a complete copyof the database, which is important before starting
to repair it.

It is also possible to validate the database using Services / Database Validationor GFIX, before retrying.

See also:
Repairing a corrupt database
Restoring a backup to a running database

Why is a database backup and restore important?
Performing regular backups protects from hardware failures and data corruption, whichcannot be fixed by the InterBase/Firebird maintenance tools. It is
important to use the InterBase/Firebird backup and restore facilities even though most networks include a facility for data backup and restore across the
network, because:

Operating system backups require exclusive access to the database. The InterBase/Firebird backup runs parallel with concurrent database accesses
by other users. InterBase/Firebird uses its multigenerational architecture to take a snapshot of the database at a moment in time for the backup. All
information generated by committed transactions and present at this moment is backed up.
All files in a multifile database are backed up. InterBase/Firebird comprehends the links betweenthe different database files and shadows. The
operating system backup processes files one after the other and saves them to the specified file or medium, so that all the various files are backed up
in different versions and theycannot work together correctly anymore when restored. The InterBase/Firebird backup backs up all database files
automatically.
The different versions of InterBase/Firebird use different database file formats, so that it is impossible to copya file directly from one operating system
environment to the required format of another operating system environment. The InterBase/Firebird backup utilityallows a transportable backup
format, so that this file canbe restored on any desired InterBase/Firebird platform. Please note: When backing up and restoring, for example, from
InterBase 4 to Firebird 1.5, stored procedures are restored as blobs, so that theymay not initially work.
The InterBase/Firebird backup discards outdated data sets and index files, resulting in a smaller backup (please refer to garbage collection for more
information).
Empty pages are also automatically removed during a backup and restore, whichreduces the total database size. The transaction number in the TIP is
reset to zero (the total number of transactions that can be recorded in a TIP is approximately 1.3 billion!). The cache works with considerablymore

375

efficiencyfollowing a backup and restore as the pages are reordered. Please note: In Firebird 1.5 the memory manager allows new data sets to
automaticallybe stored in old pages, without first having to backup and restore.
During an InterBase/Firebird backup the integrityand references for all database objects, e.g. domains, tables, indices, views, triggers, stored
procedures, generators, exceptions, and permissions, are checked.
Executing a backup and restore is the only way to subsequently alter fundamental parameters in the database structure, such as the page size and
distribution across secondary files. It is therefore recommended to not only backup but also restore the database regularly (e.g. once a month).

Garbage collection
Whenperforming a garbage collection, InterBase/Firebird does nothing other thanremove outdated data sets and index files, which results in a smaller
database. Outdated data sets are stored by InterBase/Firebird for the following reason: InterBase/Firebird are multigenerational databases. When a data set
is altered, this alteration is stored in the database as a new copy. The old values remain in the database as a back version, which is the rollback protocol. If
the transaction is rolled back after the update, the old value is readyto resume its functionas the valid value. If the transaction is however committed, and not
rolled back, this back version becomes superfluous. In databases with a lot of update operations this canresult in a lot of garbage.

Whengarbage is collected in InterBase/Firebird, not only the out-of-date update values are deleted, but all outdated and deleted data set versions, based on
the Transaction InventoryPage (TIP).

A garbage collection is only performed during a database sweep, database backup or when a SELECT query is made on a table (and not by insert, alter or
delete). Whenever InterBase touches a row, such as during a SELECT operation, the versioning engine sweeps out any versions of the row where the
transaction number is older than the Oldest Interesting Transaction (OIT). This helps to keep the versionhistory small and manageable and also keeps
performance reasonable.

The sweep interval (i.e. at what interval (in number of transactions) a database sweep should be automaticallyconducted) for the garbage collection may be
specified under the IBExpert Services menu item Database Properties.

The garbage collection maybe performed during 24 hour operation online without any problems (i.e. the server does not need to be shut down). Performance
mayhowever be slower during the database sweep whichmay not be desirable. If the sweep interval is specified at zero (0) (see Database Properties), the
garbage collection is not performed automatically at all. It could then be carried out, for example, at night as a sweep or backup using GFIX and the at
Windows command or the Linux chron command.

New to Firebird 2.0: Superserver garbage collection changes

Formerly, Superserver performed only background garbage collection. Bycontrast, Classic performs "cooperative" GC, where multiple connections share the
performance hit of GC. Superserver's default behaviour for GC is now to combine cooperative and background modes. The new default behaviour generally
guarantees better overall performance as the garbage collection is performed online, curtailing the growth of version chains under high load.

It means that some queries maybe slower to start to return data if the volume of old record versions in the affected tables is especiallyhigh. ODS10 and lower
databases, having ineffective garbage collection on indices, will be particularlyprone to this problem. The GCPolicy parameter in firebird.conf allows the
former behaviour to be reinstated if youhave databases exhibiting this problem.

See also:
Backup/Restore
Database Properties
Restore Database
InterBase and Firebird command-line utilities: GBAK
Firebird 2.0.4 Release Notes: Backup tools
Firebird 2.0.4 Release Notes: Reworking of garbage collection
Recovering a corrupt database
Firebird for the Database Expert: Episode 4 - OAT, OIT and sweep
Garbage Collectors
Firebird administration

?

376

Restore Database
1. Database Shadow Files

1. Creating a shadow
a. Creating single-file or multifile shadows
b. Auto mode and manual mode
c. Conditional shadows

2. Activating a shadow
3. Deleting a shadow
4. Adding files to a shadow/modifying a shadow

Restore Database
The IBExpert Services menu item Restore Database allows you to restore the database from a backed up file.

A database restore is required in the following situations:

Following approximately 1.3 billion transactions in order to reset the transaction space.
Following 255 metadata changes on a single table; otherwise no further metadata changes are possible. Please refer to IBExpert Screen253
changes of table left for details.
When changing the Firebird version youneed to backup the old version and restore to the new version number.
A sweep is also automatically performed during a backup, so long as it has not been disabled.

Before restoring a backup file into a database, it is important to first disconnect the database! - Otherwise you could end up with a corrupt database should
users try to log in and perform data operations during the restore.

The Files page allows the following specifications:

Restore into: Select to restore into the existing database, or create a new database. When restoring into the existing database, select it from the list of
registered databases; if restoring to a new database, then set the database file name not forgetting the drive and path.

Specify the backup file name which is to be restored. The [...] button to the right of this row allows you to find an existing file name, drive, and path. The
suffixes .GBK and .FBK are traditionally respectively used for InterBase and Firebird backup files.

The following restore options may be checked/unchecked as wished:

Deactivate indexes: If this option is checked, database indices are deactivated while restoring. This option is used to improve restore performance.
If this option is not checked, InterBase/Firebird updates indices after all tables have been populated with the restored rows. This optionmayalso be
necessary if the database contains data with a unique index, but there are values in the table that are not actually unique. It canalso be used when the
field length in one or more tables is to be altered retrospectively; or when an index is simply not working due to some undiscovered inconsistencies.

Don't recreate shadow files: If this option is checked, shadow files are not recreated while restoring.

Restoring without Shadow: deletes the shadow definition. To restore it, it is necessary to recreate the shadow using the CREATE SHADOW statement
(please refer to Creating a shadow below for further information). This option is sometimes required if the destination database does not support
shadows, if you are migrating from an earlier versionof InterBase where shadows were not supported, or if the machine where the shadow resides is
not available.

Don't enforce validity conditions: When this option is checked, database validity conditions such as constraints on fields or tables are not restored.
This option is useful if the validity constraints were changed after data had already been entered into the database. When a database is restored,
InterBase/Firebird compares eachrow with the metadata; an error message is received if incompatible data is found. Once the offending data has
been corrected, the constraints can be added back.

Commit after each table: If this option is checked, IB Manager commits work after restoring eachtable. This allows all those tables to be restored
and committed where there is no corrupted data. It restores metadata and data for each table in turnas a single transaction and then commits the
transaction. This option is useful if corrupt data is suspected in the backup file, or if the backup is not running to completion. Normally, InterBase/
Firebird restores all metadata and thenrestores the data. Should youencounter problems when restoring your database, deactivate this optionand
retry.

Replace existing database: If this option is checked the restored database replaces the existing one. Leaving this optionunchecked provides a
measure of protection from accidentally overwriting a database file.

Use All Space: This option should be checked when restoring the database onto a CD, as all (i.e. 100%) space is thenused, as opposed to the usual
80% for databases whichare subject to alterations and stored on hard drives.

Metadata Only: This optionproduces an empty copyof the database. It may also be used to restore the framework of a corrupt database, to allow
analysis and repair work.

Client Library: This is new in version2003.11.6.1 and is an added possibility to specifya client library whichwill be used while restoring. This option
allows the user to specify whether he requires the InterBase or the Firebird client library for eachIBExpert connection. The default client library is
gds32.dll.

Page size: Database page size in bytes. This is the only optionallowing the page size for an existing database to be altered.

Verbose: Check Verbose to receive a detailed protocol of the current database backup process, by writing step-by-step status information to the
output log. The options On Screen or Into File (not forgetting to select or specify a file name for this protocol) need to be specified before starting the
backup. This option is useful if the restore is failing, and the reason needs to be analyzed.

?

377

The restore can thenbe started. If the protocol optionOn Screen was selected, the backup is logged on the Output page.

Under normal circumstances, none of the above restore options should need to be specified. If inconsistencies betweenthe metadata and the data itself are
suspected, check the Commit After Each Table, Deactivate Indexes, and Don't Enforce Validity Conditions options.

Please note that InterBase/Firebird does not backup indices. It only backs up the index definition. When the database is restored InterBase/Firebird uses this
definition to regenerate the indices.

Using the Database Registrationdialog, default backup file names, paths and drives maybe specified if wished, along with default backup and restore
options. This information may be specified when initially registering a database in IBExpert (see Register Database) or at a later date (see Database
Registration Info).

Emptypages are automatically removed during a backup and restore, whichreduces the total database size.

The transaction number in the TIP is reset to zero. The cache works with considerablymore efficiency following a backup and restore as the pages are
reordered. It is therefore recommended not only to backup but also to restore the database regularly (e.g. once a month).

In Firebird 1.5 the new memory manager allows new data sets to automatically be stored in old pages, without first having to backup and restore.

Database Shadow Files
Shadow files are an exact live copyof the original active database, allowing you to maintain live duplicates of your productiondatabase, whichcan be brought
into production in the event of a hardware failure. These shadows are administrated in real time by the InterBase/Firebird server. Theyare used for security
reasons: should the original database be damaged or incapacitated by hardware problems, the shadow can immediately take over as the primary database.
It is therefore important that shadow files do not run on the same server or at least on the same drive as the primary database files. Shadow files are not
normally used on Windows platforms, as the shadow file has to be on the same computer as the active database. These do work however on LINUX/UNIX.

InterBase allows up to 65,536 (216) database files, including shadow files. However the operating system used mayhave a lower limit on the number of
simultaneous openfiles that the IBServer/FBServer can have. In some cases, the OS provides a means to raise this limit (refer to your OS documentation for
the default openfiles limit, and the means to raise it).

Shadow files, as with the main database and secondary files, may not reside on networked or remote file systems (i.e. mapped drives on Windows and NFS
files on UNIX).

The number of existing shadow files in a database maybe ascertained using the IBExpert Services menu item Database Statistics, or using GSTAT (the
shadow count is included in the database header page information).

Shadowing offers a number of advantages:

It provides valuable protectionof the database, in addition to the regular backups whichshould be maintained, and in addition to InterBase/Firebird's
multigenerational architecture.
If the original database is damaged, the shadow canbe activated immediately, with little lost time.
Shadowing runs automatically with little or no maintenance.
You have full control over the shadow's configuration, including its use of hard disk space and distribution across other available devices.
Creating a shadow does not require exclusive access to the database.
Shadow files use the same amount of disk space as the database. As opposed to log files, which can grow well beyond the size of the database.
Shadowing does not use a separate process. The database process handles writing to the shadow.

But there are also some limitations:

Shadowing only helps to recover from certain types of problems. If a user error or InterBase/Firebird problem causes the database to be damaged
beyond recovery, thenthe shadow is identicallydamaged. But if the database is accidentally deleted by the user, or a hardware problem on the
primary server occurs, the shadow remains intact and canbe used immediately.
Shadowing is not replication. It is one-way writing, duplicating every write operation on the master database. Client applications cannot access the
shadow file directly.
The shadow cannot be used to rollback the database to a specific point in time. When the shadow is used to recover the database, everything up to the
point where the original problem occurred is retrieved.
Shadowing adds a small performance penalty to database operations. Every action on the database which modifies metadata or the data itself is
mirrored in the shadow.
Shadowing does not replace a careful security system within the operating system, but is one aspect or enhancement of the whole.
Shadowing also works only for operations that go through the InterBase/Firebird database services manager (GDS), which processes all SQL and
database requests.
Shadowing can occur only to a local disk. Shadowing to a NFS file system or mapped drive is not possible.

Shadowing to tape or other media is also not possible.

Tasks for Shadowing

The main tasks in setting up and maintaining shadows are as follows:

Creating a shadow

(Source: InterBase® 7.1 Operations Guide)

378

Shadowing begins with the creation of a shadow, using the CREATE SHADOW statement. This statement has the following syntax:

 CREATE SHADOW shadow_number
 [AUTO | MANUAL] [CONDITIONAL] shadow_filename

The shadow number identifies a shadow set that collects the primary shadow file and anysecondary files together. The most important functionof the shadow
number is to identify the shadow if you decide to drop it (please refer to Deleting a shadow).

This canbe performed without affecting users at all, as it does not require exclusive access. Before creating the shadow, the following should be considered:

1. Shadow location: a shadow should be created on a different disk from the main database, as shadowing is intended as a recovery mechanism in
case of disk failure. Therefore storing the maindatabase and the shadow on the same disk defeats the whole purpose of shadowing!

2. Distributing the shadow: a shadow can be created as a single-file (shadow file) or as multiple files (shadow set). To improve space allocation and
disk I/O, eachfile in a shadow set may be placed on a different disk.

3. User access: if a shadow becomes unavailable, user access to the database canbe denied until shadowing is resumed, or access can be allowed
(i.e. work can continue as normal) althoughanychanges made during this period will obviously not be shadowed. Please refer to auto mode and
manual mode for further information.

4. Automatic shadow creation: To ensure that a new shadow is automaticallycreated, create a conditional shadow (details below).

Please note: If the IBExpert Services menu item Restore Database dialog option, Don't Recreate ShadowFiles is checked, shadow files are not recreated
while restoring. This deletes the shadow definition; and to restore it, it is necessary to recreate the shadow using the CREATE SHADOW statement. This option is
sometimes required if the destination database does not support shadows, if you are migrating from an earlier version of InterBase where shadows are not
supported, or if the machine where the shadow resides is not available.

The following sections deal with the creation of shadows with various options:

Creating Single-file or Multifile Shadows
Auto Mode and Manual Mode
Conditional Shadows

These options are not mutuallyexclusive, e.g. it is possible to create a single-file conditional shadow with the optionmanual mode.

Creating single-file or multifile shadows

(Source: InterBase® 7.1 Operations Guide)

To create a single-file shadow for the sample database employee.gdb, enter the following in the IBExpert SQL Editor:

 CREATE SHADOW 1 '/usr/interbase/examples/employee.shd';

The name of the shadow file is employee.shd, and it is identified by the number 1. It is possible to verify that the shadow has been created by using the isql
command:

 SHOW DATABASE;
 Database: employee.gdb
 Shadow 1: '/usr/interbase/examples/employee.shd' auto
 PAGE_SIZE 4096
 Number of DB pages allocated = 392
 Sweep interval = 20000

The page size of the shadow is the same as that of the database. A large database maybe shadowed to a multifile shadow if wished, spreading the shadow
files over several disks. Each file in the shadow set needs to be specified by name and size. This canbe specified in two ways, the same as with multifile
databases:

Specify the page on whicheach secondary file starts
Specify the length in database pages of each file.

You can specifyboth but this is redundant. If the information specified is inconsistent, InterBase/Firebird uses the length value in preference to the starting
page value. In general, it is best to use either length values or starting page number to ensure consistency or legibility.

If the files are specified using the LENGTH keyword, do not specify the length of the final file, as InterBase/Firebird sizes the final file dynamically, as needed.
Please refer to secondary files for further information.

The following example creates a shadow set consisting of three files. The primary file, EMPLOYEE.SHD is 10,000 database pages in length; the second file is
20,000 pages long, and the final file is left open, to expand as needed.

 CREATE SHADOW 1 'employee.shd' LENGTH 10000
 FILE 'emp2.shd' LENGTH 20000
 FILE 'emp3.shd';

The second alternative is to specify the starting page of the files:

 CREATE SHADOW 1 'employee.shd'
 FILE 'emp1.shd' STARTING AT 10000
 FILE 'emp2.shd' STARTING AT 30000;

Using the SHOW DATABASE command, the file names, page lengths or starting pages can be verified:

 SHOW DATABASE;
 Database: employee.gdb
 Shadow 1: '/usr/interbase/examples/employee.shd' auto length 10000
 file /usr/interbase/examples/emp1.shd length 2000 starting 10000
 file /usr/interbase/examples/emp2.shd length 2000 starting 30000

379

 PAGE_SIZE 4096
 Number of DB pages allocated = 392
 Sweep interval = 20000

The page length for secondary files in the maindatabase does not need to correspond to the page length for the secondary shadow files. As the database
grows and its first shadow file becomes full, updates to the database automatically overflow into the next shadow file.

Auto mode and manual mode

(Source: InterBase® 7.1 Operations Guide)

A shadow database may become unavailable for the same reasons a database becomes unavailable (e.g. disk failure, network failure, or accidental deletion)
. If a shadow has been created in auto mode and suddenly becomes unavailable, database operations continue automatically without shadowing. If the
shadow was created in manual mode, further access to the database is denied until the database administrator gives explicit instructions, as to how work is to
be continued.

The benefits of auto mode and manual mode maybe compared below:

Mode Advantage Disadvantage

Auto Database operation is uninterrupted. Creates a temporaryperiod when the database is not shadowed. The database
administrator might be unaware that the database is operating without a shadow.

Manual Prevents the database from running
unintentionally without a shadow.

Database operation is halted until the problem is fixed. Needs interventionof the
database administrator.

Auto mode

The AUTO keyword can be used to create a shadow in auto mode:

 CREATE SHADOW 1 AUTO 'employee.shd';

Auto mode is the default, so this does not necessarilyneed to be specified explicitly.

In auto mode, database operation is uninterrupted eventhough there is no shadow. To resume shadowing, it might be necessary to create a new shadow. If
the original shadow was created as a conditional shadow, a new shadow is automatically created. Please refer to conditional shadows for further information.

Manual mode

The MANUAL keyword can be used to create a shadow in manual mode:

 CREATE SHADOW 1 MANUAL 'employee.shd';

Manual mode is useful when continuous shadowing is more important than continuous operation of the database. When a manual-mode shadow becomes
unavailable, further operations on the database are prevented.

To allow work on the database to be resumed, the database owner or SYSDBA must enter the following command:

 gfix -kill database

This command deletes metadata references to the unavailable shadow corresponding to the database. After deleting the references, a new shadow can be
created if shadowing needs to be resumed.

Shadow information is kept in the metadata of the primary database file. If this file becomes unavailable for some reason, thenthe pointers to the shadow are
also broken. In this situation, the database administrator canuse the -active option in the GFIX utility to convert the original shadow into a new primary
database.

Conditional shadows

(Source: InterBase® 7.1 Operations Guide)

A shadow may be defined so that if it replaces a database, the server creates a new shadow file, and thus allows shadowing to continue uninterrupted. This is
termed a conditional shadow, and is specified using the CONDITIONAL keyword:

 CREATE SHADOW 3 CONDITIONAL 'atlas.shd';

Creating a conditional file automatically creates a new shadow in either of two situations:

The database or one of its shadow files becomes unavailable.
The shadow takes over for the database due to hardware failure.

Activating a shadow

(Source: InterBase® 7.1 Operations Guide)

Should the maindatabase become unavailable for whatever reason, the shadow can be activated, i.e. it takes over the maindatabase and all users now
access the shadow as the main database. This activation maybe defined to occur automatically or through the interventionof the database administrator.

380

Shadow information is kept in the metadata of the primary database file. If this file becomes unavailable for some reason, then the pointers to the shadow are
also broken. To activate the shadow it is necessary to log in as SYSDBA or the database owner, and use GFIX with the -activate option, to convert the
original shadow into a new primary database.

Important! The first step is to make sure the shadow is not active, i.e. if the maindatabase has active transactions the shadow is active. Also check that the
main database is unavailable. If a shadow is activated while the main database is still available, the shadow can be corrupted by existing attachments to the
main database.

To activate a shadow, specify the path name of its primary file. For example, if database employee.gdb has a shadow named employee.shd, enter:

 gfix -a[ctivate] shadow_name

The shadow name is the explicit pathand name of the shadow's primary file.

Examples

For a Windows NTserver:

 gfix -a F:\SHADOW\ORDENT\ORDERS.SHD

For anyUNIX server:

 gfix -a /usr/shadow/ordent/orders.shd

After a shadow is activated its name should be changed to the name of the original database. Thena new shadow canbe created if shadowing needs to
continue providing another disk drive is available.

Deleting a shadow

(Source: InterBase® 7.1 Operations Guide)

If a shadow is no longer needed, it can be stopped by simplydeleting it. To stop shadowing, use the shadow number as an argument with the DROP SHADOW
statement. For example:

 DROP SHADOW 1

If you need to look up the shadow number, use the isql command SHOW DATABASE.

Important! DROP SHADOW deletes all shadow references from a database's metadata as well as the physical files on disk. Once the files have beenremoved
from the disk, there is no way to recover them. However, as a shadow is merely a copy of an existing database, a new shadow will be identical to the dropped
shadow.

Adding files to a shadow/modifying a shadow

(Source: InterBase® 7.1 Operations Guide)

Shadow databases mayconsist of multiple files. As the shadow grows in size, files may need to be added to cope with the increase in space requirements.

To modify a shadow database or add a shadow file, first use the DROP SHADOW statement to delete the existing shadow, thenuse the CREATE SHADOW statement
to create a multifile shadow.

Example

 DROP SHADOW 2
 CREATE SHADOW 3 AUTO CONDITIONAL
 'F:\SHADOW\ORDENT\ORDERS.SHD' LENGTH 10000
 FILE 'F:\SHADOW\OIRDENT\ORDERS2.SHD'

The page length allocated for secondary shadow files need not correspond to the page length of the database's secondary files. As the database grows and
its first shadow file becomes full, updates to the database automatically overflow into the next shadow file.

See also:
Allowing users to loginduring a restore
Backup Database
Backup/Restore
GBAK
Repairing a corrupt database
Why is a database backup and restore important?
Firebird administration

381

Server Properties / Log
The Server Properties page displays the following information:

It includes server version information, configuration information and database information, particularly interesting, when working with remote and/or multiple
connections.

The log canbe started using the Retrieve (green arrow) icon. The log page displays information either as text:

or in a grid form:

382

The log may evenbe printed - the print preview can be opened using the magnifying glass icon.

See also:
Server Properties/Log toolbar

Server Activation Certificates
This option is purely for Borland InterBase v 6.5. It allows new InterBase users to be registered or existing users to be removed directly in IBExpert, using the
Borland InterBase certificate keys and IDs, without having to use IBConsole.

383

Database Validation
Database validation involves checking the database file to ensure that the various data structures retain their integrity and internal consistency. The validation
process checks for three different types of problems:

Corrupt data structures: for example, if a database row spans more than one page and the pointer that links the first page to the second is
damaged or missing, there is a corrupt data structure. InterBase/Firebird is able to correct this situation, but the damaged row might be lost.
Misallocated data pages: for example, a page can be used for transaction inventory, header information, data, blob pointers, or indices. If a page
has been flagged as one type, but actually stores data of a another type, InterBase/Firebird detects the problem. However InterBase/Firebird cannot
recover from this type of problem, so it will probablybe necessary to restore from a backup.
Orphaned data pages, whichare automatically returned to the free space pool. Bydefault, InterBase/Firebird does not completely fill data pages with
records, to allow space for new records to be quickly inserted. As records are added and deleted, some pages are likely to end up with no active
records on them. Older InterBase/Firebird versions do not automatically reallocate these pages to the free space pool.

The IBExpert Database Validationmenu item offers those options also available in the InterBase/Firebird GFIX.

It is advisable to backup the database before validating. If possible it should also be shut down, so that the backup can be restored if necessary without any
loss of transactions whichmay have been performed since the backup.

The Database Validation menu item can be found in the IBExpert Services menu. It enables the database to be validated and verifies the integrity of data
structures.

First select the registered database to be validated. The following options are none other than the GFIX parameters and maybe specified as wished:

Limbo Transactions: If this option is checked, the database is checked for transactions in limbo, i.e. transactions, that can't be defined as executed
or aborted. Please refer to transactions in limbo for further information.
Check Database: This optionvalidates the database, but doesn't repair it.
Ignore Checksums: This option ignores all checksum errors. A checksum is a page-by-page analysis of data to verify its integrity. A bad checksum
means that a database page has been randomlyoverwritten (for example, due to a system crash).
Kill Shadows: This optionkills all unavailable shadow files.
Mend Database: This prepares a corrupt database for backup and repairs anydatabase corruption if possible.
Sweep Database: This optioncan be checked to perform a database sweep (see database sweep for more information about sweeps).
Validate Database: (default value). This option validates the database structure.
Validate Full: This validates record fragments. Note: This feature is not available in InterBase versions older than the version 6.
Output: Check Verbose to receive an extended report about the current database validation process. Select whether this report should be displayed
on screen or saved to file (not forgetting of course to specify drive, path and file name).

Thenstart the database validation using the green arrow icon or [F9].

Output

384

If no corruption is detected, a message is displayed informing that no database validation errors were detected. If corruption is detected that can be repaired,
a report is displayed showing the number and types of errors found. Note that sometimes, irreparable database corruption is found, such as damage to the
database header or space allocation tables.

Please refer to Database Corruptionfor further information concerning the recoveryof corrupt databases.

385

Database Statistics
1. Text
2. Tables
3. Indices
4. Options

Database Statistics
Database Statistics are an invaluable insight to what is actually happening on the server. Firebird statistics should be evaluated regularlyand kept, because
when things do go wrong, it's immensely helpful to be able to see what they looked like when things were running smoothly. Poor or degrading database
performance is practically always to do with poor programming and/or poor transaction handling. The IBExpert Database Statistics retrieves and displays
important database statistical information, which canbe exported to numerous file formats or printed. This menu item can be found in the IBExpert Services
menu.

First select a registered database from the pull-down list on the toolbar, or alternatively open an existing statistics file to view and analyze.

If wished, alter the default value Retrieve all Statistics, by selecting one of the following options:

Stop retrieving after header page statistics
Stop retrieving after log page statistics
Stop retrieving after user indexes statistics
Stop retrieving after data tables statistics
Stop retrieving after system tables and indexes statistics

Since IBExpert version 2004.8.5 there is the added check option to analyze average record and version length (Firebird 1.5, InterBase 7) whichcan be found
below the toolbar.

Thensimply click the Retrieve Statistics icon(green arrow) or press [F9] to start the retrieval process.

The database's statistical summary is displayed both as text:

386

as well as in grid form (illustrated in the Tables page section below).

Text page
The text summaryprovides certain additional information (illustration above) as well as a statistical summarybrokendown by table (illustration below),
containing the information also displayed in the grid summary.

The Database Statistics display the following information for all tables in the database, both as a log script and in tabular form: table name, location, pages,
size (bytes), slots, fill (%), DP usage (%) and fill distribution (an optimal page fill is around 80%). For each table the indices statistics include: depth, leaf
buckets, nodes, average data length and fill distribution.

387

Primary Pointer page: In the illustration above the primary pointer page (PTR) for the EMPLOYEE table is number 172. It begins at the byte that equals the
page number 172 multiplied by the page size. This is a sort of table of contents for the EMPLOYEE table, it points to the data pages whichcontain the table's
data.

Index root page: The same information is displayed for the index root pages (IRT) for the indices in this table and where theycan be found.

Average record length: This displays how long the data record versions are on average. When a dBase table is created, for example, with 2 fields, each
CHAR(100), the average data set length would always be 200. Firebird however does not store adjacent empty spaces. For example with a CHAR(100) field
containing a string length of 65 followed by 35 empty spaces, Firebird stores the string of 65 plus 1 empty space multiplied by 35. This is why, when data is
imported into Firebird from another database, the data is sometimes smaller following the import than it was before.

Total records: How many data sets are there in the individual tables.

Average version length: The length of the record versions on average. When updates are made, youcan see here how many bytes on average have
altered, compared to the original data set.

Total versions: How many record versions exist for this table.

Max versions: The maximum number of versions for a record.

Data pages: How many data pages are used.

Average fill: The amount of data page fill in %

Fill distribution: The average fill is calculated how much data is already contained on the data pages. The Firebird server normally fills pages up to a
maximum of 80%. The free room is needed for back version storage; if an update to one of the data sets stored on this page is made, the new data set can be
stored on the same page as the original version. This saves the number of pages which need to be loaded, should it be necessary to return to the original data
set.

The fill distribution also indicates whether the fill for an individual table is an anomalyor if similar problems occur on all tables.

There are certain situations when youmight wish for a 100% fill (e.g. when wishing to store an address database on a CD). This can be done with the Use all
space optionwhen performing a database restore.

Tables page

388

The tables are listed alphabeticallyby name but, as always in IBExpert, theycan be moved or sorted by any of the listed criteria by clicking on the
corresponding columnheader. Columnheaders can be dragged to the top of the Tables page to display data sorted by that column.

It is possible to calculate certain aggregate functions on the individual columns (see the Fill % columnin the illustrationabove).

The table grid gives some nice feedback about fill and database usage on your tables, e.g. youcan quickly spot a table with thousands of pages at 50% fill -
wasting half the space and using up cache buffers twice as fast as you could be if the pages were full. This indicates tables with a lot of inserts and deletes,
that space will be reused. It could however also be due to bad page size, e.g. with a page size of 4K or 8K and tables that have perhaps had fields added over
a period of time. If the data sets are so large that only one or two records fit onto the page, this will leave a large amount of space.

Below the table grid, an index grid displays the statistics for all indices for a selected table. The following information is displayed for indices: index name,
fields, unique, active, sorting order, statistics, depth, leaf buckets, nodes, average data length, total dup and fill distribution. Further information can be found
under Indices page.

This information can be exported (see Export Data) to save the information to file, or printed out.

Indices page
In addition to the summary information displayed on the Tables page, the Indices page allows youto analyze all your database indices in depth.

Using the drop-down list, youcan specify which index types youwish to view:

All indices
Bad indices
Useless indices
Too deep indices
Active indices
Inactive indices
Unique indices

389

The indices are listed by table and field but, as always in IBExpert, theycan be moved or sorted by any of the listed criteria by clicking on the corresponding
columnheader. Column headers can be dragged to the top of the Indices page to display data sorted by that column. You can immediately discern the index
type (unique, active, ascending or descending).

The Selectivity columndisplays the actual selectivity which is taken into considerationby the Firebird server, when working out how best to process a query.
The Real Selectivity column displays the level of selectivity that could be attained if the index was recomputed. Should youdiscover discrepancies in these
two columns, click the Update selectivity (SET STATISTICS) button to recompute the selectivity. These discrepancies arise because the selectivity is only
computed at the time of creation, or when the IBExpert menu item Recompute Selectivity or Recompute All is used (found directly in the Statistic dialog, in the
IBExpert Database menu, or in the right-click DB Explorer menu). Alternatively the

 SET STATISTIC INDEX {INDEX_NAME}

command can be used in the SQL Editor to recompute individual indices.

This is automatically performed during a database backup and restore, as it is not the index, but its definition that is saved, and so the index is therefore
reconstructed when the database is restored.

The next columndisplays the index depths can be viewed. An index depth of 2, for example, indicates that InterBase/Firebird needs to perform two steps to
obtaina result. Normally the value should not be higher than three. Should this be the case, a database backup and restore should help.

Leaf buckets display the number of registration leaves, where InterBase/Firebird can access immediately. Further statistics include nodes, duplicates (total
and maximum) and fill distribution.

Options page
IBExpert version 2007.09.25 added the possibility to automatically analyse tables/indices statistics and the highlight possible problem tables/indices. This
feature based on the IBEBlock functionality and is therefore is fullycustomizable.

See also:
Multi-generational architecture (MGA) and record versioning
Index
Firebird for the database expert: Episode 2 - Page types
Firebird for the database expert: Episode 4 - OAT, OIT and Sweep
Transaction
GFIX

390

Database Properties
1. General page

1. Buffers
2. Database sweep / sweep interval
3. Forced writes

2. Active Users page

Database Properties
The Database Properties Editor can be started from the IBExpert Services menu. It can be used to specifycertain properties and view others appertaining to
the database specified in the Database pull-down list (in the upper part of the editor).

There are two tabs labeling the General page and the Active Users page.

General page

The General page displays the following information for the selected database:

(1) Page Size: displays the current specified page size. The page size can only be altered by performing a database backup followed by a restore (IBExpert
menu: Services / Restore Database) and redefining the database page size.

(2) SQL Dialect: shows whichSQL dialect was specified at the time of database registration. This may be altered here, if wished (althoughwatch out for
possible dialect incongruencies, for example, the different date and time types).

(3) Sweep Interval: This displays the number of transactions whichmay be made in the database before an automatic garbage collection is executed by
InterBase/Firebird. If this number is specified at zero (0) it is not performed automaticallyat all. It could thenbe carried out, for example, at night as a sweep or
backup using GFIX and the at Windows command or the Linux chron command. Please refer to database sweep for further information.

(4) ODS Version: The ODS (= On-Disk Structure) version shows with which database version the database was created, e.g. InterBase 5 = ODS version 9,
InterBase 6 = ODS version 10.0, InterBase 6.5 = ODS version 10.1, InterBase 7 = ODS version 11. Firebird versions start at ODS version 10.0.

(5) Forced Writes: This enables the forced writing onto disk mode. when committing. Please refer to forced writes for further information.

391

(6) Read Only: A database can be set to Read Only when, for example, saving the database onto a CD, or in the case of a reference or archive database.
The Read Only property is forced in the TIP page, by preventing all insert, alter and delete commands.

(7) Buffers: Here it is possible to specify how much cache the database server should reserve. A good number of buffer pages is 10,000 (based on a 4K
page size to allow 40MB cache). The amount of buffers/cache reserved canbe viewed in IBExpert here (default = 2,048). If this is increased the database can
load considerably more pages. Please refer to buffers for details.

Buffers

The buffers/cache can be set using the IBExpert menu item Database Properties, found in the Services menu, or using the command-line utilityGFIX. The
amount of buffers/cache reserved can be viewed in IBExpert under Services / Database Properties. The IBExpert Performance Analysis also displays the
number of data pages that are being held as cache on the server (from InterBase 6 onwards the standard is 2,048). Please refer to Performance Analysis /
Additional for further information. This can be altered for the current database if wished.

If this is increased the database can load considerablymore pages. For instance, it is much more efficient to load 10,000 pages, than loading 2,000 and then
exchanging for new pages once the 2,000 have been loaded. The only limit to amount of cache is the physical size of the RAM (e.g. 10,000 x 4K page size).
The total KB is calculated according to the current database page size. For an alteration to become effective, it is therefore necessary for all users to
disconnect from the database and then reconnect.

Buffers are only reserved if theyare really necessary.

Database sweep / sweep interval

Whena database is swept, all old invalid data is removed from the data pages, thus reducing the total size of the database and making room for new data
sets.

A database sweep performs a garbage collection in the database, and is performed automatically during a database backup or when a SELECT query is
made on a table (and not by INSERT, ALTER or DELETE). Furthermore database sweeps are, as standard, executed automatically after every 20,000 operations.
With veryconsistent databases however a database sweep can be started unnecessarily and thus cost unnecessary performance losses during normal user
processing. The default database sweep interval value of 20,000 (operations) can be overwritten using the IBExpert Services menu item Database
Properties.

Under Sweep Interval the number of operations can be specified before a database sweep should be automatically performed. A database sweep or backup
canbe performed during 24 hour operation online without any problems (i.e. the server does not need to be shut down). This however does slow performance
during the sweep whichmay not be desired.

If the sweep interval is specified at zero (0) it is not performed automatically at all. It could then be performed explicitly, for example, at night as a sweep or
backup using GFIX and the at Windows command or the Linux chron command.

New to Firebird 2.0: Superserver garbage collection changes

See also:
Database repair and sweeping using GFIX
Firebird for the database expert: Episode 4 - OAT, OIT and Sweep

Forced writes

This enables the forced writing mode on disk. If the forced writes option is selected all data is saved immediately to disk, i.e. every time a commit is made
everything is written to the hard drive, and thento the TIP (=Transactions Inventory Page).

Without forced writes the process is minimallyquicker, but when working on a Windows platform, Windows decides what should be saved to file, where and
when, and the data pages are saved to file last i.e. the TIP changes are written first, and thenthe data sets - whichcould possibly lead to inconsistencies,
particularly if it crashes during the process, as the TIP thinks alls data sets have beenwritten to file when theyare in fact incomplete. The Windows cache
simplystarts at the beginning and works through to the end.

The Firebird Forced Writes mechanismus writes the data where it needs it, for example, if it needs to open a new data page to write data into, it makes the
necessary note in the contents that this page contains data for the table concerned, and also makes a note in the primary pointer pages for the table itself.
Finally, when everything has successfully committed an entry is made in the TIP of what has been done and that it has been committed.

Using forced writes is therefore always recommended, and should never be deactivated unless really necessary.

See also:
Disabling forced writes
Forced writes - cuts both ways

Active Users page

392

This page displays those users logged in to the current database with an open attachment. If an application has several attachments, or a single user is
connected more than once, this is also visible here. This is important should the database need to be shut down at short notice.

Database Shutdown
There are a few occasions when a database needs to be shut down. For example, when a new foreignkey needs to be inserted the database should be shut
down in order to avoid the annoying message "Object in use". A registered database can be shut down simplyand quickly using the IBExpert Services menu
item Database Shutdown.

Select the registered database which is to be shut down. Then select one of the following options, to specifyhow active transactions should be dealt with:

Forced: In this mode all transactions, that are still active at the stated time, are aborted regardless of their type or importance, and all users are
forcefully disconnected. As InterBase/Firebird transactions functionstably and securely, there are very few areas of application where this forced mode
should not be used.
Deny new transactions: In this mode all transactions must be executed by the stated time. Any new transactions that are started are blocked. If there
are any transactions that are still active by the stated time, the database shutdown is not executed.
Deny new attachments: With this option all active user attachments must finish their work by the stated time. If some attachments are still active by
the stated time, the database shutdown is not executed.
Wait: The period of time (in seconds) until the shutdown is executed canbe specified here.

Then simplyclick Shutdown to shutdown the database. To bring the database back online, choose the IBExpert Services menu item Database Online.

See also:
Database shutdownusing GFIX

Database Online
The IBExpert Services menu item Database Online is used to bring a database back online again after it has been shut down (please refer to Database
Shutdownfor further information).

Simply select a registered database and bring the database online.

393

Communication Diagnostics
The CommunicationDiagnostics dialog canbe started from the IBExpert Services menu. It also appears automatically when registering a database and the
Test Connect button is pressed. IBExpert's Communication Diagnostics delivers a detailed protocol of the test connect to a registered InterBase/Firebird
server and the results:

This is particularly useful when attempting to connect to a remote database server, as detailed status information concerning the various steps taken to make
the connection is displayed, indicating problem areas if the connection is not achieved. If using an alias path for a remote connection, please refer to the
article Remote database connect using an alias.

The following protocols are supported:

TCP/IP (worldwide standard)
SPX - whichused to be used by Novell; now evenNovell supports TCP/IP. a
NetBEUI- which is not really a network protocol, it simplyaccesses the line. It is slow as it makes everything available everywhere and anyone can
access the information. This is also purely a Windows protocol.

Should problems occur, switch to the relevant protocol page and test again.

The TCP/IP protocol offers the following services:

21 and FTP: Each port receives a name. With Firebird this is actually optional, with InterBase: Win\System32\ drivers\etc\services -> ftp (= the
name for-) 21/tcp.
3050: This is the standard port for InterBase and Firebird. However this is sometimes altered for obvious reasons of security, or when other databases
are already using this port. If a different port is to be used for the InterBase/Firebird connection, the port number needs to be included as part of the
server name. For example, if port number 3055 is to be used, the server name is SERVER/3055.
gds_db: For InterBase: name = gds_db = 3050 / tcp (a different port to the standard 3050 can be specified if wished). If this entry is nonexistent
Firebird does not care; InterBase however does! The name gds_db has to be present.
Ping: canbe used if the connection was unsuccessful and the reason is not known. This DOS command checks which input is correct, and works
regardless of whether InterBase.exe or Firebird.exe is installed. The results show whether a database has been found, and at which address. This
should, as a rule, always work unless of course the server uses a Firewall which does not allow a Ping to be answered. In this case, use the service FTP
(as a rule the same as the 21 service).

Note: in DOS the TRACERT command lists the protocol route. TCP/IP intelligently takes another direction if one or part of the lines on the quickest route is
blocked or down.

394

Problems may occasionally arise when attempting to connect to a remote server, due to Firewall issues. These can usually be solved by simplychanging the
port assignment in firebird.conf from 3050 to 3051.

See also:
Comdiag
Register Database
Remote database connect using an alias

395

HK-Software Services Control Center
The HK-Software Services Control Center includes the following services, each documented individually:

IBExpertBackupRestore

IBExpertInstanceManager

IBExpertJobScheduler

IBExpertSQLMonitor

IBExpertTransactionMonitor

IBExpert PlugIns menu
The IBExpert PlugIns menu is intended for user-specified menu items for third party components. Two Delphi PlugIn examples are delivered as part of
IBExpert and can be found in the IBExpert/PlugIn directory. Should youhave problems finding these files theycan also be downloaded free of charge from
the web: http://www.ibexpert.com/download/PlugIns (a direct link can be found in the IBExpert Help menu item, IBExpert Direct). You need to have Delphi,
InterBase or Firebird and, of course, IBExpert installed.

Installation of the components is explained in detail in the Readme.txt files enclosed.

See also:
Environment Options / Additional Tools
IBExpert Help menu / Additional Help files

396

http://www.ibexpert.com/download/PlugIns

IBExpert Windows menu
1. Windows Manager
2. Close All
3. Cascade / Tile / Minimize / Arrange

IBExpert Windows menu
The IBExpert Windows menuoffers a number of options to visually arrange all open windows in IBExpert.

Please note that all open windows are also displayed as buttons on the Windows bar (directly above the status bar), and in the DB Explorer on the Windows
page (please refer to Windows Manager for further information).

Windows Manager
The Windows Manager can be opened using the IBExpert Windows menu item Windows Manager, by using the key combination [Alt + O], or simply by
clicking on the Window tab heading directly in the DB Explorer.

For more information regarding this, please refer to DB Explorer / Windows Manager.

Close All
Close All is an option to close all open windows with one simple mouse click, ideal when closing all open work for one project or database, before beginning
work on a new project or database, or finally finishing work for the day (...or night!).

Cascade / Tile / Minimize / Arrange
The IBExpert Windows menuoffers the following options, for arranging all open windows:

Cascade: all open windows are arranged one behind the other, in a cascading format, displaying the title bar of each window.
Tile Horizontally: all openwindows are displayed adjacently, one below the other.
Tile Vertically: all open windows are displayed adjacently, one next to the other.
Minimize All: this optionminimizes all open windows simplyand quickly with a single mouse click.
Arrange: this optionarranges the windows as currently viewed, e.g. all minimized windows are arranged in a horizontal row alongside each other.

If the SDI User Interface has been specified under Environment Options / User Interface, then only the Cascade option is offered here.

See also:
User Interface
Windows Bar
Windows Manager

397

IBExpert Help menu
The IBExpert Help Menu offers a number of provisions to offer support for IBExpert.

Since IBExpert version 2004.2.26.1, there is a new context-sensitive help system. Pressing [F1] in any of the IBExpert forms now opens a new web-based
Help page. It is also possible to download all Help Pages from http://www.ibexpert.info/documentation/documentation.zip and unzip this in the IBExpert main
directorywith subdirectories (there must be a new subdirectory called documentation). If a local Help document is available, it will be opened in the browser.
Otherwise the browser will open the page from our web server. If you have anycomments or questions please use our newsgroup (please see below).

The complete help files are also available directlyonline: http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpert.

The first view displays the Help structure. If you are looking for help about a specific subject use the Search: function.

To integrate the online Help Files into IBExpert itself, follow these five steps:

1. Download the help file (http://www.ibexpert.info/documentation/documentation.zip)
2. If youhave an older versionof IBExpert, delete the Help directory.
3. Create a new directory: Documentation in the IBExpert main directory.
4. Extract and copythe documentation.zip file into the IBExpert\Documentation directory.
5. Whenyou start IBExpert and press [F1] from anydialog, the DB Explorer or the SQL Assistant, it will open an html file in C:\program files\HK-

Software\IBExpert 2.0\Documentation\helpcontext showing youthe relevant help information.

Should younot be able to find a solution to your problem here, please use one of our newsgroups:

Username: ibexpert
Password: ibexpert

news://ibexpert.info/interbase.ibexpert.de German language
news://ibexpert.info/interbase.ibexpert.en English language
news://ibexpert.info/interbase.ibexpert.ruRussian language
news://ibexpert.info/interbase.ibexpert.fr French language

or send us an email to support@ibexpert.com or use our Bug Track System in the IBExpert Help Menu.

Should youhave anycomments or queries directly regarding the Help documentation, or wish to contribute your ownarticles, please contact documentation@
ibexpert.com

398

http://www.ibexpert.info/documentation/documentation.zipandunzipthisintheIBExpertmain
http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpert
http://www.ibexpert.info/documentation/documentation.zip
mailto:orsendusanemailtosupport@ibexpert.comoruseourBugTrackSystemintheIBExpertHelpMenu.

IBExpert Customer Area
New to IBExpert version 2005.3.12.1: this menu item allows all registered users of full versions (not the Trial Versionor IBExpert Personal Edition) direct
access to the protected customer area, without having to search for their current registration keys.

Simply click the menu item, and IBExpert uses your registration keys to automatically access the online IBExpert Customer Area. This does nothing other than
open a URL such as the following example:

 http://1234567887654321:ibexpert@www.ibexpert.com/customer

where 1234567887654321 is a combination of Key A and Key B which is already stored in the registry. (There is no point testing the above link, as the keys
quoted are for example only!).

Warning: Althoughthis functionworks faultlessly with browsers such as Firefox, problems may be experienced with Windows Internet Explorer. In this case, it
is necessary to access the protected customer area under http://www.ibexpert.com/customer in the usual way, by inputting your customer keys and password,
and then download the customer_area.reg to the local drive and thenmerge in regedit (Windows menuStart / Execute; type regedit, right-click menu item
Merge and merge the files).

Alternatively it is possible to create the following registry keymanually:

1. In Windows click the bottom left menuStart.
2. Execute.
3. Type regedit and enter (or click OK).
4. HKEY_LOCAL_MACHINE ist the root-key. Open the folders SOFTWARE, Microsoft, Internet Explorer, Main and FeatureControl.
5. Here youneed to add a new feature FeatureControl.
6. You should thenadd FEATURE_HTTP_USERNAME_PASSWORD_DISABLE and using the right-click menu in the empty right dialog area, select Newand then

Key, and type IExplore.exe in the input field.
7. On the left youwill now find a new folder, IExplore.exe, in the FeatureControl list. Highlight this, use the context-sensitive right-click menuto select

New/ DWORD value.
8. Add newDWORD with name IExplore.exe and value "0" ("IExplore.exe"=dword:00000000).

399

mailto:http://1234567887654321:ibexpert@www.ibexpert.com/customer
http://www.ibexpert.com/customerintheusualway,byinputtingyourcustomerkeysandpassword

What's New?
1. IBExpert 2008.08.08
2. IBExpert 2008.05.03
3. IBExpert 2008.02.19
4. IBExpert 2007.12.08
5. IBExpert 2007.12.01
6. IBExpert 2007.09.25

What's New?
IBExpert 2008.08.08
The new IBExpert version 2008.08.08 includes the new feature IBExpert Instance Manager and many improvements and small bug fixes.

1. IBExpertInstanceManager

The IBExpertInstanceManager is a new module in HK-Software Control Center. It can be started using the IBExpert Services menu item, HK-Software
Services Control Center. It allows youto install several instances of the Firebird server on one Windows machine using different ports. Additional functions
allow monitoring and other useful options.

Step by step instructions:

1. Be sure that there is already a Firebird Instance installed on the machine using the default Firebird installer.
2. Install the new IBExpert version.
3. Start the Services-HK Software Services Control Center.
4. Select the IBExpertInstanceManager service.
5. Right click on it and select Add task.
6. For the newlyadded task select BaseService from the list of Firebird instances installed on your PC.
7. Set the port number for the Firebird instance youare going to create. All other instance configurationsettings will be generated automatically.
8. Setup mail notification if needed.
9. Setup validation parameters if needed. Validation is just a test connection to security.fdb of the new instance, using the instance's port number.

10. Set the task's Active parameter to True.
11. To rename the task, click on the task name with the [Ctrl] keypressed down.
12. Run the service. When properly configured the running task should show runtime info on the first run.

The full documentation can be found here.

That's it! Using multiple instances of the Firebird Server has different advantages, for example using different SYSDBA passwords, using multiple CPUs more
effectively, using old and new Firebird version on one machine etc.

To distribute the IBExpertInstanceManager with your application, you need a Junior VAR License or a VAR License.

2. IBEBlock Results form:

Added the possibility to sort data by clicking on a grid columncaption.

Added the option to export data.

3. Table Data Comparer:

It is now possible to generate UPDATE OR INSERT instead of UPDATE/INSERT for Firebird 2.1 databases.

4. IBEBlock:

ibec_CompareTables function.

Here it is now possible to compare more thanone table in a single operation. Just specify the list of necessary tables, delimited with a comma or semicolon,
as MasterTable and SubscriberTable.

Example:

 ibec_CompareTables@@(DB1, DB2,'TABLE1, TABLE2, "Table3"',
 'TABLE1, TABLE2, "Table3"',
 'D:\Diff.sql', 'UpdateOrInsert', cbb);'

Added UpdateOrInsert option(UseUpdateOrInsert is valid too).

This allows you to generate UPDATE OR INSERT statements instead of UPDATE/INSERT for Firebird 2.1 databases. See example above.

ibec_ds_Sort function implemented.

Syntax:

 function ibec_ds_Sort(Dataset : variant; SortFields : string) : variant;

ibec_ds_Sort functionsorts Dataset according to the specified SortFields.

400

Example:

 execute ibeblock
 as
 begin
 select * from rdb$relation_fields
 as dataset ds;
 try
 ibec_ds_Sort(ds, 'RDB$RELATION_NAME ASC, RDB$FIELD_POSITION ASC');
 ibec_ds_Sort(ds, 'RDB$RELATION_NAME, RDB$FIELD_POSITION');
 ibec_ds_Sort(ds, '1, 2 DESC'); finally
 ibec_ds_Close(ds);
 end;
 end;

ibec_ds_Locate function implemented.

Syntax:

 function ibec_ds_Locate(Dataset : variant; KeyFields : string;
 KeyValues : array of variant; Options : integer) : boolean;

ibec_ds_Locate searches Dataset for a specified record and makes that record the active record.

KeyFields is a string containing a semicolon-delimited list of field names in which to search.

KeyValues is a variant array containing the values to match in the keyfields.

If KeyFields lists a single field, KeyValues specifies the value for that field on the desired record. To specifymultiple search values, pass a variant array as
KeyValues, or construct a variant array on the fly using the ibec_Array function.

Examples:

 ibec_ds_Locate('Company;Contact;Phone', ibec_Array('Sight Diver', 'P', '408-431-1000'), __loPartialKey);

or
 Keys[0] = 'Sight Diver';
 Keys[1] = 'P';
 Keys[2] = '408-431-1000';
 ibec_ds_Locate('Company;Contact;Phone', Keys, __loPartialKey);

Options is a set of flags that optionally specifies additional search latitude when searching on string fields. If Options contains the __loCaseInsensitive flag,
then ibec_ds_Locate ignores case when matching fields. If Options contains the __loPartialKey flag, thenibec_ds_Locate allows partial-string matching on
strings in KeyValues. If Options is 0 or NULL or if the KeyFields property does not include any string fields, Options is ignored.

This functionreturns True if a record is found that matches the specified criteria and the cursor repositioned to that record. Otherwise it returns False.

Example:

 execute ibeblock
 returns (FieldName varchar(100))
 as
 begin
 select * from rdb$relation_fields
 as dataset ds;
 try
 ibec_ds_Sort(ds, 'RDB$RELATION_NAME, RDB$FIELD_POSITION');
 res = ibec_ds_Locate(ds, 'RDB$RELATION_NAME', 'RDB$FIELDS', __loPartialKey);
 while (res) do
 begin
 FieldName = ibec_ds_GetField(ds, 'RDB$FIELD_NAME');
 FieldName = ibec_Trim(FieldName);
 suspend;
 ibec_ds_Next(ds);
 res = not ibec_ds_EOF(ds);
 if (res) then
 begin
 RelName = ibec_Trim(ibec_ds_GetField(ds, 'RDB$RELATION_NAME'));
 res = RelName = 'RDB$FIELDS';
 end;
 end;
 finally
 ibec_ds_Close(ds);
 end;
 end

ibec_ExecSQLScript function implemented.

Syntax:

 function ibec_ExecSQLScript(Connection : variant; SQLScript : string; Options : string; ProgressBlock : variant) : variant;

ibec_ExecSQLScript executes an SQL script from a variable or a file.

401

Connection is an active connection created with the ibec_CreateConnection function whichwill be used while executing a script. If Connection is not
specified (NULL) the script must contain the CREATE DATABASE or the CONNECT statement, otherwise an exception will be raised.

SQLScript script text or name of script file.

Options additional options. There are two additional options currently available: ServerVersion and StopOnError.
ProgressBlock an IBEBlock whichwill be executed for every progress message generated during script execution.

ibec_ExecSQLScript returns NULL if there were no errors while executing a script. Otherwise it returns an error(s) message.

Example:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (BlockData variant)
 as
 begin
 sMessage = BlockData;
 if (sMessage is not null) then
 ibec_Progress('SQL Script: ' + sMessage);
 end';

 db = ibec_CreateConnection(__ctFirebird, ...);
 try
 Scr = 'INSERT INTO MYTABLE (ID, DATA) VALUES (1, 'Bla-bla'); ' + 'INSERT INTO MYTABLE (ID, DATA) VALUES
 (2, 'Bla-bla'); ' + 'COMMIT;';
 ibec_ExecSQLScript(db, Scr, 'ServerVersion=FB21; StopOnError=FALSE', cbb); ...
 ibec_ExecSQLScript(db, 'D:\Scripts\CheckData.sql', 'ServerVersion=FB21', null); finally
 ibec_CloseConnection(db);
 end
 end

ibec_GetViewRecreateScript function implemented.

Syntax:

 function ibec_GetViewRecreateScript(Connection : variant; ViewName : string;
 Options : string; ProgressBlock : variant) : string;

ibec_GetViewRecreateScript creates a Recreate script for a specified view(s) and returns it as a result.

Connection is an active connectioncreated with the ibec_CreateConnection function.

ViewName list of names of view(s), delimited with semicolon or comma, for which a Recreate script will be created.

Options list of options delimited with semicolon; possible options are:

GenerateCreate determines whether a CREATE DATABASE statement should be included at the beginning of the generated script.

GenerateConnect determines whether a CONNECT statement should be included at the beginning of the generated script.

IncludePassword determines whether the password should be included into the CREATE DATABASE or the CONNECT statement in the
resulting SQL script.

SupressComments use to supress comments in the resulting script.

ExtractDescriptions determines whether database objects' descriptions should be included in the generated script. By default this option
is enabled.

DescriptionsAsUpdate determines whether the raw UPDATE statement should be used for object descriptions instead of the IBExpert
specific DESCRIBE statement.

UseComment generates the COMMENT ON statement for object descriptions (Firebird 2.x).

DontUseSetTerm don't use SET TERM statements, all statements will be separated by semicolon only.

UseCreateOrAlter generates CREATE OR ALTER instead of CREATE/ALTERwhere possible.

ProgressBlock an IBEBlock whichwill be executed for every progress message generated during script execution. Maybe NULL or
empty.

Example:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (MsgData variant)
 as
 begin
 ibec_Progress(MsgData);
 end';
 ...
 RecreateScript = ibec_GetViewRecreateScript(mydb, 'VIEW_A; VIEW_B; VIEW_C',
 'GenerateConnect; IncludePassword; UseCreateOrAlter', cbb);
 Res = ibec_ExecSQLScript(null, RecreateScript, 'ServerVersion=FB21', cbb);
 end

5. DB Explorer context menu, Apply Block:

402

Added the possibility to recreate selected views based on IBEBlock and the ibec_GetViewRecreateScript function.

6. New installer

7. A lot of minor bug fixes and small improvements...

8. Forum for Firebird and IBExpert news: http://www.firebirdexperts.com

IBExpert 2008.05.03
The newest IBExpert version has a lot of improvements and bug fixes. The most important are:

improved support for Firebird 2.1
new IBEBlock functions for

creating reports
POP3 E-Mail access
SMTP support
and much more.

The command-line versions ibescript.exe and the DLL version ibescript.dll have been improved. The new customer version is available for download
here: http://www.ibexpert.com/customer.

If you have already downloaded version 2008.05.03 and encounter a problem closing the Script Executive, please download the new bug-fixed version.

1. IBExpert websites completely redesigned:

We have changed almost all the IBExpert websites over the last weeks:

The new IBExpert website can be found here: http://www.ibexpert.net/ibe.
The new online shop can be found here: http://www.ibexpert.net/shop.
The new documentation canbe found here: http://ibexpert.net/ibe/index.php?n=Doc.Doc.

2. The Firebird forum for beginners and professionals: http://www.firebirdexperts.com

The forum is focused on Firebird-specific topics for developers. The main topics are Delphi, .NET, Java and PHP. If requested, we canalso add new areas or
language-specific boards. The forum runs on Windows 2003 Server, Apache web server, the current PHP version, phpBB 3.01, and Firebird 2.1. The
installation is easier than most people think, especially since there is an integrated Apache and PHP version with Firebird support in the current IBExpert
customer version.

3. Scripting language IBEBlock:

Reports are now available for batchcreation. Some new IBEBlock commands are now available for executing reports created with IBExpert's Report Manager
in command-line mode, for example with batch files. The monthly sales report, invoices or other reports canbe designed in the Report Manager and executed
with simple SQL statements. The result canbe saved in the database as a pdf or other formats and sent by E-Mail. Further details can be found in our
docmentation at http://ibexpert.net/ibe/index.php?n=Doc.IBEBlock.

IBExpert 2008.02.19
1. IBExpertWebForms now included in IBExpert Customer Version:

What is required for using IBExpertWebForms?

Since IBExpert version 2008.01.28 all IBExpert fully licensed versions, i.e. single, multiple, Site, Junior VAR and full VAR licenses, include our fully integrated
IBExpertWebForms module.

If you have a customer version of IBExpert, you are allowed to use IBExpertWebForms on your registered computer. If you have a Site License, you canuse
IBExpertWebForms on anycomputer in your company. If youhave a VAR or Junior VAR License, youare allowed to distribute IBExpertWebForms together
with your applications to your customers.

With IBExpertWebForms you can create database-based web applications. Just place your VCL components in the integrated Form Designer, connect them
with your tables or queries as a data source using the integrated object inspector, and create your events as stored procedures inside your Firebird or
InterBase database.

The result is handled by a PHP script, which is used by the Apache web server on Windows, Linux or anyother operating system which supports Apache, PHP
and Firebird or InterBase.

The main advantage: youdo not need any know-how regarding Java script, HTML, Ajax, PHP, etc. to create your database web application. All operations are
done inside your database and you just need to learn some very simple extensions and rules based on your existing Firebird and InterBase knowledge. Start
your database web development in just 10 minutes after reading this document!

http://www.ibexpert.com/download/IBExpertWebForms/IBEWebFormsFirstSteps.pdf

403

http://www.firebirdexperts.com
http://www.ibexpert.com/customer
http://www.ibexpert.net/ibe
http://www.ibexpert.net/shop
http://ibexpert.net/ibe/index.php?n=Doc.Doc
http://www.firebirdexperts.com
http://ibexpert.net/ibe/index.php?n=Doc.IBEBlock
http://www.ibexpert.com/download/IBExpertWebForms/IBEWebFormsFirstSteps.pdf

2. Database Explorer:

Drag 'n' drop of objects from the Database Explorer into the Code Editor.
Since this version it is possible to create your ownsets of statements that will be composed when you drag 'n' drop object(s) from the Database
Explorer into anycode editor. This feature is based on IBEBlock; refer to the example below for more details.
Context Menu/ Apply IBEBlock to selected object(s).
This feature is also based on the IBEBlock functionality and allows you to create your ownset of code blocks to process selected object(s). Inplace
debugging is available. See example below for more details.

3. Script language, OUTPUT statement:

AsUpdateOrInsert optionadded.

Example:

 OUTPUT 'C:MyScriptsdata.sql' ASUPDATEORINSERT;
 SELECT * FROM MYTABLE ORDER BY ID;
 OUTPUT;
 COMMIT;:

This produces a script containing UPDATE or INSERT statements.

4. Database Registration Info / Log Files:

Added the possibility to include a date part into log file names. This allows you to create daily/monthly logs automatically. The following substrings in a log file
name will be replaced with a current date:

 =date=yyyy-mm-dd
 =date=yyyy-mm-dd%=<date format string>%

=date=yyyy-mm-dd is a short form of the date template and is equal to =date=yyyy-mm-dd%=yyyy-mm-dd%

Examples:

D:MyLogsTestDB=date=yyyy-mm-dd.sql - file name for a simple daily log.

D:MyLogsTestDB=date=yyyy-mm-dd%=mmmm of yyyyyyyy-mm-dd%=date=yyyy-mm-dd%=yyyy.mm.dd%.sql - a separate directory('January 2008' etc.) will be
created for each month.

5. Blob Viewer:

Added support for TIFF images.

6. ODBC Viewer:

Fixed the problem with exporting of memo-fields.

7. IBEBlock:

The following functions have been implemented:

ibec_GetRunDir - returns the path of the currently executing program. (IBExpert.exe or IBEScript.exe).

Syntax:

 function ibec_GetRunDir : string;

ibec_GetUserDBConnection - returns pointer to the User Database (Options / Environment Options / User Database) if one is used. Otherwise this
functionreturns NULL.

Syntax:

 function ibec_GetUserDBConnection : variant;
 Example:
 execute ibeblock
 as
 begin
 CRLF = ibec_CRLF();
 sTab = ibec_Chr(9);
 sLine = '==';
 UserDB = ibec_GetUserDBConnection();
 if (UserDB is not null) then
 begin
 sMes = '';
 sHost = ibec_GetConnectionProp(UserDB, 'HostName');
 sFile = ibec_GetConnectionProp(UserDB, 'FileName');
 sServerVersion = ibec_GetConnectionProp(UserDB, 'ServerVersion');
 sDBSqlDialect = ibec_GetConnectionProp(UserDB, 'DBSqlDialect');
 sClientLib = ibec_GetConnectionProp(UserDB, 'ClientLib');
 sUser = ibec_GetConnectionProp(UserDB, 'UserName');
 sPass = ibec_GetConnectionProp(UserDB, 'Password');
 sNames = ibec_GetConnectionProp(UserDB, 'lc_ctype');
 iPageSize = ibec_GetConnectionProp(UserDB, 'PageSize');

404

 iSweep = ibec_GetConnectionProp(UserDB, 'SweepInterval');
 iODSMinorVersion = ibec_GetConnectionProp(UserDB, 'ODSMinorVersion');
 iODSMajorVersion = ibec_GetConnectionProp(UserDB, 'ODSMajorVersion');
 sMes = 'User Database properties' + CRLF + sLine + CRLF;
 sMes .= 'Database host: ';
 if (sHost = '') then
 sMes .= sTab + '(local)';
 else
 sMes .= sTab + sHost;
 sMes .= CRLF +
 'Database file: ' + sTab + sFile + CRLF +
 'Server version: ' + sTab + sServerVersion + CRLF +
 'Client library: ' + sTab + sClientLib + CRLF + CRLF +
 'Page size, bytes: ' + sTab + ibec_Cast(iPageSize,

 __typeString) + CRLF +
 'Sweep interval: ' + sTab + sTab + ibec_Cast(iSweep,

 __typeString) + CRLF +
 'ODS version: ' + sTab + sTab + ibec_Cast(iODSMajorVersion,

 __typeString) + '.' +
 ibec_Cast(iODSMinorVersion, __typeString) + CRLF + CRLF

 +
 'Connection username: ' + sTab + sUser + CRLF +
 'Connection password: ' + sTab + sPass + CRLF +
 'Connection charset: ' + sTab + sNames + CRLF;
 ibec_UseConnection(UserDB);
 sMes .= CRLF + CRLF + 'User Database tables' + CRLF + sLine + CRLF;
 for select rdb$relation_name
 from rdb$relations
 where (rdb$system_flag is null) or (rdb$system_flag = 0)
 order by rdb$relation_name
 into :RelName
 do
 begin
 RelName = ibec_Trim(RelName);
 sMes .= RelName + CRLF;
 end
 commit;
 ibec_ShowMessage(sMes);
 end
 end

ibec_ibe_GetActiveDatabaseID - returns the unique identifier of the active (currently used) database within IBExpert. If there is no active database
ibec_ibe_GetActiveDatabaseID returns -1.

Syntax:

 function ibec_ibe_GetActiveDatabaseID : integer;

ibec_ibe_GetDatabaseProp - returns the value of a specifed database property.

Syntax:

 function ibec_ibe_GetDatabaseProp(DatabaseID : integer; PropertyName : string) : variant;

The following properties are available:

ALIAS alias of the registered database

CLIENTLIB name of client library file specified in the database registration info

SERVERNAME or HOSTNAME server name

FILENAME or DBNAME database file name
PASSWORD password specified in the database regstration info

USERNAME or USER_NAME or USER user name

ROLENAME or ROLE_NAME or ROLE role name

NAMES or LC_CTYPE or CHARSET connection charset

CONNECTIONSTRING or CONNECTION_STRING connection string

ACTIVE or CONNECTED returns TRUE if the database is active and FALSE if it is not

Example:

 execute ibeblock as
 begin
 CRLF = ibec_CRLF();
 ActiveDB = ibec_ibe_GetActiveDatabaseID();
 if (ActiveDB is not null) then
 begin
 if (ActiveDB = -1) then
 Exit;
 sAlias = ibec_ibe_GetDatabaseProp(ActiveDB, 'Alias');
 sClientLib = ibec_ibe_GetDatabaseProp(ActiveDB, 'ClientLib');
 sHost = ibec_ibe_GetDatabaseProp(ActiveDB, 'HostName');

405

 sFileName = ibec_ibe_GetDatabaseProp(ActiveDB, 'FileName');
 sPassword = ibec_ibe_GetDatabaseProp(ActiveDB, 'Password');
 sUser = ibec_ibe_GetDatabaseProp(ActiveDB, 'User');
 sRole = ibec_ibe_GetDatabaseProp(ActiveDB, 'Role');
 sCharset = ibec_ibe_GetDatabaseProp(ActiveDB, 'Names');
 sConnectionStr = ibec_ibe_GetDatabaseProp(ActiveDB, 'ConnectionString');
 bActive = ibec_ibe_GetDatabaseProp(ActiveDB, 'Connected');
 s = 'Database alias: ' + sAlias + CRLF +
 'Client library: ' + sClientLib + CRLF +
 'Server name: ' + sHost + CRLF +
 'Database file name: ' + sFileName + CRLF +
 'User name: ' + sUser + CRLF +
 'Password: ' + sPassword + CRLF +
 'Role: ' + sRole + CRLF +
 'Charset: ' + sCharset + CRLF +
 'Connection string: ' + sConnectionStr;
 if (bActive) then
 s .= CRLF + CRLF + 'Database is active.';
 ibec_ShowMessage(s);
 end
 end

8. Integrated web-based groupware "PHProjekt IBExpert Edition" usable with Firebird 1.5

IBExpert customers can now use PHProjekt with Firebird 1.5. The fully functional web-based groupware system offers many useful tasks and functions such
as calendar, chat, trouble ticketing, contacts, mailing lists etc.

How to start it? Just start the example from and starting the WebForm the first time (on port 80), just enter http://localhost/phprojekt in your web browser and
follow the instructions to install.

Attention: the first page shows a panic information and a link to the setup form. Just follow the link to start the installer. The current version still has some
problems with Firebird 2.x, so we recommend using it at the moment only with Firebird 1.5.

PHProjekt is an OpenSource Project and free software. For IBExpert Customers, we made some changes to the source code, to make it possible to use it
with Firebird. The original version which canbe downloaded from phprojekt.com still contains some errors for Firebird users.

The documentation for phprojekt canbe found here in English: http://www.ibexpert.com/download/phprojekt/phprojekt_en.pdf

and here in German: http://www.ibexpert.com/download/phprojekt/phprojekt_de.pdf

Important: We offer no official support for this product, but weve been using it for a long time with InterBase and Firebird and we really like it.

9. A lot of minor bug fixes and small improvements.

IBExpert 2007.12.08
1. IBExpertXOCR Command Line Version available:

What is IBExpertXOCR?

IBExpertXOCR is an optical character recognition command line utility, able to convert scanned images into text files. This increases the value of all your
documents, since it makes it easy to store these files in a database. A full text search engine can be created using simple SQL statements.

What are the System requirements?

The installationrequires about 15 MB. A typical OCR process takes between2 and 5 seconds per page, depending on the processor speed and the
complexityand qualityof your scanned image. For best results, the scanner should work with a minimum of 300 dpi and store the images in TIFF format. It can
be used under Windows 2000 or upwards. It can also be used under Linux and Wine.

What are the major advantages for processing the recognized documents inside a database? Howcan I process the documents automatically?

A fully functional RDBMS such as Firebird allows youto easilystore the images and text files in the database and use simple SELECT statements to define your
result set. Operators such as CONTAINING, IN or LIKE provide fast access even in medium-sized databases. A typical search on a 5 GB database with about
50,000 documents takes less thana single second evenfor complexresults. Based on the recognized text, youcan add, for example, a database trigger to
create links to existing records in your customer table or whatever you want. When a customer invoice is scanned, there is oftena text such as Customer No: in
front of the required number. All new text records can be searched using a trigger and simple functions from UDF libraries to detect the document type and
extract such numbers. The Firebird database can be used with billions of data sets. For very large amounts of documents, we can integrate the scalable
memory-based full-text search engine IBExpertFTS. This canhandle millions of documents and display the result extremely fast.

Howto integrate IBExpertXOCR in my environment? Howto connect a scanner?

The calling interface is extremely simple. Just place your documents in a directory, call xocr.exe with the file names as a parameter and after processing, it will
store the recognized text in a text file with the same file name and a changed file name extension. Most modernscanners have a programmable TWAIN
interface, but in our experience it is usually incompatible to other scanners. We prefer using a scanner with a file interface. Very reliable machines can be
found at Fujitsu or Plustek. IBExpertXOCR includes the command line interface that canbe used from any development environment, for example Delphi, C++,
VB, C#, batch files or any other software, whichsupports calling other applications. The created text files and scanned images can be loaded in anyother
database that supports blob columns.

406

http://localhost/phprojektinyourwebbrowserand
http://www.ibexpert.com/download/phprojekt/phprojekt_en.pdf
http://www.ibexpert.com/download/phprojekt/phprojekt_de.pdf

What characters are supported?

All supported characters can be found here:

All typical westernEuropean characters and business fonts such as Arial, Times, etc. are supported. Handwriting or artistic fonts are not supported.

The IBExpertXOCR Trial Versioncan be downloaded here: http://www.ibexpert.com/xocrtrial/

Pricing?

The IBExpertXOCR Single License costs EUR 499.00. The license is created for a specific computer name. You can purchase IBExpertXOCR in our shop in
(select the product group software): .

IBExpert 2007.12.01
We recommend youuninstall older versions before installing the new IBExpert Version. Please select all IBExpert products in the Windows - ControlCenter /
Add or Remove Software. All registered databases are stored in the directory C:Documents and Settings[user]ApplicationdataHK-SoftwareIBExpert or, if
used, in the IBExpert User Database. Please backup these before uninstalling.

1. To-do List implemented (Tools / To-do list):

This new feature can be used to organize your database development. You can add ToDo Items for each object in the database.

2. Database Comparer:

Firebird 2.1 support added.

3. Log Manager:

Generation of logging trigger bodies now based on the IBEBlock feature.

4. IBEBlock:

Added the possibility to pass arrays into IBEBlocks (EXECUTE IBEBLOCK).

Example:

 execute ibeblock
 as
 begin
 MyBlock = 'execute ibeblock (inparam variant)
 as
 begin
 ibec_ShowMessage(inparam[0] || inparam[1] || inparam[2]);
 end'; MyVar[0] = 'Hello';
 MyVar[1] = ', ';
 MyVar[2] = 'World!';
 execute ibeblock MyBlock(MyVar);
 end

Support of CREATE/ALTER SEQUENCE (Firebird 2.x) in the ibec_ExtractMetadata function(UseSequence option).

5. Script Executive:

Added the possibility to show DML statements (INSERT, UPDATE, DELETE) in the Script Explorer tree. Use the Script Explorer context menu to display
DML statements.

6. Database Monitor:

Fixed the problem with the loading of monitor queries when working with Firebird 2.1.

7. Table and View Editor, Triggers tab:

Added the option to set active/inactive for more than one trigger simultaneously.

8. Extract Metadata:

Now supports CREATE/ALTER SEQUENCE (Firebird 2.x).

407

http://www.ibexpert.com/xocrtrial/

Added the possibility to extract table data when extracting into VCS files.
Fixed the problem with the extraction of array domains dimensions.

9. Database Registration:

Trusted Authentication option added (Firebird 2.1).

10. A lot of minor bug fixes and small improvements.

11. Changes in the installer and updated Service Tools

IBExpertSQLMonitor, IBExpertJobScheduler, IBExpertTransactionMonitor and the IBExpertBackupRestore Service were updated. Due to changes in the
installer, we strongly recommend uninstalling older versions before installing the new IBExpert Version. Please select all IBExpert products in the Windows
ControlCenter - Add or Remove Software. All registered databases are stored in the directoryC:Documents and SettingsApplicationdataHK-
SoftwareIBExpert or, if used, in the IBExpert User Database. Please backup these files before uninstalling.

IBExpert 2007.09.25
1. Tools / ODBC Viewer:

The ODBC Viewer allows youto browse data from any ODBC source available on your PC and also export data from a ODBC source into an SQL
script or directly into a Firebird/InterBase database.

2. Services / Database Statistics:

Added the possibility to automaticallyanalyse tables/indices statistics and the highlighting of possible problem tables/indices. This feature based on
the IBEBlock functionality and is therefore is fullycustomizable.

3. Tools / Extract Metadata:

Added the Use CREATE OR ALTER for procedures and triggers option.
Added the Dont use SET TERM command. SET TERM is not necessary for scripts executed by IBExpert/IBEScript but may be necessary when working
with other tools.
Now it is possible to create scripts larger than 2 GB.

4. Tools / Script Editor; IBEScript:

Both now work with scripts larger than 2 GB.

5. SP/Trigger Parser:

The SP/Trigger Parser now displays variables/parameters that may be not initialized or assigned but never used.

6. Blob Editor:

Added syntaxhighlighting for Delphi forms (dfm).

7. Tools / Table Data Comparer:

Added the possibility to synchronize generators.

8. Table Editor / Fields:

Added the possibility to create a ForeignKey from the context menuof the columns list.

9. Tools / Script Editor:

The Script Explorer now displays IBEBlocks and Firebird Blocks.

10. A lot of minor bugfixes and small improvements.

Contents
The IBExpert online documentation can be viewed online under http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpert. It canbe downloaded from http://
www.ibexpert.info/documentation/documentation.zip. (For download instructions please refer to the IBExpert Help menu.)

The first view displays the complete list of contents. If you are looking for help about a specific subject use the Search: function(top right).

In the meantime, should yoube unable to find a solution to your problem here, please use one of our newsgroups (in English, German, Frenchand Russian).
Should youhave anycomments or queries directly regarding the Help documentation, or wish to contribute your ownarticles, please contact documentation@
ibexpert.com.

408

http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpert.Itcanbedownloadedfromhttp://
www.ibexpert.info/documentation/documentation.zip

Additional Help files
This menu item has been included for third party help files, intended for those third party components included in the IBExpert PlugIns menu. Such Help files
can be installed using the IBExpert Options menu: Environment Options / Additional Help.

The installed help files appear here as an additional menu item.

Product Home Page
The IBExpert Help menu item Product Home Page does none other thanopen the http://ibexpert.net/ibe/ homepage, whichprovides product information,
news, support, downloads, plugins, purchase and a contact email, in English and German languages.

Send bug reports to
The IBExpert Help menu item Send Bug Reports To allows you to inform us at IBExpert of any bugs discovered or suggestions youmay wish to make. The
From, To and Re fields are automatically filled; it is merely necessary to type in the message, if possible with an example, in order to enable us to reproduce
the operations leading to the problem, and send.

All bug reports can be followed in the Bug Track System.

Bug Track System
The IBExpert Bug Track System was introduced on the 28.04.2003 in version 2.5.0.38. It allows all users to post and follow all bugs discovered and their
current status.

There are currently two bug track groups: English and Russian. Each bug reported receives a number and priority. It is also possible to follow the status (i.e.
closed, found, fixed), follow correspondence (by clicking on the + button or using the [+] key), and view the IBExpert version and date including the fix.

If you want to post a bug directly from the Bug Track System (as an alternative to the IBExpert Help menu item Send Bug Reports To), it is first necessary to
specify your signature. Simply click on the Configure Bug Tracking System icon, to spring to the Environment Options / IBExpert Bug Track window and input
the required information.

Using either the Bug Track pull-down menuor the relevant icons in the toolbar, it is possible to reply to items and send and receive.

About
The IBExpert Help menu item About calls the so-called IBExpert splash screen, including the IBExpert logo and current installed version number, with a full
copyof the software license on the second page (click the License tab).

Since October 2003 we have introduced a new version numbering system based on the date, as opposed to the more traditional version numbering system.

IBExpert Direct...
The IBExpert Help menu item IBExpert Direct... opens two windows offering comprehensive user information and support.

409

http://ibexpert.net/ibe/homepage,whichprovidesproductinformation

The IBExpert Firebird Experts forum provides help and answers to your questions regarding all IBExpert Developer Studio tools as well as Firebird. IBExpert
Direct provides all users with important information concerning IBExpert, such as new versions, documentation, downloads, plugins, newsgroups, as well as
contact addresses and a direct link to the IBExpert home page, http://ibexpert.net/ibe/.

In the forum you canview postings and follow discussions as a guest, or register (user name and password) in order to participate.

The IBExpert Direct window provides direct links to its online shop, forums, software download areas, and also links to information about training, online
videos, newsgroups and contact adresses.

410

http://ibexpert.net/ibe/

The Configure IBExpert Direct icon opens the IBExpert Options menu item, Environment Options / IBExpert Direct dialog, where it is possible to specifyhow
often the network should be polled for new items, and to configure a proxy server if wished.

Download Firebird / Purchase InterBase
These last three items in the IBExpert Help menuprovide direct links to the software producers, for those wishing to purchase or download InterBase or
Firebird.

Download InterBase Open Edition: currently invalid.
Buy Borland InterBase: opens the link: http://www.borland.com/interbase/. Byclicking DOWNLOADS, it is possible to download the newest trial
version (currently InterBase 2007 Developer, April 9, 2008). By clicking PURCHASE, youcan gain access to the online web shop, or search for your
nearest retailer.
Download Firebird: opens the link: http://www.firebirdsql.org/. Please refer to Download and Install Firebird for further details.

411

http://www.borland.com/interbase/.Byclicking
http://www.firebirdsql.org/.PleaserefertoDownloadandInstallFirebirdforfurtherdetails

FAQs
1. How do I connect to a database?
2. Why do I need to register a database?
3. How do I create a new database?
4. How do I use the SQL Editor?
5. Why are new fields not displayed on the Data page

in the Table Editor?
6. What is the Performance Analysis for?
7. What is the Query Plan?
8. How can I optimize an SQL Statement?
9. How do I debug a stored procedure?

10. Are there typical windows for
all Object Editors?

11. How can I use the view and procedure version control?
12. What is the Project View in the DB Explorer for?
13. What is the Recent list in the DB Explorer for?
14. How do I use the integrated Report Manager?
15. Why can I not see the index statistics in the Table Editor?
16. Why does the index selectivity/statistics not change?
17. Indices do not seem to work on my newly installed application
18. How can I integrate the online Help files into IBExpert?
19. Import CSV Files
20. When I use Norton AntiVirus which IBExpert

files must I include in the Exclusion List?
21. Can I alter IBExpert Table Editor default

to show the Data page instead of the Fields page?
22. I cannot change the language in Environment Options
23. How do I find the procedures, trigger and views,

that do not use an index in their operations?
24. How do I find the procedures and triggers that have

typical type casting problems?
25. How do you know if your database server garbage collection

is working?
26. How do I change the Character Set of all tables in a database?

FAQs
Here we have attempted to list some of the more frequently asked questions regarding IBExpert. Should younot be able to find a solution to your problem
under the links provided here or elsewhere within the IBExpert documentation, please contact one of our newsgroups:

Username: ibexpert
Password: ibexpert

news://ibexpert.info/interbase.ibexpert.de German language
news://ibexpert.info/interbase.ibexpert.en English language
news://ibexpert.info/interbase.ibexpert.ruRussian language
news://ibexpert.info/interbase.ibexpert.fr French language

or send an email to documentation@ibexpert.com or support@ibexpert.com, or use our Bug Track System in IBExpert.

How do I connect to a database?
See Connect to an existing Database and Register Database.

If youare experiencing problems with a remote connection, please refer to Communication Diagnostics.

Why do I need to register a database?
See Register Database.

How do I create a new database?
See Create Database.

How do I use the SQL Editor?
See SQL Editor.

Why are new fields not displayed on the Data page in the Table Editor?
We have often been asked the questionwhy, after creating a new field on the Fields page, the new field is not immediatelydisplayed on the Data page.

This is because you have to commit or rollback the current data transaction using the corresponding icons on the Table Editor toolbar. As this transaction was
started before youadded a new field you can't see it until you have committed.

What is the Performance Analysis for?
See Performance Analysis.

412

mailto:orsendanemailtodocumentation@ibexpert.comorsupport

What is the Query Plan?
See Plan Analyzer.

How can I optimize an SQL Statement?
See Optimizing an SQL Statement.

How do I debug a stored procedure?
See Debug Procedure.

Are there typical windows for all Object Editors?
See Database Objects.

How can I use the view and procedure version control?
See View / VersionHistory.

What is the Project View in the DB Explorer for?
See Project View.

What is the Recent list in the DB Explorer for?
See Recent List.

How do I use the integrated Report Manager?
See Report Manager.

Why can I not see the index statistics in the Table Editor?
Use the right-click menu directlyon the Indices page in the Table Editor and select the menu item ShowStatistics.

Why does the index selectivity/statistics not change?
See Recompute Selectivity of all Indices.

Indices do not seem to work on my newly installed application
See Recompute Selectivity of all Indices.

How can I integrate the online Help files into IBExpert?
Please refer to IBExpert Help menu.

Import CSV Files
Here are a few questions that have arisenwith regard to importing CSV files.

1. In the examples a database field gets the correct value if the imported data is numeric. Does truncation occur if it is not an integer?

INSERTEX itself doesn't truncate numeric values. Of course, if you're inserting numeric value into Integer fields the server will truncate it.

2. Can I import dates and if so what ASCII format does it accept for DATE or TIMESTAMP columns or do I need to perform my own external conversion of dates
& times to a 32 bit integer?

You can import dates and INSERTEX accepts any date format known by the server. For example, 1.08.2004 or 1-AUG-2004.

3. If the imported string is longer than I specify for VARCHAR or CHAR does truncation occur?

Yes, it does.

When I use Norton AntiVirus which IBExpert files must I include in the Exclusion List?
IBExpert.stg.

You will find this file under:

 \Documents and Settings\<user>\Application Data\HK-Software\IBExpert

413

But a much better solution is to use the IBExpert User Database. Please refer to the IBExpert menu item Options / Environment Options / IBExpert User
Database for further information.

Can I alter IBExpert Table Editor default to show the Data page instead of the Fields page?
This question has often been raised, particularlyby developers and administrators who only use the Fields page during the database design stage, but
regularlyuse the Data page to adminstrate existing database tables.

The default setting canbe specified under the IBExpert menu item Options / Object Editor Options / Tables Editor / Active Page.

I cannot change the language in Environment Options
Should younot be able to see the full list of languages in the drop-down list, either delete the ibexpert.lng file or rename the english.lng file, found in the
IBExpert Languages directory, to ibexpert.lng, and place this in the main IBExpert directory.

How do I find the procedures, trigger and views, that do not use an index in their
operations?
Just open the IBExpert menu item Tools / Stored Procedure/Trigger/View Analyzer and press [F9]. This analyzes all objects and displays all parts that do not
use an index in red. To modify these objects, just double click the line. A well-designed database should have no red line.

How do I find the procedures and triggers that have typical type casting problems?
A typical problem that is often not so easyto find is when a varchar(20) column is copied into a varchar (10) variable. In most cases it causes no problems,
but when the source has more than10 characters youget a runtime error. This will typically only happen in your customer's database! To find these errors, just
openthe IBExpert menu item Tools / Stored Procedure/Trigger/View Analyzer and press [F9].

How do you know if your database server garbage collection is working?
Just open your database, open the IBExpert menu item Services / Database Statistics and press [F9]. On the summarypage youcan see a versions column
with subcolumns versions, version length and max versions. When the garbage collection is working properly, there should be only very low values for
versions and max versions. If there are higher values, your garbage collectiondoes not work properly, which might be due to several reasons, is however
typicallydue to improper transaction handling in your application.

How do I change the Character Set of all tables in a database?
In the IBExpert menu item Tools / Extract Metadata, youcan create a script that recreates the database and also inserts the data including blob data. In this
script youcan perform a search and replace for the character set name and after renaming the original file execute the script again.

Addenda
Firebird License Agreement
Copy of Firebird Information File
IBExpert Toolbars

?

414

Firebird License Agreement
INTERBASE PUBLIC LICENSE

Version 1.0

1. Definitions.

1.0.1. "Commercial Use" means distribution or otherwise making the Covered Code available to a third party.

1.1. "Contributor" means eachentity that creates or contributes to the creation of Modifications.

1.2. "Contributor Version" means the combination of the Original Code, prior Modifications used by a Contributor, and the Modifications made by that
particular Contributor.

1.3. "Covered Code" means the Original Code or Modifications or the combination of the Original Code and Modifications, in each case including portions
thereof.

1.4. "Electronic DistributionMechanism" means a mechanism generally accepted in the software development community for the electronic transfer of data.

1.5. "Executable" means Covered Code in any form other thanSource Code.

1.6. "Initial Developer" means the individual or entity identified as the Initial Developer in the Source Code notice required by Exhibit A.

1.7. "Larger Work" means a work whichcombines Covered Code or portions thereof with code not governed by the terms of this License.

1.8. "License" means this document.

1.8.1. "Licensable" means having the right to grant, to the maximum extent possible, whether at the time of the initial grant or subsequently acquired, anyand
all of the rights conveyed herein.

1.9. "Modifications" means anyaddition to or deletion from the substance or structure of either the Original Code or any previous Modifications. When
Covered Code is released as a series of files, a Modification is:

A. Any addition to or deletion from the contents of a file containing Original Code or previous Modifications.
B. Any new file that contains anypart of the Original Code or previous Modifications.

1.10. "Original Code" means Source Code of computer software code which is described in the Source Code notice required by Exhibit A as Original Code,
and which, at the time of its release under this License is not already Covered Code governed by this License.

1.10.1. "Patent Claims" means any patent claim(s), now owned or hereafter acquired, including without limitation, method, process, and apparatus claims, in
any patent Licensable by grantor.

1.11. "Source Code" means the preferred form of the Covered Code for making modifications to it, including all modules it contains, plus any associated
interface definition files, scripts used to control compilation and installationof an Executable, or source code differential comparisons against either the
Original Code or another well known, available Covered Code of the Contributor's choice. The Source Code can be in a compressed or archival form,
provided the appropriate decompressionor de-archiving software is widely available for no charge.

1.12. "You" (or "Your") means an individual or a legal entity exercising rights under, and complying with, all of the terms of, this License or a future version of
this License issued under Section6.1. For legal entities, "You" includes anyentity which controls, is controlled by, or is under commoncontrol with You. For
purposes of this definition, "control" means (a) the power, direct or indirect, to cause the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fiftypercent (50%) of the outstanding shares or beneficial ownership of such entity.

2. Source Code License.

2.1. The Initial Developer Grant. The Initial Developer hereby grants You a world-wide, royalty-free, non-exclusive license, subject to third party intellectual
property claims:

(a) under intellectual property rights (other thanpatent or trademark) Licensable by Initial Developer to use, reproduce, modify, display, perform,
sublicense and distribute the Original Code (or portions thereof) with or without Modifications, and/or as part of a Larger Work; and
(b) under Patents Claims infringed by the making, using or selling of Original Code, to make, have made, use, practice, sell, and offer for sale, and/or
otherwise dispose of the Original Code (or portions thereof).
(c) the licenses granted in this Section2.1(a) and (b) are effective on the date Initial Developer first distributes Original Code under the terms of this
License.
(d) Notwithstanding Section 2.1(b) above, no patent license is granted: 1) for code that You delete from the Original Code; 2) separate from the Original
Code; or 3) for infringements caused by: i) the modification of the Original Code or ii) the combination of the Original Code with other software or
devices.

2.2. Contributor Grant. Subject to third party intellectual property claims, eachContributor hereby grants You a world-wide, royalty-free, non-exclusive license

(a) under intellectual property rights (other thanpatent or trademark) Licensable by Contributor, to use, reproduce, modify, display, perform, sublicense
and distribute the Modifications created by such Contributor (or portions thereof) either on an unmodified basis, with other Modifications, as Covered
Code and/or as part of a Larger Work; and
(b) under Patent Claims infringed by the making, using, or selling of Modifications made by that Contributor either alone and/or in combinationwith its
Contributor Version (or portions of such combination), to make, use, sell, offer for sale, have made, and/or otherwise dispose of: 1) Modifications made
by that Contributor (or portions thereof); and 2) the combination of Modifications made by that Contributor with its Contributor Version(or portions of
such combination).
(c) the licenses granted in Sections 2.2(a) and 2.2(b) are effective on the date Contributor first makes Commercial Use of the Covered Code.

415

(d) Notwithstanding Section2.2(b) above, no patent license is granted: 1) for anycode that Contributor has deleted from the Contributor Version; 2)
separate from the Contributor Version; 3) for infringements caused by: i) third party modifications of Contributor Versionor ii) the combination of
Modifications made by that Contributor with other software (except as part of the Contributor Version) or other devices; or 4) under Patent Claims
infringed by Covered Code in the absence of Modifications made by that Contributor.

3. Distribution Obligations.

3.1. Application of License. The Modifications whichYou create or to which You contribute are governed by the terms of this License, including without
limitation Section2.2. The Source Code version of Covered Code may be distributed only under the terms of this License or a future version of this License
released under Section6.1, and You must include a copy of this License with every copyof the Source Code You distribute. You maynot offer or impose any
terms on any Source Code version that alters or restricts the applicable version of this License or the recipients' rights hereunder. However, You may include
an additional document offering the additional rights described in Section3.5.

3.2. Availability of Source Code. Any Modification whichYou create or to whichYou contribute must be made available in Source Code form under the terms of
this License either on the same media as an Executable version or via an accepted Electronic DistributionMechanism to anyone to whom you made an
Executable version available; and if made available via Electronic Distribution Mechanism, must remain available for at least twelve (12) months after the date
it initially became available, or at least six (6) months after a subsequent version of that particular Modification has been made available to such recipients.
You are responsible for ensuring that the Source Code versionremains available even if the Electronic DistributionMechanism is maintained by a third party.

3.3. Description of Modifications. You must cause all Covered Code to which You contribute to contain a file documenting the changes You made to create that
Covered Code and the date of any change. You must include a prominent statement that the Modification is derived, directly or indirectly, from Original Code
provided by the Initial Developer and including the name of the Initial Developer in (a) the Source Code, and (b) in anynotice in an Executable version or
related documentation in which You describe the originor ownership of the Covered Code.

3.4. Intellectual Property Matters
(a) Third Party Claims.
If Contributor has knowledge that a license under a third party's intellectual property rights is required to exercise the rights granted by such Contributor
under Sections 2.1 or 2.2, Contributor must include a text file with the Source Code distribution titled "LEGAL" whichdescribes the claim and the party
making the claim in sufficient detail that a recipient will know whom to contact. If Contributor obtains such knowledge after the Modification is made
available as described in Section3.2, Contributor shall promptly modify the LEGAL file in all copies Contributor makes available thereafter and shall
take other steps (such as notifying appropriate mailing lists or newsgroups) reasonably calculated to inform those who received the Covered Code that
new knowledge has been obtained.
(b) Contributor APIs.

If Contributor's Modifications include an application programming interface and Contributor has knowledge of patent licenses whichare reasonably necessary
to implement that API, Contributor must also include this information in the LEGAL file.

(c) Representations.
Contributor represents that, except as disclosed pursuant to Section3.4(a) above, Contributor believes that Contributor's Modifications are Contributor's
original creation(s) and/or Contributor has sufficient rights to grant the rights conveyed by this License.

3.5. Required Notices. You must duplicate the notice in Exhibit A in each file of the Source Code. If it is not possible to put such notice in a particular Source
Code file due to its structure, then You must include such notice in a location(such as a relevant directory) where a user would be likely to look for such a
notice. If You created one or more Modification(s) You mayadd your name as a Contributor to the notice described in Exhibit A. You must also duplicate this
License in anydocumentation for the Source Code where You describe recipient's rights or ownership rights relating to Covered Code. You may choose to
offer, and to charge a fee for, warranty, support, indemnity or liability obligations to one or more recipients of Covered Code. However, You may do so only on
Your ownbehalf, and not on behalf of the Initial Developer or any Contributor. You must make it absolutelyclear thanany such warranty, support, indemnity or
liability obligation is offered by You alone, and You hereby agree to indemnify the Initial Developer and every Contributor for any liability incurred by the Initial
Developer or such Contributor as a result of warranty, support, indemnity or liability terms You offer.

3.6. Distribution of Executable Versions. You may distribute Covered Code in Executable form only if the requirements of Section3.1-3.5 have beenmet for
that Covered Code, and if You include a notice stating that the Source Code version of the Covered Code is available under the terms of this License,
including a description of how and where You have fulfilled the obligations of Section3.2. The notice must be conspicuously included in any notice in an
Executable version, related documentation or collateral in whichYou describe recipient's rights relating to the Covered Code. You maydistribute the
Executable version of Covered Code or ownership rights under a license of Your choice, which maycontain terms different from this License, provided that
You are in compliance with the terms of this License and that the license for the Executable version does not attempt to limit or alter the recipient's rights in the
Source Code version from the rights set forth in this License. If You distribute the Executable version under a different license You must make it absolutely
clear that anyterms whichdiffer from this License are offered by You alone, not by the Initial Developer or anyContributor. You hereby agree to indemnify the
Initial Developer and every Contributor for any liability incurred by the Initial Developer or such Contributor as a result of any such terms You offer.

3.7. Larger Works. You maycreate a Larger Work by combining Covered Code with other code not governed by the terms of this License and distribute the
Larger Work as a single product. In such a case, You must make sure the requirements of this License are fulfilled for the Covered Code.

4. Inability to Comply Due to Statute or Regulation.

If it is impossible for You to complywith anyof the terms of this License with respect to some or all of the Covered Code due to statute, judicial order, or
regulation thenYou must: (a) complywith the terms of this License to the maximum extent possible; and (b) describe the limitations and the code they affect.
Suchdescription must be included in the LEGAL file described in Section3.4 and must be included with all distributions of the Source Code. Except to the
extent prohibited by statute or regulation, such description must be sufficiently detailed for a recipient of ordinary skill to be able to understand it.

5. Application of this License.

This License applies to code to which the Initial Developer has attached the notice in Exhibit A and to related Covered Code.

6. Versions of the License.

6.1. New Versions. Inprise Corporation ("Inprise") may publishrevised and/or new versions of the License from time to time. Each versionwill be given a
distinguishing version number.

416

6.2. Effect of New Versions. Once Covered Code has been published under a particular versionof the License, You may always continue to use it under the
terms of that version. You may also choose to use such Covered Code under the terms of anysubsequent version of the License published by Inprise. No one
other thanInprise has the right to modify the terms applicable to Covered Code created under this License.

6.3. Derivative Works. If You create or use a modified versionof this License (whichyou mayonly do in order to apply it to code which is not already Covered
Code governed by this License), You must (a) rename Your license so that the phrases "Mozilla", "MOZILLAPL", "MOZPL", "Netscape", "MPL", "NPL",
"Inprise", "ISC", "InterBase", "IB" or any confusingly similar phrase do not appear in your license (except to note that your license differs from this License) and
(b) otherwise make it clear that Your version of the license contains terms which differ from the Mozilla Public License and Netscape Public License. (Filling in
the name of the Initial Developer, Original Code or Contributor in the notice described in Exhibit A shall not of themselves be deemed to be modifications of
this License.)

6.4 Origin of the InterBase Public License. The InterBase Public License V 1.0 is based on the Mozilla Public License V 1.1 with the following changes:

1. The license is published by Inprise Corporation. Only Inprise Corporationcan modify the terms applicable to Covered Code.
2. The license canbe modified and used for code which is not already governed by this license. Modified versions of the license must be renamed to

avoid confusion with Netscape's or Inprise Corporation's public license and must include a description of changes from the InterBase Public License.
3. The name of the license in Exhibit A is the "InterBase Public License".
4. The reference to an alternative license in Exhibit A has been removed.
5. Amendments I, II, III, V, and VI have been deleted.
6. Exhibit A, Netscape Public License has been deleted
7. A new amendment (II) has been added, describing the required and restricted rights to use the trademarks of Inprise Corporation.

7. DISCLAIMER OF WARRANTY.

COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTYOF ANYKIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES THATTHE COVERED CODE IS FREE OF DEFECTS, MERCHANTABLE, FIT FOR A
PARTICULAR PURPOSE OR NON-INFRINGING. THE ENTIRE RISK AS TO THE QUALITYAND PERFORMANCE OF THE COVERED CODE IS WITH
YOU. SHOULD ANYCOVERED CODE PROVE DEFECTIVE IN ANYRESPECT, YOU (NOT THE INITIAL DEVELOPER OR ANYOTHERCONTRIBUTOR)
ASSUME THE COST OF ANYNECESSARYSERVICING, REPAIROR CORRECTION. THIS DISCLAIMER OF WARRANTYCONSTITUTES AN
ESSENTIAL PART OF THIS LICENSE. NO USE OF ANYCOVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.

8. TERMINATION.

8.1. This License and the rights granted hereunder will terminate automatically if You fail to comply with terms herein and fail to cure such breachwithin30 days
of becoming aware of the breach. All sublicenses to the Covered Code which are properly granted shall survive anytermination of this License. Provisions
which, by their nature, must remain in effect beyond the termination of this License shall survive.

8.2. If You initiate litigationby asserting a patent infringement claim (excluding declaratory judgment actions) against Initial Developer or a Contributor (the
Initial Developer or Contributor against whom You file such action is referred to as "Participant") alleging that:

(a) such Participant's Contributor Versiondirectly or indirectly infringes anypatent, then anyand all rights granted by such Participant to You under
Sections 2.1 and/or 2.2 of this License shall, upon60 days notice from Participant terminate prospectively, unless if within 60 days after receipt of
notice You either: (i) agree in writing to pay Participant a mutually agreeable reasonable royalty for Your past and future use of Modifications made by
such Participant, or (ii) withdraw Your litigationclaim with respect to the Contributor Version against such Participant. If within60 days of notice, a
reasonable royalty and payment arrangement are not mutually agreed upon in writing by the parties or the litigationclaim is not withdrawn, the rights
granted by Participant to You under Sections 2.1 and/or 2.2 automatically terminate at the expirationof the 60 day notice period specified above.
(b) anysoftware, hardware, or device, other thansuch Participant's Contributor Version, directlyor indirectly infringes any patent, thenany rights
granted to You by such Participant under Sections 2.1(b) and 2.2(b) are revoked effective as of the date You first made, used, sold, distributed, or had
made, Modifications made by that Participant.

8.3. If You assert a patent infringement claim against Participant alleging that such Participant's Contributor Version directlyor indirectly infringes any patent
where such claim is resolved (such as by license or settlement) prior to the initiationof patent infringement litigation, then the reasonable value of the licenses
granted by such Participant under Sections 2.1 or 2.2 shall be taken into account in determining the amount or value of any payment or license.

8.4. In the event of termination under Sections 8.1 or 8.2 above, all end user license agreements (excluding distributors and resellers) which have been validly
granted by You or anydistributor hereunder prior to termination shall survive termination.

9. LIMITATION OF LIABILITY.

UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT (INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE,
SHALL YOU, THE INITIAL DEVELOPER, ANYOTHERCONTRIBUTOR, OR ANYDISTRIBUTOROF COVERED CODE, OR ANYSUPPLIER OF ANYOF
SUCH PARTIES, BE LIABLE TO ANYPERSON FOR ANYINDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANYCHARACTER
INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTERFAILURE OR MALFUNCTION, OR ANY
AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTYSHALL HAVE BEEN INFORMED OF THE POSSIBILITYOF SUCH
DAMAGES. THIS LIMITATION OF LIABILITYSHALL NOT APPLYTO LIABILITY FOR DEATHOR PERSONAL INJURYRESULTING FROM SUCH PARTY'S
NEGLIGENCE TO THE EXTENT APPLICABLE LAW PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THIS EXCLUSION AND LIMITATION MAYNOT APPLYTO YOU.

10. U.S. GOVERNMENT END USERS.

The Covered Code is a "commercial item," as that term is defined in 48 C.F.R. 2.101 (Oct. 1995), consisting of "commercial computer software" and
"commercial computer software documentation," as such terms are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48 C.F.R. 12.212 and 48 C.F.R.
227.7202-1 through 227.7202-4 (June 1995), all U.S. Government End Users acquire Covered Code with only those rights set forth herein.

11. MISCELLANEOUS.

This License represents the complete agreement concerning subject matter hereof. If anyprovisionof this License is held to be unenforceable, such provision
shall be reformed only to the extent necessary to make it enforceable. This License shall be governed by California law provisions (except to the extent
applicable law, if any, provides otherwise), excluding its conflict-of-law provisions. With respect to disputes in whichat least one party is a citizenof, or an entity
chartered or registered to do business in the United States of America, any litigationrelating to this License shall be subject to the jurisdictionof the Federal

417

Courts of the NorthernDistrict of California, with venue lying in Santa Clara County, California, with the losing party responsible for costs, including without
limitation, court costs and reasonable attorney's fees and expenses. The application of the United Nations Convention on Contracts for the International Sale
of Goods is expressly excluded. Any law or regulationwhich provides that the language of a contract shall be construed against the drafter shall not apply to
this License.

12. RESPONSIBILITY FOR CLAIMS.

As between Initial Developer and the Contributors, each party is responsible for claims and damages arising, directly or indirectly, out of its utilization of rights
under this License and You agree to work with Initial Developer and Contributors to distribute such responsibility on an equitable basis. Nothing herein is
intended or shall be deemed to constitute anyadmission of liability.

13. MULTIPLE-LICENSED CODE.

Initial Developer maydesignate portions of the Covered Code as "Multiple-Licensed". "Multiple-Licensed" means that the Initial Developer permits you to
utilize portions of the Covered Code under Your choice of the IPL or the alternative licenses, if any, specified by the Initial Developer in the file described in
Exhibit A. EXHIBITA - InterBase Public License.

The contents of this file are subject to the InterBase Public License Version 1.0 (the "License"); youmay not use this file except in compliance with the License.
You mayobtaina copyof the License at http://www.Inprise.com/IPL.html Software distributed under the License is distributed on an "AS IS" basis, WITHOUT
WARRANTYOF ANYKIND, either express or implied. See the License for the specific language governing rights and limitations under the License.

The Original Code was created by Inprise Corporationand its predecessors. Portions created by Inprise Corporationare Copyright (C) Inprise Corporation.
All Rights Reserved. Contributor(s): ______________________________________.

AMENDMENTS

I. Inprise and logo. This License does not grant anyrights to use the trademarks "", "InterBase," "Java" or "JavaScript" even if such marks are included in the
Original Code or Modifications.

II. Trademark Usage.

II.1. Advertising Materials. All advertising materials mentioning features or use of the covered Code must display the following acknowledgement: "This
product includes software developed by Inprise Corporation."

II.2. Endorsements. The names "Inprise," "InterBase," "ISC," and "IB" must not be used to endorse or promote Contributor Versions or Larger Works without
the prior written permission of Inprise.

II.3. Product Names. Contributor Versions and Larger Works may not be called "Inprise" or "InterBase" nor maythe words "Inprise" or "InterBase" appear in
their names without the prior written permission of Inprise Corporation.

418

http://www.Inprise.com/IPL.htmlSoftwaredistributedundertheLicenseisdistributedonan

IBExpert toolbars
1. Database
2. Edit
3. Tools
4. New Database Object
5. Domain Editor
6. Table Editor
7. View Editor
8. Procedure Editor
9. Debug Procedure

10. Trigger Editor
11. Generator Editor
12. Exception Editor
13. SQL Editor
14. Navigation
15. Filter Panel
16. SQL Query Builder (Visual Query Builder)
17. Data Analysis (PivotCube Form)
18. Script Executive
19. Dependencies Viewer
20. Extract Metadata
21. Meta Objects
22. Print Metadata
23. Grant Manager
24. Grants
25. Localize IB Messages
26. Localize IBExpert
27. Report Manager
28. Blob Viewer/Editor
29. Database Designer

1. Menu and Palette
2. Main
3. Layout
4. Font / Colors

30. Server Properties/Log
31. Database Statistics

IBExpert toolbars
The individual IBExpert toolbars are listed in more detail below:

Toolbar Database
This standard toolbar can be viewed in the main IBExpert window. It can be blended in and out using the IBExpert View Menu/ Toolbar (check boxes).

The icons (from left to right) can be used to execute the following operations:

1. Register Database [Shift + Alt + R]
2. Unregister Database [Shift + Alt + U]
3. Connect to Database [Shift + Ctrl + C]
4. Disconnect from Database [Shift + Ctrl + D]
5. Reconnect to Database
6. Create Database
7. Exit [Alt + F4]

These items canalso be found in the main IBExpert Database menu. To alter, customize or reset this toolbar, please refer to Toolbars.

Toolbar Edit
This standard toolbar can be viewed in the main IBExpert window. It can be blended in and out using the IBExpert View Menu/ Toolbar (check boxes).

The icons (from left to right) can be used to execute the following operations:

1. Load from File (Ctrl + L). The downward arrow produces a pull-down list of the most recent files.
2. Save to File (Ctrl + S). The downward arrow produces a pull-down list of the most recent files.
3. Cut (Ctrl + X)
4. Copy (Ctrl + C)
5. Paste (Ctrl + V)
6. Find (Ctrl + F)
7. Search again (F3)
8. Replace (Ctrl + R)

These items canalso be found in the main IBExpert Edit menu.

To customize or reset this toolbar, please refer to Toolbars.

419

Toolbar Tools
This standard toolbar can be viewed in the main IBExpert window. It can be blended in and out using the IBExpert View Menu/ Toolbar (check boxes).

The icons (from left to right) canbe used to execute the following operations:

1. SQL Editor (F12)
2. New SQL Editor (Shift + F12)
3. Query Builder
4. Script Executive (Ctrl + F12)
5. SQL Monitor (Ctrl + M)
6. Search in Metadata (Shift + Alt + F)
7. Extract Metadata
8. Print Metadata
9. User Manager

10. Grant Manager
11. Report Manager
12. Blob Viewer/Editor

These items can also be found in the main IBExpert Tools menu. To customize or reset this toolbar, please refer to Toolbars.

Toolbar New Database Object
This standard toolbar can be viewed in the main IBExpert window. It can be blended in and out using the IBExpert View Menu/ Toolbar (check boxes).

The icons (from left to right) canbe used to execute the following operations:

1. New Domain
2. New Table
3. New View
4. New Procedure
5. New Trigger
6. New Generator
7. New Exception
8. New UDF
9. New Role

These items can also be found in the main IBExpert Database menu, or in the IBExpert DB Explorer by clicking the right mouse keyto offer a context-sensitive
option for the selected database object.

Alternatively [Ctrl + N] can be used in the DB Explorer to create new objects (providing an object type has beenselected).

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Domain Editor
The standard toolbar for the Domain Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

420

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Table Editor
The standard toolbar for the Table Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar View Editor
The standard toolbar for the View Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Procedure Editor
The standard toolbar for the Procedure Editor includes the following icons:

421

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Debug Procedure
The toolbar for the Debug Procedure Editor includes the following icons:

The icons (from left to right) canbe used to execute the following operations:

1. Debugger drop-down menu
2. Drop-down list of registered databases
3. Toggle breakpoint [F5]
4. Reset [Ctrl + F2]
5. Parameters [Shift + Ctrl + P]
6. Run [F9]
7. Pause [Ctrl + P]
8. Skip statement
9. Step Over [F8]

10. Trace Into [F7]
11. Run to cursor [F4]

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Trigger Editor
The standard toolbar for the Trigger Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Generator Editor
The standard toolbar for the Generator Editor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

422

Toolbar Exception Editor
The standard toolbar for the ExceptionEditor includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar SQL Editor
This toolbar was completely revised in IBExpert version 2006.10.14. It canbe viewed in the Tools / SQL Editor dialog and includes the following icons:

Further icons not displayed in the drop-down menu include Visual Query Builder, Debug and Count Records [Shift + F6]. And new to IBExpert version
2006.10.14 is the Query Manager icon, whichallows youto move, remove and rename the most recently used queries.

Individual icons can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to
check the relevant icons in the menu list.

It is also possible to quickly change the Transaction Isolation Level (TIL) for a separate SQL Editor. There is a corresponding button on the right-hand side of
the SQL Editor toolbar whichallows selection of one of the following isolation levels: Snapshot, Read committed, Read-only table stability, Read-write table
stability.

423

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Navigation
The navigational toolbar can be found on the Table Editor's Data page, the View Editor's Data page and in the SQL Editor on the Results page and includes
the following icons:

The icons (from left to right) canbe used to execute the following operations:

1. Apply filter
2. Show Filter Panel (Ctrl + Alt + F)
3. Quick Add Filter Criteria
4. Record Number
5. Data Analysis (new to IBExpert version 2004.10.25.1)
6. Show summaryfooter (new to IBExpert version 2004.8.5.1)
7. Display data as Unicode [F3] (new to IBExpert version 2004.8.26.1)
8. First
9. Previous

10. Next
11. Last
12. Insert
13. Delete
14. Edit
15. Save Updates
16. Cancel Updates
17. Refresh

To the right the number of records fetched is displayed.

Toolbar Filter Panel
The navigational toolbar can be found on the Table Editor's Data page, the View Editor's Data page and in the SQL Editor on the Results page when the
ShowFilter Panel is activated, and includes the following icons:

The icons (from left to right) canbe used to execute the following operations:

1. ApplyFilter
2. Add New Criteria (Ins)
3. Delete Criteria (Ctrl + Del)
4. Vertical Layout (Shift + Ctrl + L)
5. Count Records
6. Count filtered records automatically (checkbox option)

Toolbar SQL Query Builder (Visual Query Builder)
This toolbar can be viewed in the Tools / SQL Query Builder dialog and includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

424

Toolbar Data Analysis (PivotCubeForm)
This toolbar can be viewed in the IBExpert Tools / Data Analysis dialog. The icons (from left to right) canbe used to execute the following operations:

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Script Executive
This toolbar can be viewed in the Tools / Script Executive dialog and includes the following icons:

The first item on the left, the pull-down menudetailing the most important operations, also includes the all-important Add CONNECT statement. To alter,
customize or reset this toolbar, please refer to Toolbars.

Toolbar Dependencies Viewer
This toolbar can be viewed in the Tools / Dependencies Viewer dialog and includes the following icons:

1. Refresh
2. Clear All
3. Print
4. Stop
5. Max level
6. Don't check domain dependencies (checkbox)
7. Show domains [Ctrl + D]
8. Show tables [Ctrl + T]
9. Show views [Ctrl + V]

10. Show triggers [Ctrl + R]
11. Show procedures [Ctrl + P]
12. Show generators [Ctrl + G]
13. Show exceptions [Ctrl + E]
14. Show UDFs [Ctrl + U]

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Extract Metadata
This toolbar can be viewed in the Tools / Extract Metadata dialog and includes the following icons:

425

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Print Metadata
This toolbar can be viewed in the Tools / Print Metadata dialog and includes the following icons:

The icons (from left to right) canbe used to execute the following operations:

1. Select database including a pull-down list of available databases.
2. Preview
3. Print

To alter, customize or reset this toolbar, please refer to Toolbars.

Toolbar Grant Manager
This toolbar can be viewed in the Tools / Grant Manager dialog and includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Grants
This toolbar can be viewed in the Tools / Grant Manager dialog under Grants on, as well as in the Table Editor on the Grants page, and includes the following
icons:

The icons (from left to right) canbe used to execute the following operations:

1. Grant All
2. Grant All with GRANT OPTION
3. Grant to All with GRANTOPTION
4. Grant to All
5. Grant All to All
6. Revoke All
7. Revoke from All
8. Revoke All from All

Toolbar Localize IB Messages
This toolbar can be viewed in the Tools / Localize IB Messages dialog and includes the following icons:

The icons (from left to right) canbe used to execute the following operations:

426

1. Load from File
2. Save to File
3. Undo
4. Goto Message Number
5. Find
6. Search Again
7. Export to Text File
8. Import from Text File

Toolbar Localize IBExpert
This toolbar can be viewed in the Tools / Localize IBExpert dialog and includes the following icons:

The icons (from left to right) can be used to execute the following operations:

1. Save to File
2. Find
3. Search Again
4. Export to Text File
5. Import from Text File
6. Font Charset (pull-down list)

Toolbar Report Manager
This toolbar can be viewed in the Tools / Report Manager dialog and includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Blob Viewer/Editor
This toolbar can be viewed in the Tools / Blob Viewer/Editor dialog and includes the following icons:

These can be blended in and out by clicking the downward arrow to the right of the toolbar, and using the menu item Add or Remove Buttons to check the
relevant icons in the menu list.

To customize or reset this toolbar, please refer to Toolbars.

427

Toolbars Database Designer
These toolbars can be viewed in the Tools / Database Designer dialog. They comprise 4 individual toolbars and include the following icons:

Should IBExpert not load the toolbars automatically after starting the Database Designer, delete IBExpert.tb from the \Documents and Settings\<user>
\Application Data\HK-Software\IBExpert\ directory and restart IBExpert.

The individual menus are as follows:

1. Menu and Palette

The icons (from left to right) canbe used to carry out the following operations:

1. Pointer
2. Zoom in
3. Zoom out
4. Table
5. New View
6. Comment Box
7. Reference

2. Main

3. Layout

4. Font / Colors

428

The icons displayed in the Main, Layout and Font / Colors toolbars can be blended in and out by clicking the downward arrow to the right of the toolbar, and
using the menu item Add or Remove Buttons to check the relevant icons in the menu list.

Since IBExpert version 2007.05.03. custom colors are saved in and restored from a grc file.

To customize or reset these toolbars, please refer to Toolbars.

Toolbar Server Properties/Log
This toolbar can be viewed in the Services / Server Properties/Log dialog and includes the following icons:

1. Select server (pull-down list of available servers)
2. Retrieve
3. Preview Log Report
4. Print

To customize or reset this toolbar, please refer to Toolbars.

Toolbar Database Statistics
This toolbar can be viewed in the Services / Database Statistics dialog and includes the following icons:

1. Select Database (pull-down list of available databases)
2. Analyze from File
3. Retrieve Statistic
4. Preview Log Report
5. Print
6. Export

To customize or reset this toolbar, please refer to Toolbars.

See also:
Toolbar options

429

IBEBlock

IBEBlock is a set of DDL, DML and other statements that are executed on the server and on the client side, and which include some specific constructions
applicable only in IBExpert or IBEScript (excluding the free versions of these products), independent of the database server version.

IBEBlock
Block Editor
ENUM datatype
Concatenating assignment operator

Procedural Extensions of IBEBlock
CREATE CONNECTION
USE connection
CLOSE CONNECTION
CREATE DATABASE
DROP DATABASE
FOR ... DO loops
FOREACH statement
SELECT... AS DATASET
EXPORTAS ... INTO
CLOSE DATASET
EXECUTE IBEBLOCK
EXECUTE STATEMENT
INSERT INTO connection.table
COMMIT
ROLLBACK
EXECUTE STATEMENT... AS DATASET
FOR EXECUTE STATEMENT ... DO
TRY... FINALLY
TRY... EXCEPT
EXCEPTION
Default values and comments

IBEBlock Functions
String-handling functions

ibec_Copy
ibec_Length
ibec_Pos
ibec_Trim
ibec_Format
ibec_InputQuery
ibec_Explode

Mathematical functions
ibec_Div
ibec_Mod
ibec_Power

File functions
ibec_DeleteFile
ibec_FileExists
ibec_FileSize
ibec_GetFiles
ibec_LoadFromFile
ibec_SaveToFile
ibec_CopyFile
ibec_FileDateTime
ibec_fs_CloseFile
ibec_fs_Eof
ibec_fs_OpenFile
ibec_fs_Position
ibec_fs_Readln
ibec_fs_ReadString
ibec_ini_SetStrings
ibec_ini_GetStrings
ibec_fs_Seek
ibec_fs_Size
ibec_fs_SetSize
ibec_fs_Writeln
ibec_fs_WriteString
ibec_ini_Open
ibec_ini_Close
ibec_ini_Clear
ibec_ini_UpdateFile
ibec_ini_EraseSection
ibec_ini_ReadString
ibec_ini_WriteString

Database functions
ibec_CreateConnection

430

ibec_UseConnection
ibec_CloseConnection
ibec_RecompileTrigger
ibec_RecompileProcedure
ibec_CompareTables
ibec_CompareMetadata
ibec_ExtractMetadata
Specifying WHERE clauses in ibec_ExtractMetadata
ibec_BackupDatabase
ibec_RestoreDatabase
ibec_GetConnectionProp
ibec_GetCurrentDir
ibec_GetRunDir
ibec_GetUserDBConnection
ibec_ibe_GetActiveDatabaseID
ibec_ibe_GetDatabaseProp
ibec_ibe_SetDatabaseProp

Dataset functions
ibec_CopyData
ibec_Array
ibec_ds_Append
ibec_ds_Cancel
ibec_ds_Close
ibec_ds_Delete
ibec_ds_Edit
ibec_ds_Eof
ibec_ds_Export
ibec_ds_Bof
ibec_ds_FieldCount
ibec_ds_FieldName
ibec_ds_FieldType
ibec_ds_FieldTypeN
ibec_ds_First
ibec_ds_GetField
ibec_ds_Insert
ibec_ds_Last
ibec_ds_Locate
ibec_ds_Next
ibec_ds_Post
ibec_ds_Prior
ibec_ds_SetField
ibec_ds_Sort

Managing Firebird and InterBase users
ibec_CreateUser
ibec_AlterUser
ibec_RecreateUser
ibec_DropUser
ibec_GetUsers
ibec_GetUserProp

Date and Time functions
ibec_Date
ibec_Now
ibec_Time
ibec_DayOfWeek

Windows Registry functions
ibec_reg_Open
ibec_reg_Close
ibec_reg_OpenKey
ibec_reg_CloseKey
ibec_reg_DeleteKey
ibec_reg_CreateKey
ibec_reg_WriteString
ibec_reg_ReadString
ibec_reg_WriteBool
ibec_reg_ReadBool
ibec_reg_WriteDate
ibec_reg_ReadDate
ibec_reg_WriteDateTime
ibec_reg_ReadDateTime
ibec_reg_WriteTime
ibec_reg_ReadTime
ibec_reg_WriteInteger
ibec_reg_ReadInteger
ibec_reg_WriteFloat
ibec_reg_ReadFloat

Functions to handle regular expressions
ibec_re_Create
ibec_re_Free
ibec_re_Exec
ibec_re_ExecNext
ibec_re_Match

431

ibec_re_SetExpression
ibec_re_Replace
ibec_preg_Match
ibec_preg_Replace

Functions for working with POP3 servers
ibec_pop3_OpenSession
ibec_pop3_CloseSession
ibec_pop3_Connect
ibec_pop3_User
ibec_pop3_Pass
ibec_pop3_ConnectAndAuth
ibec_pop3_List
ibec_pop3_Uidl
ibec_pop3_Retr
ibec_pop3_Dele
ibec_pop3_Quit
ibec_pop3_GetProperty
ibec_pop3_SetProperty

Exception-handling functions
ibec_err_Message()
ibec_err_SQLCode()
ibec_err_Name()

Cursor functions
ibec_cr_CloseCursor
ibec_cr_Eof
ibec_cr_Fetch
ibec_cr_FieldCount
ibec_cr_FieldName
ibec_cr_FieldValue
ibec_cr_Next
ibec_cr_OpenCursor

User Form functions
ibec_uf_CloseForm
ibec_uf_CreateForm
ibec_uf_ExecScript
ibec_uf_FreeForm
ibec_uf_GetElementAttribute
ibec_uf_GetElmentAttributeDef
ibec_uf_GetFormData
ibec_uf_SetElementAttribute
ibec_uf_SetFormData
ibec_uf_ShowForm

Miscellaneous functions
ibec_BuildCube
ibec_Chr
ibec_CmpRecords
ibec_CmpVals
ibec_CompressFile
ibec_CompressVar
ibec_CreateModelScript
ibec_CreateReport
ibec_DecompressFile
ibec_DecompressVar
ibec_DisableFeature
ibec_EnableFeature
ibec_EncodeDate and ibec_DecodeDate
ibec_Exec
ibec_ExecSQLScript
ibec_ExportReport
ibec_FormatIdent
ibec_FreeGlobalVar
ibec_GetGlobalVar
ibec_GetIBEVersion
ibec_GetTickCount
ibec_GetViewRecreateScript
ibec_GUID
ibec_High
ibec_IIF
ibec_IntToHex
ibec_MessageDlg
ibec_Ord
ibec_ParseCSVLine
ibec_Progress
ibec_Random
ibec_Random2
ibec_RandomChar
ibec_RandomString
ibec_RandomVal
ibec_SetGlobalVar
ibec_SetLength
ibec_ShiftRecord

432

ibec_smtp_SendMail
ibec_WaitForEvent

IBEBlock Examples
Automatic script execution
ODBC Access
Extract metadata using IBEBlock

DomExtract.ibeblock
FldType.ibeblock
GensExtract.ibeblock
SPExtract.ibeblock
RunMe.ibeblock

Comparing databases using IBEBlock
Comparing scripts with IBEBlock
Automatic database structure comparison with recompilationof triggers and procedures
Data Comparer using cursors
IBEBLOCK and Test Data Generator
Joining tables from different databases
Recreating indices 1
Recreating indices 2
Building an OLAP cube
Inserting files into a database
Inserting file data into a database
Importing data from a CSV file
Importing data from a file
Export data into DBF
Creating a script from a Database Designer model file
Creating an UPDATE script with domain descriptions
IBEBlock User Forms

FldTypeHTML.ibeblock
InputForm.ibeblock
TableDDL.ibeblock
RunMe.ibeblock

Performing a daily backup of the IBExpert User Database
Disable and enable IBExpert features
Retrieve all valid e-mail addresses from an input text
Working with POP3 servers

433

IBEBlock (EXECUTE IBEBLOCK)
IBExpert version 2004.9.12.1 introduced an important, new and powerful feature EXECUTE IBEBLOCK.

What is IBEBLOCK?

It is a set of DDL, DML and other statements that are executed on the server and on the client side, and which include some specific constructions applicable
only in IBExpert or IBEScript (excluding the free versions of these products), independent of the database server version.

With EXECUTE IBEBLOCK youwill be able to:

Work with different connections within the single IBEBLOCK at the same time.
Move (copy) data from one database to another.
Join tables from different databases.
Compare data from different databases and synchronize them.
Populate a table with test data using random values or values from other tables or even from other databases.
... and much more.

The syntaxof IBEBLOCK is similar to that of stored procedures but there are many important extensions.

For example:

You canuse EXECUTE STATEMENT with any server, including InterBase 5.x, 6.x, 7.x.
You canuse one-dimensional arrays (lists) of untyped variables and access them by index.
It isn't necessary to declare variables before using them.
You canuse data sets (temporarymemory tables) to store data.
Since IBExpert version 2005.02.12.1 there is added support for ROW_COUNT and ROWS_AFFECTED variables.
Since version 2005.02.12.1 Code Insight also supports IBEBlock constants and functions.
... and much more.

You canexecute single IBEBLOCKs via the SQL Editor. You can debug them in the SQL Editor too. They are debugged in the same way as stored procedures
and triggers. Also youcan include IBEBLOCKs into your scripts and execute these scripts as usual - using the Script Executive or IBEScript.exe.

This documentation describes the following topics:

Procedural extensions of IBEBlock
IBEBlock functions
Examples of usage of IBEBlock

As this important feature is constantlybeing expanded and improved, some areas are still incomplete or in work. Check regularly for the latest revisions by
using the What's New function in the online documentation.

Or post your question to: documentation@ibexpert.com.

434

mailto:documentation@ibexpert.com.

Block Editor
The IBExpert Block Editor can be used to edit and execute IBEBlocks and IBEScripts.

The DBExplorer's Scripts/Blocks page was introduced in IBExpert version 2005.12.04. It displays all existing IBEScripts and IBEBlocks saved locally in the
database. The DB Explorer Database page also has a new node, Scripts, displayed in all registered, connected databases. See also Drag 'n' Dropping
Objects into Code Editors and the DB Explorer context-sensitive menu item, Apply IBEBlock to selected object(s).

There are two ways to store blocks and scripts: (i) in a registered database or (ii) in the IBExpert User Database, which canbe activated using the IBExpert
Options Menu item, Environment Options / User Database.

To create a new script in a registered database, click on the Scripts node in the connected database, and use the context-sensitive (right-click) menuto
create a new script. You can also create IBEBlocks and Firebird 2 blocks (EXECUTE BLOCK) in this way withinyour database. Each script or block must have a
unique name (up to 100 characters) within the database.

To create a new block or script in the User Database, first enable the option in the IBExpert Options menu, Environment Options / User Database and restart
IBExpert. You should now see a new table in the Database Explorer: Scripts/Blocks. This allows youto create scripts and blocks using the context-sensitive
menufrom the Scripts/Blocks tree and also organize them in folders.

We stronglyrecommend using the IBExpert User Database as a main storage for IBExpert, even if you do not need the ##Scripts/Blocks'' feature.

Since IBExpert version 2006.01.29 it is possible to execute Firebird 2.0 blocks stored in registered databases or in the IBExpert User Database directly from
the DB Explorer. Simply use the DB Explorer right-click context menu or open the script in the Block Editor and execute using [F9].

When writing new IBEBlocks, do not foget to save the block by clicking on the disk icon, in order to commit it, before running it. Input parameters can be
specified by clicking on the Parameters icon (or using[Shift # Ctrl # P]), and the block run in the usual IBExpert way by using [F9] or the greenarrow icon.

435

Please refer to IBEBlock and IBEScripts for further information and examples of these comprehensive features. Similar to the Procedure and Trigger
Debugger, the Block Éditor allows you to debug your script or block. It offers the same informational pages: Parameters and Variables, Watches, Last
Statement, Breakpoints, Messages, Results and SQL Editor Messages.

Please refer to Debugger for further details.

IBExpert version 2008.08.08 introduced the possibility to sort data on the IBEBlock Results page by clicking on a grid columncaption. It is now also possible
to export this data.

ENUM datatype
The ENUM datatype was implemented in IBExpert version 2007.05.03. Generally this datatype is useful for input parameters when it is necessary to allow users
to select a value from a given set of values.

Example

 execute ibeblock (MonthName enum ('January', 'February', 'March',
 'April', 'May', 'June', 'July',
 'August', 'September', 'October',
 'November', 'December') default = 0)
 as
 begin
 ...
 end;

For each input parameter of type ENUM IBExpert will create a comboboxwith the corresponding set of items. See Copy database object blocks to learn how
this works.

Concatenating assignment operator - '.='
A new concatenating assignment operator - '.=' was introduced in IBExpert version 2007.05.03. This appends the argument on the right side to the argument
on the left side.

Example
 sVal = 'abc';
 sVal .= 'def'

436

Now sVal is equal to 'abcdef';

437

Procedural extensions of IBEBlock
CREATE CONNECTION
USE connection
CLOSE CONNECTION
CREATE DATABASE
DROP DATABASE
FOR ... DO loops
FOREACH statement
SELECT... AS DATASET
EXPORTAS ... INTO
CLOSE DATASET
EXECUTE IBEBLOCK
EXECUTE STATEMENT
INSERT INTO connection.table
COMMIT
ROLLBACK
EXECUTE STATEMENT... AS DATASET
FOR EXECUTE STATEMENT ... DO
TRY... FINALLY
TRY... EXCEPT
EXCEPTION
Default values and comments

438

CREATE CONNECTION
Creates a named connection to a database.

Syntax

 CREATE CONNECTION connection DBNAME 'filespec'
 USER 'username' PASSWORD 'password'
 [CLIENTLIB 'libfile']
 [NAMES charset]
 [SQL_DIALECT dialect]
 [ROLE rolename]

Argument Description
connection Connectionname.
DBNAME
'filespec' Database file name; can include pathspecification and node.

USER
'username'

String that specifies a user name for use when attaching to the database. The server
checks the user name against the securitydatabase (Server securityISC4.GDB /
SECURITY.FDB). User names are case insensitive on the server.

PASSWORD
'password'

String, up to 8 characters in size, that specifies password for use when attaching to the
database. The server checks the user name and password against the security
database. Case sensitivity is retained for the comparison.

CLIENTLIB
'libfile' Client library file name; default: gds32.dll.

NAMES
charset

Name of a character set that identifies the active character set for a given connection;
default: NONE.

SQL_DIALECT
dialect The SQL Dialect for database access, either 1, 2, or 3.

ROLE
rolename

String, up to 31 characters in size, whichspecifies the role that the user adopts on
connection to the database. The user must have previouslybeen granted membership
in the role to gain the privileges of that role. Regardless of role memberships granted,
the user has the privileges of a role at connect time only if a ROLE clause is specified in
the connection. The user cannot adopt more thanone role per connection, and cannot
switchroles except by reconnecting.

Example

 execute IBEBlock
 as
 begin
 CREATE CONNECTION Con1 DBNAME 'localhost:c:\mydata\mydb.gdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll'
 SQL_DIALECT 3 NAMES WIN1251 ROLE ADMIN;

 USE Con1;

 ...

 CLOSE CONNECTION Con1;
 end

439

USE connection
Makes an existing connection the active connection.

Syntax

 USE connection;

Argument Description
connection Name of an existing connection created with the CREATE CONNECTION statement.

Example

 execute IBEBlock
 as
 begin
 CREATE CONNECTION Con1 DBNAME 'localhost:c:\mydata\mydb.gdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll'
 SQL_DIALECT 3 NAMES WIN1251 ROLE ADMIN;

 USE Con1;

 ...

 CLOSE CONNECTION Con1;
 end

440

CLOSE CONNECTION
Closes an existing connection.

Syntax

 CLOSE CONNECTION connection;

Argument Description
connection Name of an existing connection opened with the CREATE CONNECTION statement.

Example

 execute IBEBlock
 as
 begin
 CREATE CONNECTION Con1 DBNAME 'localhost:c:\mydata\mydb.gdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 SQL_DIALECT 3 NAMES WIN1251;

 USE Con1;

 ...

 CLOSE CONNECTION Con1;
 end

See Also:
Joining tables from different databases

441

CREATE DATABASE
Syntax

 CREATE DATABASE 'filespec' USER 'username' PASSWORD 'password'
 [CLIENTLIB 'libfile']
 [SQL_DIALECT dialect]
 [PAGE_SIZE int]
 [DEFAULT CHARACTER SET charset]

Argument Description
'filespec' A new database file specification; file naming conventions are platform-specific.

USER 'username' Checks the username against valid user name and password combinations in the security database (Server
security ISC4.GDB / SECURITY.FDB) on the server where the database will reside.

PASSWORD 'password' Checks the password against valid user name and password combinations in the securitydatabase on the server
where the database will reside; can be up to 8 characters.

CLIENTLIB 'libfile' Client library file name; default: gds32.dll.

SQL_DIALECT dialect The SQL Dialect for the new database, either 1, 2, or 3.

PAGE_SIZE int Size, in bytes, for database pages; int can be 1024 (default), 2048, 4096, or 8192.

DEFAULT CHARACTER
SET charset

Sets default character set for a database; charset is the name of a character set; if omitted, character set defaults
to NONE.

Example

 execute IBEBlock
 as
 begin
 CREATE DATABASE 'localhost:c:\db2.fdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 PAGE_SIZE 4096 SQL_DIALECT 3
 DEFAULT CHARACTER SET WIN1251
 CLIENTLIB 'C:\Program Files\Firebird\bin\fbclient.dll';

 CREATE CONNECTION Con1 'localhost:c:\db2.fdb'
 USER 'SYSDBA' PASSWORD 'masterkey'
 CLIENTLIB 'C:\Program Files\Firebird\Bin\fbclient.dll'
 SQL_DIALECT 3 NAMES WIN1251;

 USE Con1;

 ...

 CLOSE CONNECTION Con1;
 end

See also:
Create Database

442

DROP DATABASE
Deletes specified database.

Syntax

 DROP DATABASE 'filespec' USER 'username' PASSWORD 'password'
 [CLIENTLIB 'libfile'];

Argument Description
'filespec' A database file specification; file naming conventions are platform-specific.

USER 'username' Checks the username against valid user name and password combinations in the securitydatabase (Server security
ISC4.GDB / SECURITY.FDB) on the server where the database will reside.

PASSWORD
'password'

Checks the password against valid user name and password combinations in the securitydatabase on the server where
the database will reside; can be up to 8 characters.

CLIENTLIB
'libfile' Client library file name; default: gds32.dll.

Description

DROP DATABASE deletes specified database, including anyassociated secondary, shadow, and log files. Dropping a database deletes any data it contains.

A database can be dropped by its creator, the SYSDBA user, and any users with operating system root privileges.

Example

 execute ibeblock
 as
 begin
 drop database 'localhost/3060:c:\db1.fdb' user 'SYSDBA' password 'masterkey'
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';
 end

443

FOR ... DO loops
FOR ... DO loops were implemented in IBExpert version 2005.03.12.

Examples

 EXECUTE IBEBLOCK
 RETURNS (I INTEGER)
 AS
 BEGIN
 FOR I = 0 TO 100 DO
 SUSPEND;
 END

It is possible to use the CONTINUE statement within FOR loop to proceed to the next iteration of FOR:

 EXECUTE IBEBLOCK
 RETURNS (I INTEGER)
 AS
 BEGIN
 FOR I = 0 TO 100 DO
 BEGIN
 IF (I < 20) THEN
 CONTINUE; -- SUSPEND will not be executed
 SUSPEND;
 END
 END

444

FOREACH statement
The FOREACH statement was implemented in IBExpert version 2007.02.22. This statement simplyoffers a way to iterate arrays. The SKIP NULLS optionwas
added in IBExpert version2007.05.03.

Syntax

 FOREACH (var1 AS var2 [KEY | INDEX var3] [SKIP NULLS]) DO
 <statements>

FOREACH loops over the array given by var1. On each loop, the value of the current element is assigned to var2. If the KEY (INDEX) var3 clause is specified, the
current element's key will be assigned to the variable var3 on each loop.

Example

 MyVar = ibec_Array('Some text', 23, NULL, 56.32);
 foreach (MyVar as val key id) do
 if (val is not null) then
 ibec_ShowMessage('MyVar[' || id || '] value is: ' || val);

The code above is equal to following:

 MyVar = ibec_Array('Some text', 23, NULL, 56.32);
 for id = 0 to ibec_High(MyVar) do
 begin
 val = MyVar[id];
 if (val is not null) then
 ibec_ShowMessage('MyVar[' || id || '] value is: ' || val);
 end

This FOREACH statement with the SKIP NULLS option is equal to the following FOREACH statement without the SKIP NULLS option:

 FOREACH (var1 AS var2 [KEY | INDEX var3]) DO
 BEGIN
 IF (var2 IS NULL) THEN
 CONTINUE;
 <statements> END

See also:
ibec_Array

445

SELECT ... AS DATASET
Syntax

 <select_statement> AS DATASET dataset;

Argument Description
<select_statement> Regular SELECT statement.

dataset Name of the dataset.

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);
 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);
 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

See also:
Dataset Functions
Recreating indices 2
Using SELECT statements

446

EXPORT AS ... INTO
SELECT ... EXPORT AS ...was implemented in IBExpert version 2005.03.12.

Examples of usage

1.
 SELECT * FROM RDB$FIELDS
 EXPORT AS HTML INTO 'E:\TestExport.html'
 OPTIONS 'ColorShema=MSMoney; FontFace=Verdana';

Possible ColorShemes are BW, Classic, ColorFull, Gray, MSMoney, Murky, Olive, Plain, Simple.

2.
 SELECT * FROM RDB$FIELDS
 EXPORT AS XLS INTO 'E:\TestExport.xls'
 OPTIONS '';

3.
 SELECT * FROM RDB$FIELDS
 EXPORT AS TXT INTO 'E:\TestExport.txt'
 OPTIONS 'OmitCaptions';

4.
 SELECT * FROM RDB$FIELDS
 EXPORT AS CSV INTO 'E:\TestExport.txt'
 OPTIONS 'OmitCaptions; Delimiter=";"';

5.
 SELECT * FROM RDB$FIELDS
 EXPORT AS XML INTO 'E:\TestExport.xml'
 OPTIONS 'Encoding=windows-1251; MemoAsText; StringAsText';

New to IBExpert version 2005.12.04:
6.
 SELECT * FROM RDB$FIELDS
 EXPORT AS DBF INTO 'E:\TestExport.dbf'
 OPTIONS 'ConvertToDOS; LongStringsToMemo; DateTimeAsDate';

See also:
Example: Export data into DBF

447

CLOSE DATASET
Closes an existing dataset.

Syntax

 CLOSE DATASET dataset;

Argument Description
dataset Name of an existing dataset created with SELECT ... AS DATASET statement.

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);
 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);
 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

See also:
Recreating indices 2
SELECT ... AS DATASET

448

EXECUTE IBEBLOCK
The EXECUTE IBEBLOCK statement was implemented in IBExpert verison 2005.03.12. Using this statement youcan call other IBEBlocks from the main block.

Examples of usage

1.
 EXECUTE IBEBLOCK
 AS
 BEGIN
 ...
 MyFunc = 'EXECUTE IBEBLOCK (
 IntVal INTEGER)
 RETURNS (
 Square INTEGER)
 AS
 BEGIN
 Square = IntVal * IntVal;
 END';
 EXECUTE IBEBLOCK MyFunc (2) RETURNING_VALUES :Square;
 ...
 END

2.
 EXECUTE IBEBLOCK
 AS
 BEGIN
 ...
 MyFunc = ibec_LoadFromFile('C:\MyBlocks\Square.ibeblock');
 EXECUTE IBEBLOCK MyFunc (2) RETURNING_VALUES :Square;
 ...
 END

449

EXECUTE STATEMENT
Executes specified SQL statement.

Syntax

 EXECUTE STATEMENT 'statement'
 [INTO :var [, :var ...]]
 [VALUES :var];

Argument Description
'statement' Any valid DML or DDL statement except CREATE/DROP DATABASE. DML statements may contain parameters.

INTO :var
[, :var ...]

Specifies a list of variables into which to retrieve values. Only singleton SELECT operators maybe executed with this
form of EXECUTE STATEMENT.

VALUES :var Array of variants whichvalues will be used to fill parameters if any exist in the statement.

Example

 execute ibeblock
 returns (TableName varchar(31))
 as
 begin
 TableID = 0;
 Stmt = 'select rdb$relation_name from rdb$relations where rdb$relation_id = :rel_id';
 while (TableID < 35) do
 begin
 execute statement :Stmt into :TableName values :TableId;
 suspend;
 TableID = TableID + 1;
 end
 end

See also:
EXECUTE STATEMENT ... AS DATASET
Table Data Comparing
FOR EXECUTE STATEMENT ... DO

INSERT INTO connection.table
Syntax

 INSERT INTO connection.table [(col [, col ...])]
 {VALUES (<val> [, <val> ...]) | <select_expr>};

See also:
Example: Inserting files into a database

?

450

COMMIT
Makes a transaction's changes to the database permanent, and ends the transaction.

Syntax

 COMMIT;

Example

 execute IBEBlock
 as
 begin
 ...

 EXECUTE STATEMENT 'create table mytable (id integer, data varchar(50))';
 COMMIT;

 INSERT INTO MYTABLE (ID, DATA) VALUES (1, NULL);
 COMMIT;

 ...
 end

See also:
ROLLBACK

ROLLBACK
Restores the database to its state prior to the start of the current transaction.

Syntax

 ROLLBACK;

Description

ROLLBACK undoes changes made to a database by the current transaction, thenends the transaction.

See also:
COMMIT

EXECUTE STATEMENT ... AS DATASET
Implemented in IBExpert version 2006.08.12.

451

FOR EXECUTE STATEMENT ... DO
Example

 execute ibeblock
 returns (TableName varchar(31))
 as
 begin
 TableID = 0;
 Stmt = 'select rdb$relation_name from rdb$relations where rdb$relation_id = :rel_id';
 while (TableID < 35) do
 begin
 execute statement :Stmt into :TableName values :TableId;
 suspend;
 TableID = TableID + 1;
 end
 end

452

TRY ... FINALLY
Syntax

 TRY
 statementList1
 FINALLY
 statementList2
 END

where each statementList is a sequence of statements delimited by semicolons.

Description

The TRY...FINALLY statement executes the statements in statementList1 (the TRY clause). If statementList1 finishes without raising any exceptions,
statementList2 (the FINALLY clause) is executed. If an exception is raised during execution of statementList1, control is transferred to statementList2;
once statementList2 finishes executing, the exception is re-raised.

If a call to the Exit procedure causes the control to leave statementList1, statementList2 is automatically executed. Thus the FINALLY clause is always
executed, regardless of how the TRY clause terminates.

Example

 execute ibeblock
 as
 begin
 i = 1;
 try
 i = i/0; <-- Here an will be exception raised...
 finally
 i = 2; <-- ... but this statement will be executed anyway
 end
 i = 3; <-- This statement will not be executed
 end

See also:
EXCEPTION
TRY ... EXCEPT
Exception-handling Functions

453

TRY ... EXCEPT
Syntax

 TRY
 statements
 EXCEPT
 exceptionBlock
 END

where statements is a sequence of statements (delimited by semicolons) and exceptionBlock is another sequence of statements.

Description

A TRY...EXCEPT statement executes the statements in the initial statements list. If no exceptions are raised, the exception block (exceptionBlock) is ignored
and the control passes on to the next part of the IBEBlock.

If an exception is raised during execution of the initial statements list, the control passes to the first statement in the exceptionBlock. Here youcan handle any
exceptions which mayoccur using the following functions:

function ibec_err_Message() - returns an exception message.
function ibec_err_SQLCode() - returns the SQLCode of an exception if there was an SQL error.
function ibec_err_Name() - returns an exception name (for exceptions raised with EXCEPTION statement; see below).

You canalso re-raise an exception using the RAISE statement.

Example

 execute ibeblock
 as
 begin
 try
 -- Attempt to insert into non-existent table
 insert into missing_table (f1) values (1);
 ibec_ShowMessage('There were no errors...');
 except
 ErrSQLCode = ibec_err_SQLCode();
 if (ErrSQLCode = -204) then
 ibec_ShowMessage(ibec_err_Message());
 else
 raise;
 end
 end

See also:
TRY ... FINALLY EXCEPTION
Exception-handling Functions

454

EXCEPTION
The EXCEPTION statement is similar to Firebird dynamic exceptions.

Syntax

 EXCEPTION <exception_name> [<exception_text>]

<exception_name> is the name of an exception whichmay be tested using the ibec_err_Name function.

Example

 execute ibeblock (divisor double precision)
 as
 begin
 i = 1;
 try
 if ((divisor is null) or (divisor = 0)) then
 exception INVALID_DIVISOR 'The divisor is invalid: NULL or 0';
 i = i/divisor;
 except
 if (ibec_err_name() = 'INVALID_DIVISOR') then
 i = 0;
 else
 raise;
 end
 end

See also:
TRY ... FINALLY
TRY ... EXCEPT
Exception-handling Functions

455

Default values and comments
Default values and comments for input/output parameters and variables were implemented in IBExpert version2005.03.12.

Example

 EXECUTE IBEBLOCK (
 CodeDir VARCHAR(1000) = 'C:\MyBlocks\' COMMENT 'Path to my IBEBlocks',
 SQLDialect INTEGER = 3 COMMENT 'Database SQL Dialect')
 RETURNS (
 TotalTime DOUBLE PRECISION = 0 COMMENT 'Total time spent')
 AS
 DECLARE VARIABLE MyVar INTEGER = 0 COMMENT 'Just a comment'
 BEGIN
 ...
 END

Comments for input parameters will be displayed in Description columnof the Request Input Parameters form.
Comments for output variables will be used as column captions of the result dataset.
Comments for local variables are ignored.

IBEBlock Functions
For further functions not included in this section, please refer to User-Defined Functions and the Firebird documentation: Firebird 2 Cheat Sheet: Firebird
built-in Functions.

String-handling functions
Mathematical functions
File functions
Database functions
Dataset functions
Managing Firebird and InterBase users
Date and Time functions
Windows Registry functions
Functions to handle regular expressions
Miscellaneous functions

String-handling functions
The following string-handling functions are available in IBEBlock:

Function Description
ibec_Copy Returns a substring of a string.

ibec_Length Returns the number of characters in a string.

ibec_Pos Returns the index value of the first character in a specified substring that occurs in
a given string.

ibec_Trim Trims leading and trailing spaces and control characters from a string.
ibec_Format Returns a formatted string assembled from a format string and a list of arguments.
ibec_
InputQuery Displays an input dialog that enables the user to enter a string.

ibec_Explode Returns an array of strings.

456

ibec_Copy
Returns a substring of a string.

Syntax

 function ibec_Copy(S : string; Index, Count: Integer): string;

Description

S is an expression of a string. Index and Count are integer-type expressions. ibec_Copy returns a substring containing Count characters starting at S[Index]. If
Index is larger thanthe length of S, ibec_Copy returns an empty string.

If Count specifies more characters thanare available, only the characters from S[Index] to the end of S are returned.

Example

 execute IBEBlock
 returns (proc_name varchar(31), proc_src varchar(100))
 as
 begin
 for
 select rdb$procedure_name, rdb$procedure_source
 from rdb$procedures
 order by rdb$procedure_name
 into :proc_name, :proc_src
 do
 begin
 proc_src = ibec_Copy(proc_src, 1, 100);
 suspend;
 end
 end

See also:
ibec_Length
ibec_Pos

457

ibec_Length
Returns the number of characters in a string.

Syntax

 function ibec_Length(S : string): string;

Description

No additional description...

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 for select rdb$relation_name
 from rdb$relations
 into :sname
 do
 begin
 sname = ibec_Trim(sname);
 iresult = ibec_Length(sname);
 suspend;
 end
 end

See also:
ibec_Copy
ibec_Pos

458

ibec_Pos
Returns the index value of the first character in a specified substring that occurs in a given string.

Syntax

 function ibec_Pos(Substr: string; S : string): integer;

Description

No additional description...

Example

 execute IBEBlock
 returns (vcresult varchar(100))
 as
 begin
 for select rdb$relation_name
 from rdb$relations
 into :sname
 do
 begin
 sname = ibec_trim(sname);
 vcresult = '';
 if (ibec_Pos('RDB$', sname) = 1) then
 vcresult = sname || ' is a system table';
 else if (ibec_Pos('IBE$', sname) = 1) then
 vcresult = sname || ' is an IBExpert table';
 else
 vcresult = sname || ' is an user table';
 suspend;
 end
 end

See also:
ibec_Copy
ibec_Length

459

ibec_Trim
Trims leading and trailing spaces and control characters from a string.

Syntax

 function ibec_Trim(S : string): string;

Description

No additional description...

Example

 execute IBEBlock
 returns (proc_name varchar(31), proc_src varchar(100))
 as
 begin
 for
 select rdb$procedure_name, rdb$procedure_source
 from rdb$procedures
 order by rdb$procedure_name
 into :proc_name, :proc_src
 do
 begin
 proc_src = ibec_Trim(ibec_Copy(proc_src, 1, 100));
 suspend;
 end
 end

460

ibec_Format
This functionreturns a formatted string assembled from a format string and a list of arguments.

Syntax

 function ibec_Format(AFormat: string; Arg1 : variant; ...; ArgN : variant): string;

Description

ibec_Format function formats the series of arguments Arg1...ArgN. Formatting is controlled by the format string AFormat; the results are returned in the
functionresult as a string.

Example

 execute ibeblock
 as
 begin
 ...
 NumOfFiles = 10;
 Mes = ibec_Format('%d files were deleted', NumOfFiles);
 ibec_ShowMessage(Mes);
 end

 execute ibeblock
 as
 begin
 ...
 Mes = ibec_Format('There are now s', 1000, 'MYTABLE');
 ibec_ShowMessage(Mes);
 end

461

ibec_InputQuery
The ibec_InputQuery function was implemented in IBExpert version 2006.12.11. This functiondisplays an input dialog that enables the user to enter a string.

Syntax

 function ibec_InputQuery(const ACaption, APrompt: string; var Value: string): Boolean;

Description

Call ibec_InputQuery to bring up an input dialog boxready for the user to enter a string in its edit box. The ACaption parameter is the caption of the dialog
box, the APrompt parameter is the text that prompts the user to enter input in the edit box, and the Value parameter is the string that appears in the edit box
when the dialog box first appears.

If the user enters a string in the edit box and selects OK, the Value parameter changes to the new value. InputQuery returns True if the user selects OK, and
False if the user selects Cancel or presses the [Esc] key.

Example

 execute ibeblock
 as
 begin
 ...
 Caption = '
 Mes = ibec_Format('There are now s', 1000, 'MYTABLE');
 ibec_ShowMessage(Mes);
 end

462

ibec_Explode
ibec_Explode returns an arrayof strings.

Syntax

 function ibec_Explode(Delimiter : string; Str : string) : array of string;

Description

ibec_Explode returns an arrayof strings, each of which is a substring of Str formed by splitting it on boundaries formed by the string Delimiter.

Example

 execute ibeblock
 as
 begin
 Str = 'just a test';
 Delimiter = ' ';
 Words = ibec_Explode(Delimiter, Str);
 end;

Mathematical functions
The following mathematical functions are available in IBEBlock:

Function Description
ibec_Div Returns the value of x/y rounded in the directionof zero to the nearest integer.

ibec_Mod Returns the remainder obtained by dividing its operands.

ibec_Power Raises the base to anypower.

463

ibec_Div
The value of x div y is the value of x/y rounded in the directionof zero to the nearest integer.

Syntax

 function ibec_div(Operand1, Operand2 : integer) : integer;

Description

No additional description...

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 i = 1;
 while (I < 50) do
 begin
 if ((i/2 - ibec_div(i, 2)) > 0) then
 cout = i || ' is odd number';
 else
 cout = i || ' is even number';
 suspend;
 i = i + 1;
 end
 end

464

ibec_Mod
Returns the remainder obtained by dividing its operands.

Syntax

 function ibec_mod(Operand1, Operand2 : integer) : integer;

Description

No additional decription...

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 i = 1;
 while (I < 50) do
 begin
 if (ibec_mod(i, 2) = 0) then
 cout = i || ' is even number';
 else
 cout = i || ' is odd number';
 suspend;
 i = i + 1;
 end
 end

See also:
Data Comparer using cursors

ibec_Power
ibec_Power raises Base to anypower.

Syntax

 function ibec_Power(Base, Exponent : double precision) :
 double precision;

Description

For fractional exponents Base must be greater than 0.

The ibec_Power returns NULL if it is impossible to raise Base to specified power (for example, ibec_Power(-4, 0.5)will return NULL).

465

File functions
The following file-handling functions are available in IBEBlock:

Function Description
ibec_DeleteFile Erases the file from the disk.
ibec_FileExists Tests if a specified file exists.

ibec_FileSize Returns the size of the specified file.
ibec_GetFiles Retrieves specified file or list of files.

ibec_LoadFromFile Loads file data into variable.
ibec_SaveToFile Saves value of variable into file.

ibec_CopyFile Copies an existing file to a new one.
ibec_FileDateTime Returns the TIMESTAMP of a specified file.

The following functions are intended for working with files in stream mode:

Function Description
ibec_fs_CloseFile Closes the file opened with the ibec_fs_OpenFile function.
ibec_fs_Eof Tests whether the file position is at the end of a file.

ibec_fs_OpenFile Opens a file for reading or writing.
ibec_fs_Position Returns the current offset into the stream for reading and writing.

ibec_fs_Readln Reads a line of text from a file.
ibec_fs_ReadString Reads count bytes from the file stream.

ibec_ini_SetStrings Sets the contents of the INI file from a variable.
ibec_ini_GetStrings Saves the contents of the INI file to a variable.

ibec_fs_Seek Resets the current position of the file stream.
ibec_fs_Size Returns the length, in bytes, of the file stream.

ibec_fs_Writeln
ibec_fs_WriteString

The following functions were introduced to handle work with INI files:

Function Description
ibec_ini_Open Instantiates an INI file object.
ibec_ini_Close Frees the memory associated with the INI file object.

ibec_ini_Clear Erases all data from the INI file in the memory.
ibec_ini_UpdateFile Flushes buffered INI file data to disk.

ibec_ini_EraseSection Erases an entire section of an INI file.
ibec_ini_ReadString Retrieves a string value from an INI file.

ibec_ini_WriteString Writes a string value to an INI file.

Please note that allibec_ini_xxx functions, except ibec_ini_ReadString and ibec_ini_Open, return NULL.

466

ibec_DeleteFile
Erases the file from the disk.

Syntax

 function ibec_DeleteFile(FileName : string): boolean;

Description

The ibec_DeleteFile functionerases the file named by FileName from the disk. If the file cannot be deleted or does not exist, the functionreturns False.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 if (ibec_FileExists(FileName)) then
 ibec_DeleteFile(FileName);
 end

467

ibec_FileExists
Tests if a specified file exists.

Syntax

 function ibec_FileExists(FileName : string): boolean;

Description

ibec_FileExists returns True if the file specified by FileName exists. If the file does not exist, the functionreturns False.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 if (ibec_FileExists(FileName)) then
 ibec_DeleteFile(FileName);
 end

See also:
Data Comparer using cursors

468

ibec_FileSize
Returns the size of the specified file.

Syntax

 function ibec_FileSize(FileName : string): variant;

Description

The ibec_FileSize functionreturns the size in bytes of the file specified by FileName. If the file does not exist, the function returns NULL.

Example

 execute ibeblock
 returns (fname varchar(100), isize integer)
 as
 begin
 options = __gfFullName;
 files_count = ibec_getfiles(files_list, 'E:\Projects_5\', '*.*', options);
 if (files_count > 0) then
 begin
 i = 0;
 while (i < ibec_high(files_list)) do
 begin
 fname = files_list[i];
 isize = ibec_filesize(fname);
 suspend;
 i = i + 1;
 end
 end
 end

See also:
Example: Importing data from a file
Inserting file data into a database

469

ibec_GetFiles
Retrieves specified file or list of files.

Syntax

 ibec_getfiles(files_list, 'path', 'file_name', _gfXXX + __gfXXX);

There are three __gfXXX constants:

__
gfRecursiveSearch

The search will be performed recursively for eachdirectory. For example, if D:\ is specified as the initial path for the
search, the function will search also in D:\MyData, in D:\MyPhotos, in D:\MyPhotos\Last etc. In this case the entire D:
drive will be scanned.

__gfFullName The file names in the result list will include the full path, otherwise only the file name (without the drive letter and
directories) will be listed.

__gfAppend
This is useful when youperform several searches one by one with different conditions. If this option is specified the
function will NOT clear the result list before performing a new search, new results will be added to the files_list.
Otherwise the files_list variable will be erased before searching.

See also:
Inserting file data into a database

ibec_LoadFromFile
Loads file data into variable.

Syntax

 function ibec_LoadFromFile(FileName : string): string;

Example

See Inserting file data into a database.

See also:
ibec_SaveToFile
Example: Importing data from a file

ibec_SaveToFile
Saves value of variable into file.

Syntax

 function ibec_SaveToFile(FileName : string; Value : variant; Mode : integer): variant;

See also:
ibec_LoadFromFile

ibec_CopyFile
Copies an existing file to a new file.

Syntax

 ibec_CopyFile(ExistingFileName, NewFileName : string;
 FailIfExists : boolean) : boolean;

Description

The ibec_CopyFile functioncopies an existing file to a new file. If the FailIfExists parameter is True and the new file already exists, the function fails. If this
parameter is False and the new file already exists, the function overwrites the existing file.

ibec_FileDateTime

470

Returns the TIMESTAMP of a specified file.

Syntax

 function ibec_FileDateTime(FileName : string) : variant;

Returns the TIMESTAMP of a specified file. If the file doesn't exist ibec_FileDateTime returns NULL.

471

ibec_fs_CloseFile
Closes the file opened with the ibec_fs_OpenFile function.

Syntax

 function ibec_fs_CloseFile(FileHandle : variant): variant

Description

The ibec_fs_CloseFile functioncloses the file opened with the ibec_fs_OpenFile function. This functionalways returns 0.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 FH = ibec_fs_OpenFile(FileName, __fmCreate);
 if (not FH is NULL) then
 begin
 ibec_fs_Writeln(FH, 'just a test');
 ibec_fs_CloseFile(FH);
 end
 end

472

ibec_fs_Eof
Tests whether the file position is at the end of a file.

Syntax

 function ibec_fs_Eof(FileHandle : variant): boolean;

Description

The ibec_fs_Eof function tests whether the file position is at the end of a file. ibec_fs_Eof returns True if the current file position is beyond the last character of
the file or if the file is empty; otherwise, ibec_fs_Eof returns False.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then
 begin
 while (not ibec_fs_Eof(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

See also:
Example: Importing data from a CSV file

473

ibec_fs_OpenFile
Opens a file for reading or writing.

Syntax

 function ibec_fs_OpenFile(FileName : string; Mode : integer): variant;

Description

The ibec_fs_OpenFile functionopens file specified by FileName for reading or writing.

The Mode parameter indicates how the file is to be opened. The Mode parameter consists of an open mode and a share mode stored together. The open mode
must be one of the following values:

Value Meaning
__fmCreate Create a file with the given name. If a file with the given name exists, open the file in write mode.

__fmOpenRead Openthe file for reading only.

__fmOpenWrite Openthe file for writing only. Writing to the file completely replaces the current contents.

__fmOpenReadWrite Openthe file to modify the current contents rather than replace them.

The share mode must be one of the following values:

Value Meaning
__fmShareCompat Sharing is compatible with the way FCBs are opened.

__fmShareExclusive Other applications cannot open the file for any reason.

__fmShareDenyWrite Other applications canopen the file for reading but not for writing.

__fmShareDenyRead Other applications canopen the file for writing but not for reading.

__fmShareDenyNone No attempt is made to prevent other applications from reading from or writing to the file.

If the file cannot be opened, ibec_fs_OpenFile returns NULL. Otherwise it returns the handle for the file just opened.

To close the file opened with ibec_fs_OpenFile use the [@ibec_fs_CloseFile@] function.

Example

 execute IBEBlock
 as
 begin
 FileName = 'C:\mydata.txt';
 FH = ibec_fs_OpenFile(FileName, __fmCreate);
 if (not FH is NULL) then
 begin
 ibec_fs_Writeln(FH, 'just a test');
 ibec_fs_CloseFile(FH);
 end
 end

See also:
Creating an UPDATE script with domain descriptions
Example: Importing data from a CSV file

474

ibec_fs_Position
Returns the current offset into the stream for reading and writing.

Syntax

 function ibec_fs_Position(FileHandle : variant) : integer;

Description

Use ibec_fs_Position to obtain the current position of the stream. This is the number of bytes from the beginning of the streamed data.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then
 begin
 while (ibec_fs_Position(FH) < ibec_fs_Size(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

See also:
ibec_fs_Seek

475

ibec_fs_Readln
Reads a line of text from a file.

Syntax

 function ibec_fs_Readln(FileHandle : variant) : string;

Description

The ibec_fs_Readln functionreads a line of text and then skips to the next line of the file.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then
 begin
 while (not ibec_fs_Eof(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

See also:
ibec_fs_Writeln
ibec_fs_WriteString
Example: Importing data from a CSV file

476

ibec_fs_ReadString
Reads Count bytes from the file stream created with ibec_fs_OpenFile.

Syntax

 function ibec_fs_ReadString(FileHandle : variant; Count : integer) :
 string;

Description

Use ibec_fs_ReadString to read Count bytes from the file stream created with ibec_fs_OpenFile into a variable in cases where the number of bytes is
known and fixed.

Example

 execute ibeblock
 as
 begin
 fs = ibec_fs_OpenFile('C:\MyData.dat', __fmOpenRead);
 if (fs is not null) then
 begin
 ibec_fs_Seek(fs, -100, __soFromEnd);
 MyStr = ibec_fs_ReadString(fs, 100);
 ibec_fs_CloseFile(fs);
 end
 end

See also:
ibec_fs_WriteString

ibec_ini_SetStrings
ibec_ini_SetStrings sets the contents of the INI file from a variable.

ibec_ini_GetStrings
ibec_ini_GetStrings saves the contents of the INI file to a variable.

477

[[#t]

ibec_fs_Seek
Resets the current position of the file stream.

Syntax

 function ibec_fs_Seek(FileHandle : variant; Offset: integer; Origin: integer): integer;

Description

Use ibec_fs_Seek to move the current positionwithin the file by the indicated offset. ibec_fs_Seek allows you to read from or write to a particular location
within the file.

The Origin parameter indicates how the Offset parameter should be interpreted. Origin should be one of the following values:

Value Meaning
__soFromBeginning Offset is from the beginning of the resource. ibec_fs_Seek moves to the position Offset. Offsetmust be >= 0.
__soFromCurrent Offset is from the current position in the resource. ibec_fs_Seek moves to Position + Offset.
__soFromEnd Offset is from the end of the resource. Offset must be <= 0 to indicate a number of bytes before the end of the file.

ibec_fs_Seek returns the new current position in the file.

See also:
ibec_fs_Position ibec_fs_Size

478

ibec_fs_Size
Returns the length, in bytes, of the file stream.

Syntax

 function ibec_fs_Size(FileHandle : variant) : integer;

Description

The ibec_fs_Size returns the length, in bytes, of the file identified by the FileHandle.

Example

 execute IBEBlock
 returns (vcout varchar(1000))
 as
 begin
 FileName = 'C:\mydata.csv';
 FH = ibec_fs_OpenFile(FileName, __fmOpenRead);
 if (not FH is NULL) then
 begin
 while (ibec_fs_Position(FH) < ibec_fs_Size(FH)) do
 begin
 vcout = ibec_fs_Readln(FH);
 suspend;
 end
 ibec_fs_CloseFile(FH);
 end
 end

See also:
ibec_fs_Position ibec_fs_Seek

ibec_fs_SetSize

ibec_fs_Writeln
See also:
Example: Importing data from a CSV file

ibec_fs_WriteString

ibec_ini_Open
ibec_ini_Open instantiates an INI file object.

Syntax

 function ibec_ini_Open(FileName : string) : variant;

The FileName is the name of the INI file whichwill be used.

Description

ibec_ini_Open loads a copy of the INI file into the memory if the specified file exists. ibec_ini_Open returns the handle of the INI file object if successful,
otherwise it returns NULL.

Please note: allibec_ini_xxx functions, except ibec_ini_ReadString and ibec_ini_Open, return NULL.

ibec_ini_Close
ibec_ini_Close frees the memory associated with the INI file object.

Syntax

479

 function ibec_ini_Close(IniFile : variant) : variant;

Description

No updates are made of the associated file on disk, you must use ibec_ini_UpdateFile to flush buffered INI file data to disk.

ibec_ini_Clear
Erases all data from the INI file in the memory.

Syntax

 function ibec_ini_Clear(IniFile : variant) : variant;

Description

Call ibec_ini_Clear to erase all data from the INI file that is currently buffered in the memory. All sections, keys, and values are erased. No exception is
generated when using Clear and the data has not been saved to the INI file with the ibec_ini_UpdateFile function.

ibec_ini_UpdateFile
ibec_ini_UpdateFile flushes buffered INI file data to disk.

Syntax

 function ibec_ini_UpdateFile(IniFile : variant) : variant;

Description

Call ibec_ini_UpdateFile to copyINI file data stored in the memory to the copyof the INI file on disk. ibec_ini_UpdateFile overwrites all data contained in
the disk copyof the INI file with the INI file data stored in the memory. If the file does not already exist, it is created. If the new file already exists, it is
overwritten.

ibec_ini_EraseSection
Erases an entire section of an INI file.

Syntax

 function ibec_ini_EraseSection(IniFile : variant; Section : string) : variant;

Description

Call ibec_ini_EraseSection to remove a section, all its keys, and their data values from an INI file. Section identifies the INI file section to remove. If a
sectioncannot be removed, an exception is raised. ibec_ini_EraseSection only affects the in-memory copy of the INI file, not the copyon disk.

ibec_ini_ReadString
Retrieves a string value from an INI file.

Syntax

 function ibec_ini_ReadString(IniFile : variant; Section, Ident, Default : string) : string;

Call ibec_ini_ReadString to read a string value from an INI file.

Parameters

Section identifies the section in the file that contains the desired key.

Ident is the name of the keyfrom which to retrieve the value.

Default is the string value to return if the Section does not exist or the keydoesn't exist or the data value for the key is not assigned.

480

ibec_ini_WriteString
Writes a string value to an INI file.

Syntax

 function ibec_ini_WriteString(IniFile : variant; Section, Ident, Value : string) : variant;

Description

Call ibec_ini_WriteString to write a string value to an INI file.

Parameters

Section identifies the section in the file that contains the keyto which to write to.

Ident is the name of the keyfor which to set a value.

Value is the string value to write.

Please note that attempting to write a data value to a non-existent section or attempting to write data to a non-existent key are not errors. In these cases, ibec_
ini_WriteString creates the section and keyand sets its initial value to Value.

481

Database functions
The following database-handling functions are available in IBEBlock:

Function Description
ibec_CreateConnection Creates an active database connection.
ibec_UseConnection Uses an active database connection.

ibec_CloseConnection Closes an active database connection.
ibec_RecompileTrigger Recompiles triggers.

ibec_RecompileProcedure Recompiles stored procedures.

ibec_CompareTables Compares the data of specified tables and creates a script of all
discrepancies.

ibec_CompareMetadata Compares the metadata of specified databases and creates a script
of all discrepancies.

ibec_ExtractMetadata Extracts metadata (and data if specified) of a database into a script.

Specifying WHERE clauses
in ibec_ExtractMetadata Allows specificationof WHERE clauses for each data table.

ibec_BackupDatabase Starts the backup process using the server Services Manager.

ibec_RestoreDatabase Starts the restore process using the server Services Manager.
ibec_GetConnectionProp Returns the server version of the active connection.

ibec_GetCurrentDir Returns the fully qualified name of the current directory.

ibec_GetRunDir Returns the path of the currently executing program (IBExpert.exe of
IBEScript.exe.

ibec_GetUserDBConnection Returns the pointer to the User Database if it is used.

ibec_ibe_
GetActiveDatabaseID

Returns the unique identifier of the active (currently used) database
within IBExpert.

ibec_ibe_GetDatabaseProp Returns value of specifed database property.

ibec_CreateConnection
The ibec_CreateConnection creates an active database connection.

See also:
Example: ODBC Access

ibec_UseConnection
See also:
Example: ODBC Access

ibec_CloseConnection
See also:
Example: ODBC Access

482

ibec_RecompileTrigger
Recompiles triggers.

Syntax

 function ibec_RecompileTrigger(Connection : variant; TriggerName : string) : string;

Description

This functionrecompiles (alters using current trigger source) a specified trigger and returns an empty string if no error occurs or an error message otherwise.
Instead of a trigger name youcan specify an empty string to recompile ALL database triggers.

Examples of usage

1. Recompile a single trigger using the current connection:

 execute ibeblock
 returns (ErrMessage varchar(1000))
 as
 begin
 db = ibec_GetDefaultConnection();
 ErrMessage = ibec_RecompileTrigger(db, 'MYTABLE_TRG_BI');
 if (ErrMessage <> '') then
 suspend;
 end

2. Recompile ALL database triggers using the current connection:

 execute ibeblock
 returns (ErrMessage varchar(10000))
 as
 begin
 ErrMessage = ibec_RecompileTrigger(0, '');
 if (ErrMessage <> '') then
 suspend;
 end

See also:
Recompile all Stored Procedures and Triggers

483

ibec_RecompileProcedure
Recompiles stored procedures.

Syntax

 function ibec_RecompileProcedure(Connection : variant; ProcedureName : string) : string;

Description

This functionrecompiles (alters using current procedure source) a specified stored procedure and returns an empty string if no error occurs or an error
message otherwise. Instead of a procedure name you can specifyan empty string to recompile ALL database stored procedures.

Examples of usage

1. Recompile a single stored procedure using the current connection:

 execute ibeblock
 returns (ErrMessage varchar(1000))
 as
 begin
 db = ibec_GetDefaultConnection();
 ErrMessage = ibec_RecompileProcedure(db, 'MY_PROC');
 if (ErrMessage <> '') then
 suspend;
 end

2. Recompile ALL database procedures using the current connection:

 execute ibeblock
 returns (ErrMessage varchar(10000))
 as
 begin
 ErrMessage = ibec_RecompileProcedure(0, '');
 if (ErrMessage <> '') then
 suspend;
 end

See also:
Recompile all Stored Procedures and Triggers

484

ibec_CompareTables
Compares the data of specified tables and creates a script of all discrepancies.

Syntax

 function ibec_CompareTables(MasterDB : variant; SubscriberDB : variant;
 MasterTable : string; SubscriberTable :string;
 ScriptFile : string; Options : string;
 CallbackProc : variant) : variant;

Description

This functioncompares the data of two tables and creates a discrepancy script. Both tables must have a primary key.

Since IBExpert version 2006.08.12 it is possible to include millseconds into time/timestamp values when comparing table data. Use the IncludeMilliseconds
or IncludeMsecs option for this.

Parameters

MasterDB A handle to the reference database, maybe 0 or NULL if the current connection is used as a reference connection.

SubscriberDB A handle to the comparative database, maybe 0 or NULL if the current connection is used as a comparative
connection.

MasterTable,
SubscriberTable Names of the reference and comparative tables.

ScriptFile Name of the script file whichwill contain the discrepancyscript.
Options List of options, delimited with a semicolon; possible options are:

OmitDeletes Missing records will not be checked by the data comparison. You canalso use ProcessDeletes=0.
OmitInserts New records will not be checked by the data comparison. You can also use ProcessInserts=0.

OmitUpdates Modified records will not be checked by the data comparison. You can also use ProcessDeletes=0.
UpdateAllColumns If this option is specified UPDATE statements will include non-modifed columns too.

AppendMode If this option is specified and the file ScriptFile already exists the resulting script will be appended to the
ScriptFile. Otherwise a new file will be created.

CallbackProc
A callback IBEBlock whichwill be executed for each record processed whilst comparing data. The callback
IBEBlock must have at least one input parameter, whichwill be used to pass a number of processed records within
it.

IBExpert version2008.08.08 introduced the ability to compare more than one table in a single operation. Simply specify the list of necessary tables, delimited
with a comma or semicolon, as MasterTable and SubscriberTable. For example:

 ibec_CompareTables@@(DB1, DB2,'TABLE1, TABLE2, "Table3"',
 'TABLE1, TABLE2, "Table3"',
 'D:\Diff.sql', 'UpdateOrInsert', cbb);'

The UpdateOrInsert option (and UseUpdateOrInsert) is now also valid. This allows you to generate UPDATE OR INSERT statements instead of UPDATE/INSERT
for Firebird 2.1 databases (see example above).

Example of usage

 execute ibeblock
 returns (
 TotalTime double precision = 0 comment 'Time spent (seconds)')
 as
 begin
 create connection MasterDB dbname 'localhost:c:\MasterDB.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create connection SubscriberDB dbname 'localhost:c:\SubscriberDB.fdb'
 password 'masterkey' user 'SYSDBA'
 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 cbb = 'execute ibeblock (
 RecsProcessed variant)
 as
 begin
 if (ibec_mod(RecsProcessed, 100) = 0) then
 ibec_progress(Records compared: || RecsProcessed);
 end';

 ibec_CompareTables(MasterDB, SubscriberDB, 'IBE$$TEST_DATA', 'IBE$$TEST_DATA',

 'E:\CompRes.sql','OmitUpdates', cbb);
 ibec_CompareTables(MasterDB, SubscriberDB, 'IBE$$TEST_DATA', 'IBE$$TEST_DATA',

 'E:\CompRes.sql','AppendMode; OmitDeletes; OmitInserts; UpdateAllColumns', cbb);

 close connection MasterDB;
 close connection SubscriberDB;

485

 EndTime = ibec_gettickcount();
 TotalTime = (EndTime - StartTime) / 1000;
 suspend;
 end

See also:
Table Data Comparer
Table Data Comparing

486

ibec_CompareMetadata
Compares the metadata of specified databases and creates a script of all discrepancies.

Syntax

 function ibec_CompareMetadata(MasterDB : variant; SubscriberDB :variant;
 ScriptFile : string; Options : string;
 CallbackProc : variant) : string;

Description

This functioncompares the metadata of two databases (or scripts) and creates a discrepancy script.

Parameters

MasterDB Reference database or script file.

SubscriberDB Comparative database or script file.

ScriptFile Name of the difference script file.

Options List of options, delimited with semicolon; possible options are:

OmitDomains (Domains=0) don't compare domains.

OmitTables (Tables=0) don't compare tables.

OmitViews (Views=0) don't compare views.

OmitTriggers (Triggers=0) don't compare triggers.

OmitProcedures (Procedures=0) don't compare procedures.

OmitGenerators (Generators=0 don't compare generators.

OmitExceptions (Exceptions=0) don't compare exceptions.

OmitUDFs (UDFs=0) don't compare UDFs.

OmitRoles (Roles=0) don't compare roles.

OmitIndices (Indices=0) don't compare indices.

OmitGrants (Grants=0) don't compare privileges.

OmitDescriptions (Descriprions=0) don't compare object descriptions.

OmitPrimaryKeys (PrimaryKeys=0) don't compare primary keys.

OmitForeignKeys (ForeignKeys=0) don't compare foreignkeys.

OmitUniques (Uniques=0) don't compare unique constraints.

OmitChecks (Checks=0) don't compare check constraints.

ServerVersion
New to IBExpert version 2005.12.04. Possible values are: IB4? - for InterBase 4.?, IB5? - for InterBase 5.?, IB6? - for
InterBase 6.?, IB7? - for InterBase 7.?, FB1? - for Firebird 1.?, FB15 - for Firebird 1.5, FB2? - for Firebird 2.?, YA1? - for Yaffil
1.?. If the ServerVersion is not specified, FB15 will be used.

CallbackProc A callback IBEBlock whichwill be executed for each record processed whilst comparing data. The callback IBEBlock
must have at least one input parameter, which will be used to pass a number of processed records within it.

Examples of usage

1. Comparing databases:

 execute ibeblock
 as
 begin
 create connection MasterDB dbname 'localhost:c:\MasterDB.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create connection SubscriberDB dbname 'localhost:c:\SubscriberDB.fdb'
 password 'masterkey' user 'SYSDBA'
 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 cbb = 'execute ibeblock (LogMessage variant)
 as
 begin
 ibec_progress(LogMessage);
 end';

 ibec_CompareMetadata(MasterDB, SubscriberDB, 'E:\CompRes.sql', 'OmitDescriptions;
 OmitGrants', cbb);

 close connection MasterDB;
 close connection SubscriberDB;
 end

2. Comparing scripts:

487

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (
 LogMessage variant)
 as
 begin
 ibec_progress(LogMessage);
 end';

 ibec_CompareMetadata('c:\myscripts\master.sql','c:\myscripts\subscriber.sql', 'E:\CompRes.sql','', cbb);
 end

3. Using the ServerVersion parameter (IBExpert version 2005.12.04):

 ibec_CompareMetadata(MasterDB,
 SubscriberDB,
 'E:\CompRes.sql',
 'OmitDescriptions; OmitGrants; ServerVersion=FB1?',
 cbb);

See also:
Comparing databases using IBEBlock
Comparing scripts with IBEBlock
Extract metadata using IBEBlock

488

ibec_ExtractMetadata
Extracts metadata (and data if specified) of a database into a script.

Syntax

 function ibec_ExtractMetadata(Connection : variant; ScriptFile :string;
 Options : string; CallbackProc : variant): string;

Description

This functionextracts metadata/data of a specified database into a script.

Parameters

Connection Active database connection.

ScriptFile Name of the resulting script file or directoryname if the VCSFiles option is used.

Options List of options delimited with semicolon; possible options are:

VCSFiles Each database object definitionwill be extracted into a separate file.

SeparateFiles
Extracts metadata (and data if specified) into a set of files: two files with metadata (_ibe$start_.sql and _ibe$
finish_.sql), files containing table data (one or more files for eachdatabase table) and a runme.sql file, that
consists of a number of INPUT <file_name> statements in the correct order.

GenerateCreate Determines whether a CREATE DATABASE statement should be included at the beginning of the generated script.

GenerateConnect Determines whether a CONNECT statement should be included at the beginning of the generated script.

IncludePassword Determines whether the password should be included into the CREATE DATABASE or the CONNECT statement in the
resulting SQL script.

SuppressComments Use to suppress comments in the resulting script.

IncludeCharset
Introduced in IBExpert version 2006.01.29. This option forces IBExpert/IBEScript to include the CHARACTER SET
clause into the definitionof all CHAR/VARCHAR/domains/columns/parameters, even if their CHARSET is equal to the
default CHARSET of the database.

SeparateComputedBy Specifies whether computed fields should be extracted separately.

SetGenerators Use to set generator values.

ExtractDescriptions Determines whether database object descriptions should be included into the generated script.

DescriptionsAsUpdate Determines whether the raw UPDATE statement will be used for object descriptions instead of the IBExpert-
specific DESCRIBE statement.

ExtractPrivileges Use to extract privileges.

OnlySelectedPrivileges If used only privileges of the selected objects will be included into the resulting script. Otherwise ALL privileges
will be extracted.

UseReinsert Determines whether the IBExpert REINSERT command should be used to insert multiple data records.

ExtractBLOBs Determines whether blob values should be extracted.

ExcludeIBE Use to omit database objects with the prefixIBE$.
ExcludeTMP Use to omit database objects with the prefixTMP$ (InterBase 7.x).

DecodeDomains Determines whether domain definitions will be extracted as comments to the corresponding table fields.

CommitAfter=X This optiondefines the number of records before inserting the COMMIT statement into the script. The default value
is 500, i.e. 500 insert commands are performed and thencommitted.

MaxFileSize=X Defines the maximum file size of script files (in megabytes). The default value is 0, this means that there will be
no file splitting.

DateFormat=<format> Specifies the format of date values and date part of timestamp values.

Domains=<objects_list> Specifies list of domains to be extracted. Items should be separated with comma. If this option is not defined all
domains will be extracted.

Tables=<objects_list> Specifies list of tables to be extracted. Items should be separated with comma. If this option is not defined all
tables will be extracted.

Views=<objects_list> Specifies list of views to be extracted. Items should be separated with comma. If this option is not defined all
views will be extracted.

Triggers=<objects_list> Specifies list of triggers to be extracted. Items should be separated with comma. If this option is not defined all
triggers will be extracted.

Procedures=<objects_
list>

Specifies list of procedures to be extracted. Items should be separated with comma. If this option is not defined
all procedures will be extracted.

Generators=<objects_
list>

Specifies list of generators to be extracted. Items should be separated with comma. If this option is not defined
all generators will be extracted.

Exceptions=<objects_
list>

Specifies list of exceptions to be extracted. Items should be separated with comma. If this option is not defined
all exceptions will be extracted.

UDFs=<objects_list> Specifies list of UDFs to be extracted. Items should be separated with comma. If this option is not defined all
UDFs will be extracted.

Roles=<objects_list> Specifies list of roles to be extracted. Items should be separated with comma. If this option is not defined all
roles will be extracted.

489

DataTables=<objects_
list>

Specifies the list of tables from whichdata should be extracted. If this option is not defined NO data will be
extracted. You can use the ALL keyword as a list of objects to specify that all objects of that type must be
extracted. You can use the NONE keyword as a list of objects to omit all objects of that type.

CallbackProc
A callback IBEBlock whichwill be executed for eachrecord processed whilst comparing data. The callback
IBEBlock must have at least one input parameter, whichwill be used to pass a number of processed records
within it.

UseComment New to IBExpert version2005.09.25 for support of the Firebird 2 COMMENT ON statement.
UseSequence New to IBExpert version2007.12.01 for support of the Firebird 2.x CREATE / ALTER SEQUENCE.

Examples of usage

1. Extracting domain definitions in VCS-files:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (LogLine variant)
 as
 begin
 ibec_progress(LogLine);
 end';

 db = ibec_GetDefaultConnection();
 ibec_ExtractMetadata(db, 'E:\Domains\', 'Domains=ALL; Tables=NONE; Views=NONE;
 Triggers=NONE; Procedures=NONE; Generators=NONE;
 Exceptions=NONE; UDFs=NONE; Roles=NONE;
 VCSFiles', cbb);
 end;

2. Complete metadata extract:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (LogLine variant)
 as
 begin
 ibec_progress(LogLine);
 end';

 db = ibec_GetDefaultConnection();
 ibec_ExtractMetadata(db, 'E:\meta.sql', 'GenerateCreate; ExtractPrivileges; ExtractDescriptions',
 cbb);
 end;

3. Extracting data from specified tables:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (LogLine variant)
 as
 begin
 ibec_progress(LogLine);
 end';

 db = ibec_GetDefaultConnection();
 ibec_ExtractMetadata(db, 'E:\data.sql', 'Domains=NONE; Tables=NONE; Views=NONE; Triggers=NONE;

 Procedures=NONE; Generators=NONE;
 Exceptions=NONE; UDFs=NONE; Roles=NONE;DataTables=IBE$$TEST_DATA, MY_TABLE;
 ExtractBLOBs;UseReinsert; CommitAfter=1000', cbb);
 end;

4. Using the IncludeCharset parameter:

 ibec_ExtractMetadata(db, 'E:\meta.sql', 'GenerateCreate;IncludeCharset;ExtractPrivileges; ExtractDescriptions',cbb);

See also:
Extract Metadata
Extract metadata using IBEBlock
Specifying WHERE clauses in ibec_ExtractMetadata
ibec_CompareMetadata

490

Specifying WHERE clauses in ibec_ExtractMetadata
Since IBExpert version 2007.07.18 ibec_ExtractMetadata allows specificationof WHERE clauses for each data table. To specify these clauses you should
create variable with a list of WHERE's in the form <table_name>=<where_clause>:

 WhereClauses[0] = 'HELP_ITEMS=where item_id > 1000';
 WhereClauses[1] = 'GOODS=where id < 500000';
 WhereClauses[2] = 'DT_TRANSFER=where transfer_id in (4, 6, 7)';

and indicate the variable name in the WhereVar optionof the Options parameter of the function:

 WhereVar=WhereClauses;

Example

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (
 LogLine variant)
 as
 begin
 ibec_progress(LogLine);
 end';
 WhereClauses[0] = 'HELP_ITEMS=where item_id > 1000';
 WhereClauses[1] = 'GOODS=where id < 500000';
 WhereClauses[2] = 'DT_TRANSFER=where transfer_id in (4, 6, 7)';
 DB = ibec_CreateConnection(__ctInterBase,

 'DBName="LOCALHOST/3060:D:\FB2_DATA\FORMTEST.FDB";
 ClientLib=C:\Program Files\Firebird\bin\fbclient.dll;
 User=SYSDBA; Password=masterkey; Names=NONE; SqlDialect=3');
 try
 ibec_ExtractMetadata(DB, 'D:\myscript.sql',
 'GenerateCreate;
 IncludePassword;
 SetGenerators;
 ExtractDescriptions;
 UseComment;
 MaxFileSize=500;
 DecodeDomains;
 ExtractBLOBs;
 TrimStrings;
 DateFormat=YYYY-MM-DD;
 Domains=NONE;
 Tables=NONE;
 Views=NONE;
 Procedures=NONE;
 Triggers=NONE;
 Generators=NONE;
 Exceptions=NONE;
 UDFs=NONE;
 Roles=NONE;
 DataTables=HELP_ITEMS,GOODS,DT_TRANSFER;
 WhereVar=WhereClauses', cbb);
finally:

 ibec_CloseConnection(DB);
 end;
 end;

See also:
ibec_ExtractMetadata

491

ibec_BackupDatabase
Syntax

 function ibec_BackupDatabase(DatabaseToBackup : string;
 BackupFiles :string; Options : string;
 CallbackBlock : string) : variant;

Description

The ibec_BackupDatabase starts the backup process using the server Services Manager. It returns NULL if the backup process is successful, otherwise it
returns an error message.

Options

DatabaseToBackup Full connectionstring to the database including server name or IP address if the database is located on a
remote server (for example, 123.123.123.123:D:\DATA\MyDB.fdb).

BackupFiles List of backup files delimited with semicolon. Each list item should be formatted as <file_name>=<file_
size>.

<file_size>
Specifies the length of the result backup file in bytes (no suffix), kilobytes (K), megabytes (M) or gigabytes
(G). IMPORTANT: All backup files will be created on the server side because of the use of the Services
Manager!

Options A list of backup options delimited with semicolon. Possible options are:

USER=<user_name> User name

PASSWORD=<password> or
PAS=<password> Password.

CLIENTLIB=<client_lib_name> Name of clientlib dll; gds32.dllwill be used if not specified.

IGNORE (or IG) Ignore bad checksums.

LIMBO (or L) Ignore transactions in limbo.

METADATA (or META_DATA, or M) Backup metadata only.

GARBAGECOLLECT (or GARBAGE_
COLLECT, or G) Inhibit garbage collection.

OLDDESCRIPTIONS (or OLD_
DESCRIPTIONS, or OL) Save old style metadata descriptions.

NONTRANSPORTABLE (or NON_
TRANSPORTABLE, or NT) Non-transportable backup file format.

CONVERT (or CO) Backup external files as tables.
LOGFILE=<log_file_name> Name of output log file.

CallbackBlock
A callback IBEBlock whichwill be executed for each output line. The callback IBEBlock must have at least
one input parameter, which will be used to pass an output line within it. If there is no callback block use
NULL or an empty string as a value of this.

Example 1

Backup a database to a single backup file with no output (silent mode):

 execute ibeblock
 as
 begin
 res = ibec_BackupDatabase('LOCALHOST:D:\FB2_DATA\TESTDB.FDB',
 'E:\TESTDB.FBK',
 'ClientLib=C:\Program Files\Firebird\Bin\fbclient.dll;
 Password=masterkey; User=SYSDBA; G;',
 null);
 if (res is null) then
 ibec_ShowMessage('Backup completed successfully.);
 else
 ibec_ShowMessage(res);
 end

Example 2

Backup a database to multiple backup files with full output:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (LogStr variant)
 as
 begin
 ibec_Progress(LogStr);
 end';

 res = ibec_BackupDatabase('LOCALHOST:D:\FB2_DATA\TESTDB.FDB',
 'E:\TESTDB_1.FBK=200M; E:\TESTDB_2.FBK=200M; E:\TESTDB_3.FBK=200M',
 'ClientLib=C:\Program Files\Firebird\Bin\fbclient.dll;
 Password=masterkey; User=SYSDBA; IGNORE; L; LogFile=E:\Backup.log',

492

 cbb);
 if (res is null) then
 ibec_ShowMessage('Backup completed successfully.);
 else
 ibec_ShowMessage(res);
 end

See also:
ibec_RestoreDatabase

493

ibec_RestoreDatabase
Syntax

 function ibec_RestoreDatabase(BackupFiles : string; RestoreTo : string;
 Options : string; CallbackBlock : string) : variant;

Description

The ibec_RestoreDatabase starts the restore process using the server Services Manager. It returns NULL if the restore process succeeded, otherwise it
returns an error message.

Options

BackupFiles List of backup files delimited with semicolon.

RestoreTo List of database files delimited with semicolon. Each list item (in case of restore to multiple files)
should be in format <db_file_name>=<file_size_in_pages>.

<db_file_name> Full connectionstring to the database including server name or IP address if the database is located
on a remote server (for example, 123.123.123.123:D:\DATA\MyDB.fdb).

<file_size_in_pages> Size of the database file in pages (!).
Options List of restore options delimited with semicolon. Possible options are:

USER=<user_name> User name.

PASSWORD=<password> or
PAS=<password> Password.

CLIENTLIB=<client_lib_name> Name of clientlib dll; gds32.dllwill be used if not specified.

PAGESIZE=<page_size> or PAGE_
SIZE=<page_size> Page size of the restored database.

PAGEBUFFERS=<buffers> or
BUFFERS=<buffers> or BU=<buffers> Overrides page buffers default.

INACTIVE (or DEACTIVATEINDEXES, or
I) Deactivate indexes during restore.

KILL (or NOSHADOWS, or K) Restore without creating shadows.

NO_VALIDITY (or NOVALIDITY, or N) Do not restore database validity conditions.

ONE_AT_A_TIME (or ONEATATIME, or O) Restore one table at a time (commit after eachtable).

REPLACE_DATABASE (or
REPLACEDATABASE, or REP) Replace database from backup file.

CREATE_DATABASE (or
CREATEDATABASE, or C) Create database from backup file.

USE_ALL_SPACE (or USEALLSPACE, or
USE) Do not reserve space for record versions.

META_DATA (or METADATA, or M) Restore metadata only.
LOGFILE=<log_file_name> Name of output log file.

CallbackBlock
Callback IBEBlock whichwill be executed for eachoutput line. The callback IBEBlock must have at
least one input parameter, whichwill be used to pass an output line within it. If there is no callback
block use NULL or an empty string as a value of this parameter.

Example 1

Restore database from single backup file with no output (silent mode):

 execute ibeblock
 as
 begin
 res = ibec_RestoreDatabase('E:\TESTDB.FBK',
 'LOCALHOST:E:\TESTDB.FBK',
 'ClientLib=C:\Program Files\Firebird\Bin\fbclient.dll;
 Password=masterkey; User=SYSDBA;OneAtATime; PageSize=8192; C',
 null);
 if (res is null) then
 ibec_ShowMessage('Restore completed successfully.);
 else
 ibec_ShowMessage(res);
 end

Example 2

Restore database from multiple backup files to single database file with full output:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (LogStr variant)
 as
 begin
 ibec_Progress(LogStr);

494

 end';

 res = ibec_RestoreDatabase('E:\TESTDB_1.FBK; E:\TESTDB_2.FBK; E:\TESTDB_3.FBK',
 'LOCALHOST:E:\TESTDB.FBK',
 'ClientLib=C:\Program Files\Firebird\Bin\fbclient.dll;
 Password=masterkey; User=SYSDBA; C; REP; O; LogFile=E:\Restore.log',
 cbb);
 if (res is null) then
 ibec_ShowMessage('Restore completed successfully.);
 else
 ibec_ShowMessage(res);
 end

Example 3

Restore database from multiple backup files to multiple database files with full output:

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (LogStr variant)
 as
 begin
 ibec_Progress(LogStr);
 end';

 res = ibec_RestoreDatabase('E:\TESTDB_1.FBK; E:\TESTDB_2.FBK; E:\TESTDB_3.FBK',
 'LOCALHOST:E:\TESTDB1.FBK=20000;
 LOCALHOST:E:\TESTDB2.FBK=20000;
 LOCALHOST:E:\TESTDB3.FBK',
 'ClientLib=C:\Program Files\Firebird\Bin\fbclient.dll;
 Password=masterkey; User=SYSDBA; C; REP; O; BU=3000;
 LogFile=E:\Restore.log',
 cbb);
 if (res is null) then
 ibec_ShowMessage('Restore completed successfully.);
 else
 ibec_ShowMessage(res);
 end

See also:
ibec_BackupDatabase

ibec_GetConnectionProp
The ibec_GetConnectionProp functionwas implemented in IBExpert version 2006.10.14, and offers the additional possibility to get the server version of the
active connection.

Example

 SrvVerStr = ibec_GetConnectionProp(Conn, 'ServerVersion');

ibec_GetCurrentDir
The ibec_GetCurrentDir functionwas implemented in IBExpert version2006.10.14. This functionreturns the fullyqualified name of the current directory.

Example

 CurrDir = ibec_GetCurrentDir();

ibec_GetRunDir
The ibec_GetRunDir function was implemented in IBExpert version 2008.02.19. This functionreturns the path of the currently executing program
(IBExpert.exe of IBEScript.exe.

Syntax

 function ibec_GetRunDir : string;

495

ibec_GetUserDBConnection
The ibec_GetUserDBConnection functionwas implemented in IBExpert version 2008.02.19. It returns the pointer to the User Database (found in the IBExpert
Options menuunder Environment Options / User Database, if it is used. Otherwise this functionreturns NULL.

Syntax

 function ibec_GetUserDBConnection : variant;

Example

 execute ibeblock
 as
 begin
 CRLF = ibec_CRLF();
 sTab = ibec_Chr(9);
 sLine = '==';
 UserDB = ibec_GetUserDBConnection();
 if (UserDB is not null) then
 begin
 sMes = '';
 sHost = ibec_GetConnectionProp(UserDB, 'HostName');
 sFile = ibec_GetConnectionProp(UserDB, 'FileName');
 sServerVersion = ibec_GetConnectionProp(UserDB, 'ServerVersion');
 sDBSqlDialect = ibec_GetConnectionProp(UserDB, 'DBSqlDialect');
 sClientLib = ibec_GetConnectionProp(UserDB, 'ClientLib');
 sUser = ibec_GetConnectionProp(UserDB, 'UserName');
 sPass = ibec_GetConnectionProp(UserDB, 'Password');
 sNames = ibec_GetConnectionProp(UserDB, 'lc_ctype');
 iPageSize = ibec_GetConnectionProp(UserDB, 'PageSize');
 iSweep = ibec_GetConnectionProp(UserDB, 'SweepInterval');
 iODSMinorVersion = ibec_GetConnectionProp(UserDB, 'ODSMinorVersion');
 iODSMajorVersion = ibec_GetConnectionProp(UserDB, 'ODSMajorVersion');
 sMes = 'User Database properties' + CRLF + sLine + CRLF;
 sMes .= 'Database host: ';
 if (sHost = '') then
 sMes .= sTab + '(local)';
 else
 sMes .= sTab + sHost;
 sMes .= CRLF +
 'Database file: ' + sTab + sFile + CRLF +
 'Server version: ' + sTab + sServerVersion + CRLF +
 'Client library: ' + sTab + sClientLib + CRLF + CRLF +
 'Page size, bytes: ' + sTab + ibec_Cast(iPageSize, __typeString) + CRLF +
 'Sweep interval: ' + sTab + sTab + ibec_Cast(iSweep, __typeString) + CRLF +
 'ODS version: ' + sTab + sTab + ibec_Cast(iODSMajorVersion, __typeString) + '.' +
 ibec_Cast(iODSMinorVersion, __typeString) + CRLF + CRLF +
 'Connection username: ' + sTab + sUser + CRLF +
 'Connection password: ' + sTab + sPass + CRLF +
 'Connection charset: ' + sTab + sNames + CRLF;
 ibec_UseConnection(UserDB);
 sMes .= CRLF + CRLF + 'User Database tables' + CRLF + sLine + CRLF;
 for select rdb$relation_name
 from rdb$relations
 where (rdb$system_flag is null) or (rdb$system_flag = 0)
 order by rdb$relation_name
 into :RelName
 do
 begin
 RelName = ibec_Trim(RelName);
 sMes .= RelName + CRLF;
 end
 commit;
 ibec_ShowMessage(sMes);
 end
 end

ibec_ibe_GetActiveDatabaseID
The ibec_ibe_GetActiveDatabaseID functionwas implemented in IBExpert version 2008.02.19. It returns the unique identifier of the active (currently used)
database within IBExpert. If there is no active database ibec_ibe_GetActiveDatabaseID returns -1.

Syntax

 function ibec_ibe_GetActiveDatabaseID : integer;

496

ibec_ibe_GetDatabaseProp
The ibec_ibe_GetDatabaseProp functionwas implemented in IBExpert version 2008.02.19. It returns the value of specifed database property.

Syntax

 function ibec_ibe_GetDatabaseProp(DatabaseID : integer; PropertyName : string) : variant;

Following properties are available:

ALIAS Alias of the registered database.

CLIENTLIB Name of the client library file specified in the Database Registration Info.

SERVERNAME or HOSTNAME Server name.

FILENAME or DBNAME Database file name.

PASSWORD Password specified in the database regstration info.

USERNAME or USER_NAME or USER User name.

ROLENAME or ROLE_NAME or ROLE Role name.

NAMES or LC_CTYPE or CHARSET Connectioncharset.

CONNECTIONSTRING or CONNECTION_STRING Connectionstring.

ACTIVE or CONNECTED Returns TRUE if the database is active and FALSE if it is not.

Example

 execute ibeblock as
 begin
 CRLF = ibec_CRLF();
 ActiveDB = ibec_ibe_GetActiveDatabaseID();
 if (ActiveDB is not null) then
 begin
 if (ActiveDB = -1) then
 Exit;
 sAlias = ibec_ibe_GetDatabaseProp(ActiveDB, 'Alias');
 sClientLib = ibec_ibe_GetDatabaseProp(ActiveDB, 'ClientLib');
 sHost = ibec_ibe_GetDatabaseProp(ActiveDB, 'HostName');
 sFileName = ibec_ibe_GetDatabaseProp(ActiveDB, 'FileName');
 sPassword = ibec_ibe_GetDatabaseProp(ActiveDB, 'Password');
 sUser = ibec_ibe_GetDatabaseProp(ActiveDB, 'User');
 sRole = ibec_ibe_GetDatabaseProp(ActiveDB, 'Role');
 sCharset = ibec_ibe_GetDatabaseProp(ActiveDB, 'Names');
 sConnectionStr = ibec_ibe_GetDatabaseProp(ActiveDB, 'ConnectionString');
 bActive = ibec_ibe_GetDatabaseProp(ActiveDB, 'Connected');
 s = 'Database alias: ' + sAlias + CRLF +
 'Client library: ' + sClientLib + CRLF +
 'Server name: ' + sHost + CRLF +
 'Database file name: ' + sFileName + CRLF +
 'User name: ' + sUser + CRLF +
 'Password: ' + sPassword + CRLF +
 'Role: ' + sRole + CRLF +
 'Charset: ' + sCharset + CRLF +
 'Connection string: ' + sConnectionStr;
 if (bActive) then
 s .= CRLF + CRLF + 'Database is active.';
 ibec_ShowMessage(s);
 end
 end

ibec_SetDatabaseProp

497

Dataset functions
The following dataset-handling functions are available in IBEBlock:

Function Description
ibec_CopyData Returns number of records copied from SrcConnection to DestConnection.
ibec_Array Returns a one-dimensional0-based array of values.

ibec_ds_Append Adds a new, empty record to the end of the dataset.
ibec_ds_Cancel Cancels modifications to the active record if those changes are not yet posted.

ibec_ds_Delete Deletes the active record and positions the cursor on the next record.
ibec_ds_Edit Enables editing of data in the dataset.

ibec_ds_Eof Indicates whether or not a cursor is positioned at the last record in a dataset.
ibec_ds_Bof Indicates whether or not a cursor is positioned at the first record in a dataset.

ibec_ds_FieldCount Returns the number of fields associated with the dataset.
ibec_ds_FieldName Returns the name of specified field.

ibec_ds_FieldType
ibec_ds_FieldTypeN Returns the native type of specified field.

ibec_ds_First Positions the cursor on the first record in the dataset.
ibec_ds_GetField Returns value of specified field.

ibec_ds_Insert
ibec_ds_Last Positions the cursor on the last record in the dataset.

ibec_ds_Locate Locates single or multiple specified search values in a dataset.
ibec_ds_Next Positions the cursor on the next record in the dataset.

ibec_ds_Post
ibec_ds_Prior Positions the cursor on the previous record in the dataset.

ibec_ds_SetField
ibec_ds_Sort Sorts datasets according to the SortFields specification.

498

ibec_CopyData
This functionwas implemented in IBExpert version2006.08.12. It is intended for the quick copying of data from one connection (ODBC or Firebird/InterBase)
to another (Firebird/InterBase only).

Syntax

 function ibec_CopyData(SrcConnection : variant;
 DestConnection : variant;
 DestTableName : string;
 SelectStatement : string;
 Options : string;
 CallbackBlock : variant) : integer;

Description

The ibec_CopyData functionreturns the number of records copied from SrcConnection to DestConnection.

Example

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (RecNo integer)
 as
 begin
 if (ibec_mod(RecNo, 100) = 0) then
 ibec_Progress(RecNo || records copied...);
 end';

 OdbcCon = ibec_CreateConnection(__ctODBC, 'DBQ=C:\IBE Demo\demo.mdb; DRIVER=Microsoft Access Driver

 (*.mdb)');

 DB = ibec_CreateConnection(__ctInterBase,
 'DBName="localhost:D:\FB2_DATA\IBEHELP.FBA";
 ClientLib=C:\Program Files\Firebird\bin\fbclient.dll;
 user=SYSDBA; password=masterkey; names=WIN1251; sqldialect=3');
 try
 use DB;
 if (exists(select * from rdb$relations where rdb$relation_name = 'IBEC_COPYDATA'))

 then
 begin
 execute statement 'drop table IBEC_COPYDATA';
 commit;
 end;

 Country = 'US';

 RecCount = ibec_CopyData(OdbcCon, DB, 'IBEC_COPYDATA',
 'SELECT * FROM CUSTOMER WHERE COUNTRY < :Country',
 'CommitAfter=100; EmptyTable; CreateTable; DontQuoteIdents',
 cbb);

 if (RecCount is not null) then
 ibec_ShowMessage(RecCount || ' records copied successfully.');

 finally
 ibec_CloseConnection(DB);
 ibec_CloseConnection(OdbcCon);
 end;
 end

499

ibec_Array
The ibec_Array function was implemented in IBExpert version 2007.02.22. This functionreturns a one-dimensional 0-based array of values.

Syntax

 function ibec_Array(val1 [, val2, ..., valN) : variant;

Example

 MyVar = ibec_Array('Some text', 23, NULL, 56.32);

The code above is equal to following:

 MyVar[0] = 'Some text';
 MyVar[1] = 23;
 MyVar[2] = NULL;
 MyVar[4] = 56.32

And since IBExpert version2007.12.01 it is also possible to pass arrays into IBEBlocks:

Example

 execute ibeblock
 as
 begin
 MyBlock = 'execute ibeblock (inparam variant)
 as
 begin
 ibec_ShowMessage(inparam[0] || inparam[1] || inparam[2]);
 end'; MyVar[0] = 'Hello';
 MyVar[1] = ', ';
 MyVar[2] = 'World!';
 execute ibeblock MyBlock(MyVar);
 end

See also:
FOREACH statement

ibec_ds_Append
Adds a new, empty record to the end of the dataset.

Syntax

 function ibec_ds_Append(Dataset : variant) : variant;

Description

Call ibec_ds_Append to:

Opena new, empty record at the end of the dataset.
Set the active record to the new record.
After a call to ibec_ds_Append, youcan enter data in the fields of the record, and can thenpost those changes to the dataset using ibec_ds_Post.

ibec_ds_Cancel
Cancels modifications to the active record if those changes are not yet posted.

Syntax

 function ibec_ds_Cancel(Dataset : variant) : variant;

Description

Call ibec_ds_Cancel to undo modifications made to one or more fields belonging to the active record. As long as those changes are not already posted to the
dataset, ibec_ds_Cancel returns the record to its previous state, and sets the dataset state to __dsBrowse.

ibec_ds_Close

ibec_ds_Delete

500

Deletes the active record and positions the cursor on the next record.

Syntax

 function ibec_ds_Delete(Dataset : variant) : variant;

Description

Call ibec_ds_Delete to remove the active record from the database. If the dataset is inactive, ibec_ds_Delete raises an exception. Otherwise ibec_ds_
Delete:

Verifies that the dataset is not empty (and raises an exception if it is).
Deletes the record.
Frees the buffers allocated for the record.
Puts the dataset into __dsBrowse mode :
Resynchronizes the dataset to position the cursor on the next undeleted record.

ibec_ds_Edit
Enables editing of data in the dataset.

Syntax

 procedure ibec_ds_Edit(Dataset : variant) : variant;

Description

Call ibec_ds_Edit to permit editing of the active record in a dataset. ibec_ds_Edit determines the current state of the dataset. If the dataset is empty, ibec_
ds_Edit calls ibec_ds_Insert.

501

ibec_ds_Eof
Indicates whether or not a cursor is positioned at the last record in a dataset.

Syntax

 function ibec_ds_Eof(Dataset : variant) : boolean;

Description

Call ibec_ds_Eof to determine if the cursor is positioned at the last record in a dataset. If ibec_ds_Eof returns True, the cursor is unequivocally on the last row
in the dataset. Otherwise this functionreturns False.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 while (not ibec_ds_Eof(MyDataset)) do
 begin
 ...
 ibec_ds_Next(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

See also:
SELECT ... AS DATASET
ibec_ds_Bof
ibec_ds_First
ibec_ds_Last
ibec_ds_Next
ibec_ds_Prior

ibec_ds_Export

502

ibec_ds_Bof
Indicates whether or not a cursor is positioned at the first record in a dataset.

Syntax

 function ibec_ds_Bof(Dataset : variant) : boolean;

DescriptiAon

Call ibec_ds_Bof to determine if the cursor is positioned at the first record in a dataset. If bec_ds_Bof returns True, the cursor is unequivocally on the first row
in the dataset. Otherwise this functionreturns False.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 ibec_ds_Last(MyDataset);
 while (not ibec_ds_Bof(MyDataset)) do
 begin
 ...
 ibec_ds_Prior(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

See also:
SELECT ... AS DATASET
ibec_ds_Eof
ibec_ds_First
ibec_ds_Last
ibec_ds_Next
ibec_ds_Prior

ibec_ds_FieldCount
Returns the number of fields associated with the dataset.

Syntax

 function ibec_ds_FieldCount(Dataset : variant) : integer;

Description

Call ibec_ds_FieldCount to determine the number of fields associated with the dataset.

503

ibec_ds_FieldName
Returns the name of specified field.

Syntax

 function ibec_ds_FieldName(Dataset : variant; FieldIndex : integer) : variant;

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);
 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);
 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

See also:
ibec_ds_FieldType
ibec_ds_FieldTypeN

ibec_ds_FieldType
See also:
ibec_ds_FieldName
ibec_ds_FieldTypeN

504

ibec_ds_FieldTypeN
Returns the native type of specified field.

Syntax

 function ibec_ds_FieldTypeN(Dataset : variant; Field : variant) : variant;

Example

 execute ibeblock
 returns (FieldName varchar(31), FieldType varchar(100))
 as
 begin
 select * from rdb$fields
 where (1 = 0)
 as dataset RdbFields;

 iCount = ibec_ds_FieldCount(RdbFields);
 i = 0;
 while (i < iCount) do
 begin
 FieldName = ibec_ds_FieldName(RdbFields, i);
 FieldType = ibec_ds_FieldTypeN(RdbFields, i);
 suspend;
 i = i + 1;
 end;

 close dataset RdbFields;
 end

See also:
ibec_ds_FieldName
ibec_ds_FieldType

505

ibec_ds_First
Positions the cursor on the first record in the dataset.

Syntax

 function ibec_ds_First(Dataset : variant) : variant;

Description

Call ibec_ds_First to position the cursor on the first record in the dataset and make it the active record.

See also:
SELECT ... AS DATASET
ibec_ds_Bof
ibec_ds_Last
ibec_ds_Next
ibec_ds_Prior

ibec_ds_GetField
Returns value of specified field.

Syntax

 function ibec_ds_GetField(Dataset : variant; Field : variant) : variant;

See also:
Example: Recreating indices 2

ibec_ds_Insert

506

ibec_ds_Last
Positions the cursor on the last record in the dataset.

Syntax

 function ibec_ds_Last(Dataset : variant) : variant;

Description

Call ibec_ds_Last to position the cursor on the last record in the dataset and make it the active record.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 ibec_ds_Last(MyDataset);
 while (not ibec_ds_Bof(MyDataset)) do
 begin
 ...
 ibec_ds_Prior(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

See also:
SELECT ... AS DATASET
ibec_ds_Bof
ibec_ds_First
ibec_ds_Next
ibec_ds_Prior

507

ibec_ds_Locate
Locates single or multiple specified search values in a dataset.

Syntax

 function ibec_ds_Locate(Dataset : variant; KeyFields : string;
 KeyValues : array of variant; Options : integer) : boolean;

ibec_ds_Locate searches Dataset for a specified record and makes that record the active record.
KeyFields is a string containing a semicolon-delimited list of field names in which to search.

KeyValues is a variant array containing the values to match in the key fields.

Description

ibec_ds_Locate locates single or multiple specified search values in a dataset. If KeyFields lists a single field, KeyValues specifies the value for that field on
the desired record. To specifymultiple search values, pass a variant array as KeyValues, or construct a variant array on the fly using the ibec_Array function.

Examples

 ibec_ds_Locate('Company;Contact;Phone', ibec_Array('Sight Diver', 'P', '408-431-1000'), __loPartialKey);

or
 Keys[0] = 'Sight Diver';
 Keys[1] = 'P';
 Keys[2] = '408-431-1000';
 ibec_ds_Locate('Company;Contact;Phone', Keys, __loPartialKey);

Options is a set of flags that optionallyspecifies additional search latitude when searching on string fields. If Options contains the __loCaseInsensitive flag,
thenibec_ds_Locate ignores case when matching fields. If Options contains the __loPartialKey flag, then ibec_ds_Locate allows partial-string matching on
strings in KeyValues. If Options is 0 or NULL or if the KeyFields property does not include anystring fields, Options is ignored.

This functionreturns True if a record is found that matches the specified criteria and the cursor repositioned to that record. Otherwise it returns False.

Example

 execute ibeblock
 returns (FieldName varchar(100))
 as
 begin
 select * from rdb$relation_fields
 as dataset ds;
 try
 ibec_ds_Sort(ds, 'RDB$RELATION_NAME, RDB$FIELD_POSITION');
 res = ibec_ds_Locate(ds, 'RDB$RELATION_NAME', 'RDB$FIELDS', __loPartialKey);
 while (res) do
 begin
 FieldName = ibec_ds_GetField(ds, 'RDB$FIELD_NAME');
 FieldName = ibec_Trim(FieldName);
 suspend;
 ibec_ds_Next(ds);
 res = not ibec_ds_EOF(ds);
 if (res) then
 begin
 RelName = ibec_Trim(ibec_ds_GetField(ds, 'RDB$RELATION_NAME'));
 res = RelName = 'RDB$FIELDS';
 end;
 end;
 finally
 ibec_ds_Close(ds);
 end;
 end

See also:
ibec_ds_Sort

508

ibec_ds_Next
Positions the cursor on the next record in the dataset.

Syntax

 function ibec_ds_Next(Dataset : variant) : variant;

Description

Call ibec_ds_Next to position the cursor on the next record in the dataset and make it the active record.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 while (not ibec_ds_Eof(MyDataset)) do
 begin
 ...
 ibec_ds_Next(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

See also:
SELECT ... AS DATASET
ibec_ds_Bof
ibec_ds_First
ibec_ds_Last
ibec_ds_Prior

ibec_ds_Post

509

ibec_ds_Prior
Positions the cursor on the previous record in the dataset.

Syntax

 function ibec_ds_Prior(Dataset : variant) : variant;

Description

Call ibec_ds_Prior to position the cursor on the previous record in the dataset and make it the active record.

Example

 execute ibeblock
 as
 begin
 select * from RDB$FIELDS as dataset MyDataset;

 ibec_ds_Last(MyDataset);
 while (not ibec_ds_Bof(MyDataset)) do
 begin
 ...
 ibec_ds_Prior(MyDataset);
 end

 ...

 close dataset MyDataset;
 end

See also:
SELECT ... AS DATASET
ibec_ds_Bof
ibec_ds_First
ibec_ds_Last
ibec_ds_Next

ibec_ds_SetField

510

ibec_ds_Sort
Sorts datasets according to the SortFields specification.

Syntax

 function ibec_ds_Sort(Dataset : variant; SortFields : string) : variant;

Description

ibec_ds_Sort functionsorts the specified Dataset according to the SortFields specification.

Example

 execute ibeblock
 as
 begin
 select * from rdb$relation_fields
 as dataset ds;
 try
 ibec_ds_Sort(ds, 'RDB$RELATION_NAME ASC, RDB$FIELD_POSITION ASC');
 ibec_ds_Sort(ds, 'RDB$RELATION_NAME, RDB$FIELD_POSITION');
 ibec_ds_Sort(ds, '1, 2 DESC'); finally
 ibec_ds_Close(ds);
 end;
 end;

See also:
ibec_ds_Locate

Managing Firebird/InterBase users
The following functions have been added to manage Firebird/InterBase users:

ibec_CreateUser Creates a user.
ibec_AlterUser Alters a user.
ibec_
RecreateUser Recreates a user.

ibec_DropUser Deletes a user.

ibec_GetUsers Retrieves a list of users from the server using the IBExpert Services
Manager.

ibec_GetUserProp

These functions use the Firebird/InterBase Services Manager, therefore theywill not work with servers that do not support the Services Manager API.

511

ibec_CreateUser
Syntax

 ibec_CreateUser(ConnectOptions, UserData : string) : variant;

All functions returnNULL if there were no errors, otherwise they returnan error message text.

ConnectOptions is a list of parameters to connect to the Services Manager delimited by semicolons. Possible options are:

Server=<server_name> The name of the server. Also youcan use ServerName=<server_name> to specify the server name.

Protocol=<protocol> The network protocol with which to connect to the server. Possible values are 'Local', 'TCP', 'SPX' and
'NamedPipe'.

User=<user_name> The user name.

Password=<password> The password.
ClientLib=<client_lib_
name> The name of client library dll, by default GDS32.DLL.

Example

 ibec_DropUser('Server=localhost; User=SYSDBA; Password=masterkey;
 Protocol=TCP; ClientLib=gds32.dll', 'VASYA');

If the server name is not specified the connection will be established with the local server using the local protocol. TCP/IP will be used when the server name is
specified but the protocol is not specified.

UserData is a list of user properties, delimited by semicolons. Possible properties are:

UserName=<user_name> User name to create or modify; maximum 31 characters.

Password=<password> Password for the user; maximum 31 characters, only the first 8 characters are significant.
FirstName=<first_name> Optional first name of the person using this user name.

MiddleName=<middle_name> Optional middle name of the personusing this user name.
LastName=<last_name> Optional last name of the personusing this user name.

UserID=<user_id> Optional userID number, defined in /etc/passwd, to assign to the user; reserved for future implementation.
GroupID=<group_id> Optional groupID number, defined in /etc/group, to assign to the user; reserved for future implementation.

Example

 ibec_CreateUser('Server=localhost; User=SYSDBA; Password=masterkey;
 Protocol=TCP',
 'UserName=BILL_GATES; Password=microsoft; FirstName=BILL;
 LastName=GATES');

ibec_AlterUser
Syntax

 ibec_AlterUser(ConnectOptions, UserData : string) : variant;

All functions returnNULL if there were no errors, otherwise they returnan error message text.

Please refer to ibec_CreateUser for the parameter lists for ConnectOptions and UserData options, and examples.

If the server name is not specified the connection will be established with the local server using the local protocol. TCP/IP will be used when the server name is
specified but the protocol is not specified.

ibec_RecreateUser
The ibec_RecreateUser function first tests whether a specified user exists or not. In the case of the specified user existing, it deletes his login record and
recreates it againusing the properties specified. Otherwise it just creates a new login record.

Syntax

 ibec_RecreateUser(ConnectOptions, UserData : string) : variant;

All functions returnNULL if there were no errors, otherwise they returnan error message text.

Please refer to ibec_CreateUser for the parameter lists for ConnectOptions and UserData options, and examples.

512

If the server name is not specified the connection will be established with the local server using the local protocol. TCP/IP will be used when the server name is
specified but the protocol is not specified.

ibec_DropUser
Syntax

 ibec_DropUser(ConnectOptions, UserName : string) : variant;

All functions return NULL if there were no errors, otherwise theyreturn an error message text.

Please refer to ibec_CreateUser for the parameter lists for ConnectOptions and UserData options, and examples.

If the server name is not specified the connection will be established with the local server using the local protocol. TCP/IP will be used when the server name is
specified but the protocol is not specified.

513

ibec_GetUsers
The ibec_GetUsers functionwas implemented in IBExpert version 2007.05.03. This functionretrieves a list of users from the server using the IBExpert
Services Manager.

Syntax

 function ibec_GetUsers(ConnectOptions : string; UserNames : variant [; FullData : variant]) : variant;

The ibec_GetUsers returns NULL if no error occured, otherwise it returns an error message.

Example

The UserNames parameter: the following example returns a list of users registered on the server:

 execute ibeblock
 returns (UserName varchar(100),
 FirstName varchar(100),
 MiddleName varchar(100),
 LastName varchar(100))
 as
 begin
 res = ibec_GetUsers('Server=localhost/3065; User=SYSDBA; Password=masterkey;
 ClientLib=C:\Program Files\Firebird\Bin\fbclient.dll',
 UserNames, FullData);
 foreach (UserNames as UserName key UserIdx) do
 begin
 s = FullData[UserIdx];
 ini = ibec_ini_Open('');
 try
 ibec_ini_SetStrings(ini, s);

 FirstName = ibec_ini_ReadString(ini, 'UserData', 'FirstName', '');
 MiddleName = ibec_ini_ReadString(ini, 'UserData', 'MiddleName', '');
 LastName = ibec_ini_ReadString(ini, 'UserData', 'LastName', '');
 finally
 ibec_ini_Close(ini);
 end;
 suspend;
 end
 end

ibec_GetUserProp

Date / Time functions
The following date/time functions are available in IBEBlock:

Function Description
ibec_Date Returns the current date (without the time part).

ibec_Now Returns the current timestamp.

ibec_Time Returns the current time.

ibec_DayOfWeek Returns the day of the week as an integer.

See also:
ibec_FileDateTime

ibec_Date
Syntax

 ibec_Date : Date;

ibec_Date returns the current date (without the time part).

ibec_Now
Syntax

514

 ibec_Now : TimeStamp;

ibec_Now returns the current timestamp.

ibec_Time
Syntax

 ibec_Time : Time;

ibec_Time returns the current time.

ibec_DayOfWeek
Syntax

 ibec_DayOfWeek(Date : TimeStamp) : integer;

ibec_DayOfWeek returns the dayof the week as an integer between1 and 7, where Sunday is the first day of the week and Saturday is the seventh.

515

Windows Registry functions
The following functions are available in IBEBlock to handle work with the Windows Registry:

Function Description
ibec_reg_Open Instantiates a registry object.

ibec_reg_Close Closes the current key and frees the resources allocated for a registry
object when no longer needed.

ibec_reg_
OpenKey Makes the specified key the current key.

ibec_reg_
CloseKey Writes the current keyto the registry and closes the key.

ibec_reg_
DeleteKey Removes a specified keyand its associated data from the registry.

ibec_reg_
CreateKey Creates a new key in the registry.

The following functions are intended for reading and writing data from/to the Windows Registry:

ibec_reg_WriteString
ibec_reg_ReadString
ibec_reg_WriteBool
ibec_reg_ReadBool
ibec_reg_WriteDate
ibec_reg_ReadDate
ibec_reg_WriteDateTime
ibec_reg_ReadDateTime
ibec_reg_WriteTime
ibec_reg_ReadTime
ibec_reg_WriteInteger
ibec_reg_ReadInteger
ibec_reg_WriteFloat
ibec_reg_ReadFloat

516

ibec_reg_Open
ibec_reg_Open instantiates a registry object.

Syntax

 function ibec_reg_Open(RootKey : HKEY; Access : LongWord) : variant;

Parameters

RootKey determines the hierarchy of sub-keys an application can access. Possible values are __HKEY_CLASSES_ROOT, __HKEY_CURRENT_USER, __HKEY_LOCAL_
MACHINE, __HKEY_USERS and __HKEY_CURRENT_CONFIG.

Access determines the level of securityaccess to use when opening keys; it is currently ignored when KEY_ALL_ACCESS is used.

See also:
Example of ibec_reg_xxx functions: daily backup User Database
IBExpert After Start Script

ibec_reg_Close
Syntax

 function ibec_reg_Close(Registry : variant) : variant;

Description

ibec_reg_Close closes the current key and frees the resources allocated for a registry object when it is no longer needed.

See also:
Example of ibec_reg_xxx functions: daily backup User Database
IBExpert After Start Script

ibec_reg_OpenKey
Call ibec_reg_OpenKey to make a specified key the current key.

Syntax

 function ibec_reg_OpenKey(Registry : variant; Key: String; CanCreate: Boolean) : boolean;

Description

Key is the name of the keyto open. CanCreate specifies whether to create the specified key if it does not exist. If CanCreate is True, the key is created if
necessary. ibec_reg_OpenKey returns True if the key is successfully opened or created.

See also:
Example of ibec_reg_xxx functions: daily backup User Database
IBExpert After Start Script

ibec_reg_CloseKey
Syntax

 function ibec_reg_CloseKey(Registry : variant) : variant;

Description

Call ibec_reg_CloseKey to write the current keyto the registry and close the key.

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_DeleteKey
Removes a specified key and its associated data from the registry.

517

Syntax

 function ibec_reg_DeleteKey(Registry : variant; Key: String) : boolean;

Description

Call ibec_reg_DeleteKey to remove a specified keyand its associated data, if any, from the registry. ibec_reg_DeleteKey returns True if keydeletion is
successful. Onerror, ibec_reg_DeleteKey returns False.

See also:
Example of ibec_reg_xxx functions: daily backup User Database

518

ibec_reg_CreateKey
Creates a new key in the registry.

Syntax

 function ibec_reg_CreateKey(Registry : variant; Key: String) : boolean;

Description

Use ibec_reg_CreateKey to add a new key to the registry.

Key is the name of the keyto create. Key can be an absolute or relative name. An absolute key begins with a backslash (\) and is a sub-keyof the root key. A
relative key is a sub-key of the current key.

ibec_reg_CreateKey returns True if the key creation is successful. On error, an exception is raised. Attempting to create a keythat already exists has no
effect.

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_WriteString
Writes strings to the Windows Registry.

Syntax

 function ibec_reg_WriteString(Registry : variant; Name, Value: string) : variant;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_ReadString
Reads strings from the Windows Registry.

Syntax

 ibec_reg_ReadString(Registry : variant; Key: String) : string;

See also:
Example of ibec_reg_xxx functions: daily backup User Database
IBExpert After Start Script

ibec_reg_WriteBool
Writes data to the Windows Registry.

Syntax

 ibec_reg_WriteBool(Registry : variant; Name: String; Value: boolean) : variant;

See also:
Example of ibec_reg_xxx functions: daily backup User Database
Booleandatatype

ibec_reg_ReadBool
Reads data from the Windows Registry.

Syntax

 ibec_reg_ReadBool(Registry : variant; Key: String) : boolean;

519

See also:
Example of ibec_reg_xxx functions: daily backup User Database
Booleandatatype

ibec_reg_WriteDate
Writes the date to the Windows Registry.

Syntax

 ibec_reg_WriteDate(Registry : variant; Name: String; Value: date) : variant;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_ReadDate
Reads the date from the Windows Registry.

Syntax

 ibec_reg_ReadDate(Registry : variant; Key: String) : date;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_WriteDateTime
Writes date and time to the Windows Registry.

Syntax

 ibec_reg_WriteDateTime(Registry : variant; Name: String; Value: timestamp) : variant;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_ReadDateTime
Reads date and time from the Windows Registry.

Syntax

 ibec_reg_ReadDateTime(Registry : variant; Key: String) : timestamp;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_WriteTime
Writes the time to the Windows Registry.

Syntax

 ibec_reg_WriteTime(Registry : variant; Name: String; Value: time) : variant;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_ReadTime

520

Reads the time from the Windows Registry.

Syntax

 ibec_reg_ReadTime(Registry : variant; Key: String) : time;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_WriteInteger
Writes data to the Windows Registry.

Syntax

 ibec_reg_WriteInteger(Registry : variant; Name: String; Value: integer) : variant;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_ReadInteger
Reads data from the Windows Registry.

Syntax

 ibec_reg_ReadInteger(Registry : variant; Key: String) : integer;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_WriteFloat
Writes data to the Windows Registry.

Syntax

 ibec_reg_WriteFloat(Registry : variant; Name: String; Value: double precision) : variant;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

ibec_reg_ReadFloat
Reads data from the Windows Registry.

Syntax

 ibec_reg_ReadFloat(Registry : variant; Key: String) : double precision;

See also:
Example of ibec_reg_xxx functions: daily backup User Database

Functions to handle regular expressions
The following functions are available in IBEBlock to handle work with regular expressions:

Function Description
ibec_re_Create

ibec_re_Free

ibec_re_Exec

ibec_re_ExecNext

ibec_re_Match

521

ibec_re_
SetExpression

ibec_re_Replace

ibec_preg_Match Searches Subject for a match to the regular expression given in Pattern.

ibec_preg_Replace Searches Subject for matches to Pattern and replaces them with
Replacement.

ibec_re_Create
Syntax

 function ibec_re_Create(Expression : string) : variant;

See also:
Example: Retrieve all valid e-mail addresses from an input text

ibec_re_Free
Syntax

 function ibec_re_Free(RegExp : variant) : variant;

See also:
Example: Retrieve all valid e-mail addresses from an input text

ibec_re_Exec
Syntax

 function ibec_re_Exec(RegExp : variant; InputString : string) : boolean;

See also:
Example: Retrieve all valid e-mail addresses from an input text

ibec_re_ExecNext
Syntax

 function ibec_re_ExecNext(RegExp : variant) : boolean;

See also:
Example: Retrieve all valid e-mail addresses from an input text

ibec_re_Match
Syntax

 function ibec_re_Match(RegExp : variant; Index : integer) : string;

See also:
Example: Retrieve all valid e-mail addresses from an input text

ibec_re_SetExpression
Syntax

 function ibec_re_SetExpression(RegExp : variant; Expression : string) : boolean;

522

ibec_re_Replace
Syntax

 function ibec_re_Replace(RegExp : variant; InputStr : string; ReplaceStr : string) : string;

523

ibec_preg_Match
Syntax

 function ibec_preg_Match(Pattern : string; Subject : string [; Matches : array of variant) : boolean;

Description

The ibec_preg_Match function searches Subject for a match to the regular expression given in Pattern.

It returns TRUE if a match for Pattern was found in the Subject string, or FALSE if no match was found or an error occurred.

If Matches is specified, then it is filled with the results of the search.

Example

The following example returns a list of all e-mail addresses used in a text file:

 execute ibeblock returns (
 Email varchar(200))
 as
 begin
 s = ibec_LoadFromFile('C:\SomeData.txt');
 sPattern = '([_a-zA-Z\d\-\.]+@[_a-zA-Z\d\-]+(\.[_a-zA-Z\d\-]+)+)';
 ibec_preg_match(sPattern, s, aEmails);
 foreach (aEmails as Email skip nulls) do
 suspend;
 end

To learnmore about the syntaxof regular expressions available in IBExpert, please refer to Regular Expressions explained.

524

ibec_preg_Replace
Syntax

 function ibec_preg_Replace(Pattern : string; Replacement : string; Subject : string) : string;

The ibec_preg_Replace functionsearches Subject for matches to Pattern and replaces them with Replacement. If matches are found, the new Subject will be
returned, otherwise Subject will be returned unchanged.

Example

The following example removes all IB comments (/*...*/) from a text:

 execute ibeblock
 as
 begin
 s = ibec_LoadFromFile('C:\SomeScript.sql');
 sPattern = '/*/*([^/]**+)+/';
 s = ibec_preg_replace(sPattern, '', s);
 ibec_SaveToFile('C:\ScriptNoComments.sql', s, __stfOverwrite);
 end

To learn more about the syntax of regular expressions available in IBExpert, please refer to Regular Expressions explained.

525

Functions for working with POP3 servers
The following functions are implemented to work with pop3-servers.

ibec_pop3_OpenSession Creates and initializes an internal object which is used to work with the pop3 protocol.
ibec_pop3_
CloseSession Destroys a POP3 object created with the ibec_pop3_OpenSession function.

ibec_pop3_Connect Tries to establish a connection to the POP3 server.

ibec_pop3_User Passes the user name specified for the POP3Session to the server.
ibec_pop3_Pass Performs the POP3 PASS command specified for the POP3Session, passing to the server.
ibec_pop3_
ConnectAndAuth Performs the connection and POP3 USER and PASS commands one by one.

ibec_pop3_List Performs the POP3 LIST command, retrieving a string with numbers and sizes (in bytes) of all of the messages
available on a POP3 server.

ibec_pop3_List Performs the POP3 UIDL command, retrieving a string with numbers and unique identifiers of all of the messages
available on a POP3 server.

ibec_pop3_List Performs the POP3 RETR command, retrieving a string with the entire text (including header) of the message
specified with MessageNumber.

ibec_pop3_Dele This marks the message specified with MessageNumber as deleted.
ibec_pop3_Quit This deletes all messages marked as deleted and disconnects from the POP3 mail server.

ibec_pop3_GetProperty Returns a value of the specified property.
ibec_pop3_SetProperty Sets a value of the specified property.

526

ibec_pop3_OpenSession
Description

ibec_pop3_OpenSession creates and initializes an internal object which is used to work with the POP3 protocol.

Syntax

 function ibec_pop3_OpenSession(Params : string) : variant;

The following parameters are available:

Host=<string> POP3 server name.
UserName=<string> User name.

Password=<string> Password.
Port=<string> POP3 port number. Default value is 25.

ibec_pop3_OpenSession returns a handle of a POP3 object.

See also:
Example of working with POP3 servers

ibec_pop3_CloseSession
Description

ibec_pop3_CloseSession destroys a POP3 object created with the ibec_pop3_OpenSession function.

Syntax

 function ibec_pop3_CloseSession(POP3Session : variant) : variant;

See also:
Example of working with POP3 servers

ibec_pop3_Connect
Description

ibec_pop3_Connect function tries to establish a connection to the POP3 server. It returns TRUE if succeeded, otherwise it returns FALSE.

Syntax

 function ibec_pop3_Connect(POP3Session : variant) : variant;

See also:
Example of working with POP3 servers

ibec_pop3_User
Description

ibec_pop3_User performs the POP3 USER command, passing user name, specified for the POP3Session, to the server. It returns TRUE if succeeded, otherwise
it returns FALSE.

Syntax

 function ibec_pop3_User(POP3Session : variant) : variant;

See also:
Example of working with POP3 servers

ibec_pop3_Pass
Description

527

ibec_pop3_Pass performs the POP3 PASS command specified for the POP3Session, passing to the server. It returns TRUE if succeeded, otherwise it returns
FALSE.

Syntax

 function ibec_pop3_Pass(POP3Session : variant) : variant;

See also:
Example of working with POP3 servers

ibec_pop3_ConnectAndAuth
Description

ibec_pop3_ConnectAndAuth performs the connection and POP3 USER and PASS commands one by one. It returns TRUE if succeeded, otherwise it returns
FALSE.

Syntax

 function ibec_pop3_ConnectAndAuth(POP3Session : variant) : variant;

See also:
Example of working with POP3 servers

ibec_pop3_List
Description

ibec_pop3_List performs the POP3 LIST command, retrieving a string with numbers and sizes (in bytes) of all of the messages available on a POP3 server. It
returns TRUE if succeeded, otherwise it returns FALSE.

Syntax

 function ibec_pop3_List(POP3Session : variant) : variant;

You canget a list of messages using ibec_pop3_GetProperty function.

See also:
Example of working with POP3 servers

ibec_pop3_Uidl
Description

ibec_pop3_Uidl performs POP3 UIDL command, retrieving a string with numbers and unique identifiers of all of the messages available on a POP3 server. It
returns TRUE if succeeded, otherwise it returns FALSE.

Syntax

 function ibec_pop3_Uidl(POP3Session : variant) : variant;

You canget a list of unique identifiers using ibec_pop3_GetProperty function.

See also:
Example of working with POP3 servers

ibec_pop3_Retr
Description

ibec_pop3_Retr performs the POP3 RETR command, retrieving a string with the entire text (including header) of the message specified with MessageNumber.
ibec_pop3_Retr returns TRUE if succeeded, otherwise it returns FALSE.

Syntax

 function ibec_pop3_Retr(POP3Session : variant; MessageNumber : integer) : variant;

528

After successfull execution you canget the message data using ibec_pop3_GetProperty function.

See also:
Example of working with POP3 servers

ibec_pop3_Dele
Description

ibec_pop3_Dele performs POP3 DELE command. This marks the message specified with MessageNumber as deleted. ibec_pop3_Dele returns TRUE if
succeeded, otherwise it returns FALSE.

Syntax

 function ibec_pop3_Dele(POP3Session : variant; MessageNumber : integer) : variant;

See also:
Example of working with POP3 servers

ibec_pop3_Quit
Description

ibec_pop3_Quit performs POP3 QUIT command. This deletes all messages marked as deleted and disconnects from the POP3 mail server. It returns TRUE if
succeeded, otherwise it returns FALSE.

Syntax

 function ibec_pop3_Quit(POP3Session : variant) : variant;

See also:
Example of working with POP3 servers

529

ibec_pop3_GetProperty
Description

ibec_pop3_GetProperty returns a value of the specified property.

Syntax

 function ibec_pop3_GetProperty(POP3Session : variant; PropertyName : string) : variant;

The following properties are supported:

Host POP3 server name
UserName User name.

Password Password.
Port POP3 server port number.

MsgData Text of message retrieved with ibec_pop3_Retr function.
MessageData Same as MsgData.

Uidl List of unique identifiers retrieved with ibec_pop3_Uidl function.
List List of numbers and sizes of messages retrieved with ibec_pop3_List function.

LastResponse A text string of last server response.

See also:
Example of working with POP3 servers

530

ibec_pop3_SetProperty
Description

ibec_pop3_SetProperty sets a value of the specified property.

Syntax

 function ibec_pop3_SetProperty(POP3Session : variant; PropertyName : string; Value : variant) : variant;

The following properties are supported:

Host POP3 server name.
UserName User name.

Password Password.
Port POP3 server port number.

See also:
Example of working with POP3 servers

531

Exception-handling functions
Exception-handling functions are used with the TRY...EXCEPT statement or the RAISE statement.

If an exception is raised during execution of the initial statements list, the control passes to the first statement in the exceptionBlock. Here youcan handle any
exceptions which mayoccur using the following functions:

Function Description
function ibec_err_Message() Returns an exception message.

function ibec_err_SQLCode() Returns the SQLCode of an exception if there was an SQL error.

function ibec_err_Name() Returns an exception name.

See also:
EXCEPTION
TRY ... FINALLY
TRY ... EXCEPT

function ibec_err_Message()
Returns an exception message.

Examples can be found at the links below.

See also:
EXCEPTION
TRY ... FINALLY
TRY ... EXCEPT

function ibec_err_SQLCode()
Returns the SQLCode of an exception if there was an SQL error.

Examples can be found at the links below.

See also:
EXCEPTION
TRY ... FINALLY
TRY ... EXCEPT

function ibec_err_Name()
Returns an exception name.

Examples can be found at the links below.

See also:
EXCEPTION
TRY ... FINALLY
TRY ... EXCEPT

Cursor functions
... coming soon.

See also:
Data Comparer using cursors

ibec_cr_CloseCursor
... coming soon.

See also:
Data Comparer using cursors

532

ibec_cr_Eof
... coming soon.

See also:
Data Comparer using cursors

ibec_cr_Fetch
... coming soon.

See also:
Data Comparer using cursors

ibec_cr_FieldCount
... coming soon.

See also:
Data Comparer using cursors

ibec_cr_FieldName
... coming soon.

See also:
Data Comparer using cursors

ibec_cr_FieldValue
... coming soon.

See also:
Data Comparer using cursors

ibec_cr_Next
... coming soon.

See also:
Data Comparer using cursors

ibec_cr_OpenCursor
... coming soon.

See also:
Data Comparer using cursors

User Form functions
... coming soon.

533

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_CloseForm
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_CreateForm
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_ExecScript
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_FreeForm
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_GetElementAttribute
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_GetElementAttributeDef
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_GetFormData
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

534

ibec_uf_SetElementAttribute
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_SetFormData
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

ibec_uf_ShowForm
... coming soon.

See also:
TableDDL.ibeblock
RunMe.ibeblock

535

Miscellaneous functions
The following miscellaneous functions are available in IBEBlock:

Function Description
ibec_BuildCube Builds an OLAP cube using a specified SELECT statement.
ibec_Chr Returns the character for a specified ASCIIvalue.

ibec_CmpRecords Compares two arrays of variants (records).
ibec_CmpVals Compares two values.

ibec_CompressFile Allows you to create archives of files and extract them using the
ibec_DecompressFile function.

ibec_CompressVar Compresses VALUE using the LZ77 algorithm.

ibec_CreateModelScript Creates an SQL script from specified database model file.

ibec_CreateReport Prepares a report from a specified source (FastReport) and
returns prepared report data.

ibec_DecompressFile Allows you to extract files from archives from files compressed
using the ibec_CompressFile function.

ibec_DecompressVar Decompresses VALUE preciously compressed with ibec_
CompressVar.

ibec_DisableFeature Use this feature to disable all IBExpert menu items

ibec_EnableFeature Use this feature to blend in only those menu items which youwish
the user to see.

ibec_EncodeDate and ibec_
DecodeDate

New to IBExpert version 2005.09.25. These functions are similar to
the Delphi EncodeDate and DecodeDate functions.

ibec_Exec Runs a specified application.

ibec_ExecSQLScript Executes an SQL script from a variable or a file.

ibec_ExportReport Exports a prepared report, created with the ibec_CreateReport
function, into a specified format.

ibec_FormatIdent Creates a string representation of a GUID.

ibec_FreeGlobalVar Removes a specified variable from a list of global variables, and
frees memory associated with the variable.

ibec_GetGlobalVar Returns the value of a specified global variable.
ibec_GetIBEVersion Returns a string representation of the IBExpert/IBEScript version.

ibec_GetTickCount Retrieves the number of milliseconds that have elapsed since
Windows was started.

ibec_GetViewRecreateScript Creates a Recreate script for a specified view(s) and returns it as
a result.

ibec_GUID Creates a string representation of a GUID, a unique 128-bit integer
used for CLSIDs and interface identifiers.

ibec_High Returns the highest value within the range of the index type of the
array.

ibec_IIF Tests a conditionand returns Value1 if the condition is True and
Value2 if the condition is False.

ibec_IntToHex Returns the hexrepresentation of an integer.

ibec_MessageDlg Displays a message dialog box in the center of the screen.
ibec_Ord Returns the ordinal value of the specified character.

ibec_ParseCSVLine
ibec_Progress Displays a progress message.

ibec_Random Generates random numbers withina specified range.
ibec_Random2 Generates random numbers withina specified range.

ibec_RandomChar Generates random char withina specified range.
ibec_RandomString Returns a random string.
ibec_RandomVal
ibec_SetGlobalVar Allows you to create/modify a global variable.
ibec_SetLength Sets the length of a dynamic-array variable.

ibec_ShiftRecord
ibec_smtp_SendMail Sends an email using the SMTP protocol.

ibec_WaitForEvent Monitors events sent by the POST_EVENT command.

ibec_BuildCube

536

See also:
Building an OLAP cube

537

ibec_Chr
Returns the character for a specified ASCII value.

Syntax

 function ibec_Chr(X : integer): string;

Description

ibec_Chr returns the character with the ordinal value(ASCII value) of the byte-type expression, X.

Example

 execute IBEBlock
 returns (cout varchar(1))
 as
 begin
 i = 0;
 while (i < 256) do
 begin
 cout = ibec_Chr(i);
 i = i + 1;
 suspend;
 end
 end

See also:
ibec_Ord

538

ibec_CmpRecords
Compares two arrays of variants (records).

Syntax

 function ibec_CmpRecords(Record1, Record2 : array of variants): variant;

Example

 execute ibeblock
 returns (iresult integer)
 as
 begin
 Val1[0] = 1; Val1[1] = 'ABC'; Val1[2] = 25.67;
 Val2[0] = 1; Val2[1] = 'ABC'; Val2[2] = 25.67;
 iresult = ibec_CmpRecords(Val1, Val2); /* iresult = 0 */
 suspend;

 Val2[2] = 15.43;
 iresult = ibec_CmpRecords(Val1, Val2); /* iresult = 2 */
 suspend;

 Val2[3] = 0;
 iresult = ibec_CmpRecords(Val1, Val2); /* iresult = NULL */
 suspend;
 end

See also:
ibec_CmpVals

539

ibec_CmpVals
Compares two values.

Syntax

 function ibec_CmpVals(Value1, Value2 : variant): variant;

Description

The ibec_CmpVals compares Value1 and Value2 and returns 0 if theyare equal.

If Value1 is greater than Value2, ibec_CmpVals returns 1.

If Value1 is less thanValue2, ibec_CmpVals returns -1.

If it is impossible to compare values the function returns NULL.

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 iresult = ibec_CmpVals(25, '25');
 suspend; /* Values are equal, iresult = 0 */

 iresult = ibec_CmpVals('25', 40);
 suspend; /* 25 is less then 40, iresult = -1 */

 iresult = ibec_CmpVals('ABC', 'abc');
 suspend; /* 'ABC' is less then 'abc', iresult = -1 */

 iresult = ibec_CmpVals(NULL, '25');
 suspend; /* NULL is less than any other value, iresult = -1 */

 iresult = ibec_CmpVals('25', NULL);
 suspend; /* Any value is greater than NULL, iresult = 1 */

 iresult = ibec_CmpVals(NULL, NULL);
 suspend; /* NULL is equal to NULL!!!, iresult = 0 */

 iresult = ibec_CmpVals('ABC', 25);
 suspend; /* Impossible to compare, iresult = NULL */

 iresult = ibec_CmpVals('24.56', 24.56);
 suspend; /* Values are equal, iresult = 0 */
 end

540

ibec_CompressFile
This functionallows you to create archives of files and extract them using the ibec_DecompressFile function. Archives currently supported by the ibec_
CompressFile function include the following formats:

ZIP, BZIP, GZIP, JAR, LHA, CAB, TAR, BlackHole.

Syntax

 function ibec_CompressFile(FileSpec : string; ExcludeFileSpec : string; ArcType : integer;
 ArcName : string; Options : string; CallbackBlock : string) : variant;

The ibec_CompressFile currently returns NULL.

Parameters

FileSpec
A filter to retrieve specific file(s) or a range of files. Wildcard characters (asterisk
(*)and question mark (?)) are supported. It can include directory names. Items
withinFileSpec must be delimited with commas.

ExcludeFileSpec

Defines specific file names or a range of file names (using wildcards) to exclude
from being compressed. This parameter has precedence over the FileSpec
param. For example, if FileSpec contains a file named file.txt, and
ExcludeFileSpec contains a wild card such as *.txt, the value of
ExcludeFileSpec overrides the value of FileSpec and the file will not be
compressed. Items withinExcludeFileSpec must be delimited with commas.

ArcType Type of archive. Possible values are: __atBlackHole, __atBZip, __atCab, __
atGZip, __atJar, __atLha, __atZip.

ArcName Defines the file name of the archive to be created or an existing archive to which
files are to be added.

Options

List of additional options, must be separated with semicolon. Possible options
are: CompressMethod, DeflateType, Password, StoredDirNames,
StoreEmptySubdirs, StoreFilesOfType, Action, PartSize, DateAttribute,
RecurseDirs. See detailed description of eachoptionbelow.

CallbackBlock

A call-back [IBEBlock EXECUTE IBEBLOCK |IBEBlock]] whichwill be executed
for some events during the compression process. The call-back IBEBlock must
have at least one input parameter, whichwill be used to pass an array of event
values. If there is no call-back block use NULL or an empty string as a value of this
parameter.

Description of possible options

 CompressMethod= Store | Deflate | Fuse | Frozen5 | Frozen6 | MsZip | LZX | Quantum |
 Tarred | TarGZip | TarBZip | BZip2

The default method (if the CompressMethod option is omitted) for eacharchive type is:

 __atBlackHole: Fuse
 __atZip: Deflate
 __atLha: Frozen6
 __atCab: MsZip
 __atGZip: Deflate
 __atTar: Tarred

The following is the listing of the value of CompressMethod for eacharchive type:

 __atZip: [Store, Deflate]
 __atBlackHole: [Store, Fuse]
 __atLha: [Store, Frozen5, Frozen6]
 __atCab: [Store, MsZip, Lzx, Quantum]
 __atGZip: [Deflate]
 __atTar: [Tarred, TarGZip, TarBZip]

 DeflateType= Store | Fast | Normal | Best

This defines the setting for archive types whichuse the Deflate compression method. The default setting is NORMAL. Different settings either increase
compression speed but reduce compressionratios, or increase ratios but decrease speed.

Password= <password> : Use the Password option to add encrypted files to a ZIP and lackHole archives or extract encrypted files from ones. If the value of this
property is not blank, the value will be used as the password for encryption/decryption.

 StoredDirNames= None | Absolute | AbsoluteNoDrv | AbsoluteNoRoot | Relative | RelativeStoreStart | ExplorerAuto

Use this option to set how directories are to be stored in an archive. The default setting is AbsoluteNoDrv.

Examples

 USING UNC-Pathnames
 FileSpec = '//Server/Group11/Emp4129/*.txt';
 StoredDirNames Saved in archive as:

541

 None proj1.txt
 Absolute //Server/Group11/Emp4129/proj1.txt
 AbsoluteNoDrv /Emp4129/proj1.txt
 Relative proj1.txt (subdirs = dir/*.txt)
 RelativeStoreStart Emp4129/proj1.txt (subdirs = mp4129/dir/proj1.txt)
 ExplorerAuto proj1.txt (subdirs = dir/*.txt)
 Using local drives
 FileSpec := 'f:\ZipTV\Project1\proj1.exe';
 StoredDirNames: Saved in archive as:

 None proj1.txt
 Absolute f:\ZipTV\Project1\proj1.txt
 AbsoluteNoDrv \ZipTV\Project1\proj1.txt
 Relative proj1.txt (subdirs = dir\proj1.txt)
 RelativeStoreStart project1\proj1.txt (subdirs = Project1\dir*.txt)
 ExplorerAuto proj1.txt (subdirs = dir\proj1.txt)
 StoreEmptySubDirs= TRUE | FALSE

Whenthe value of this option is True, empty sub-directories names are stored to the archive. The default setting is True.

 StoreFilesOfType=<list_of_file_extensions>

This property contains a listing of file extensions delimited with commas or spaces. Any file whose extension is contained within this list will not be
compressed, but stored within the archive during compression.

The default value is .LZH, .PAK, .PK3, .PK_, .RAR, .TAR, .TGZ, .UUE, .UU, .WAR, .XXE, .Z, .ZIP, .ZOO.

Note: The extension separator (dot) character for each extension in the list is mandatory!

 Action= Add | Move | Delete | Read

This optiondefines what action the ibec_CompressFile function is to perform.

Possible values are:

Add

Adds files to an archive if theyare found not to already exist in the archive. If theydo already
exist, a comparison of files date stamp with the date stored in the archive is made. If the
date stamps do not match, the file is recompressed, otherwise it is skipped. If the desired
CompressMethod of compression is different than the method previouslyused to compress
the file, then the file is recompressed, otherwise it is skipped. If the archive doesn't already
exist, it is created and all files matching FileSpec are compressed and added to the archive.

Move Follows the same convention as Add, but deletes all files on disk that were added to the
archive. Files are deleted only after a successful ADD.

Delete Deletes all files matching FileSpecfrom an existing archive.

Read Reserved for future use. The default value for this option is Add.

PartSize=<int_value>[KB|K|MB|M|B] - Use this option to specify the file-size of the output volumes for a multi-volume ZIP archive. For example,
PartSize=100MB. PartSize value must be at least 65 KB.

DateAttribute= FileDate | SysDate | MaxFileDate - Use this option to define a file's date when extracted to disk. Use this property to define a file's date to
be stored into an archive. Possible values:

FileDate - set the extracted file's date using the date stored in the archive; store the date using the disk file's date being compressed.
SysDate - set the extracted file's date using the systems date/time; store the date using the current system's date.
MaxFileDate - set the extracted file's date using the date from the newest file in the archive; store the date using the newest file's date matching
FileSpec.

RecurseDirs - TRUE | FALSE - Use this option to recurse sub-directories for files matching the FileSpec parameter. The default value is False.

OverwriteMode - Skip | Overwrite - Use the OverwriteMode property to either skip or overwrite files that already exist on disk. The default value is Skip.

ConfirmOverwrites - TRUE | FALSE - The ConfirmOverwrites option is directly related to the OverwriteMode option. The default value is False. This option is
reserved for future use, please don't change it yet!

RestoreFileAttributes - TRUE | FALSE - When True, this sets an extracted file's attribute to the setting stored in the compressed header for that file. The
default value is True.

UseStoredDirs - TRUE | FALSE - When set to False, this uses the current directory to extract files into, if the TargetDir property is blank. Whenset to True, the
default is the current directory information existing in regard to the internal compressed file. The default value is False.

Example

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (Vals variant)
 as
 begin
 EventName = Vals[EVENT];
 Action = Vals[ACTION];
 File name = Vals[FILE NAME];
 if (Action = COMPRESS) then

542

 sPref = Adding ;
 else
 sPref = Extracting ;
 if (EventName = FILEBEGIN) then
 ibec_Progress(sPref + File name + ...);
 else if (EventName = PROGRESS) then
 begin
 iBytes = Vals[BYFILE];
 if (ibec_Mod(iBytes, 5) = 0) then
 ibec_Progress(sPref + File name + ... + ibec_Cast(iBytes, __typeString) +

 %);
 end;
 end';
 ibec_DecodeDate(ibec_Now(), iYear, iMonth, iDay);
 ArcName = 'E:\IBE_' + ibec_Cast(iYear, __typeString) + '_' + ibec_Cast(iMonth, __typeString)

 +
 '_' + ibec_Cast(iDay, __typeString) + '.zip';
 if (ibec_FileExists(ArcName)) then
 begin
 ibec_ShowMessage('Nothing to do.');
 Exit;
 end;

 -- Compressing
 CompressOptions = 'CompressMethod=Deflate; RecurseDirs=Yes; DeflateType=Best;

 StoredDirs=AbsoluteNoRoot';
 FileSpec = 'D:\MyProjects\IBExpert*.*, D:\MyProjects\IBEScript*.*, D:\MyComponents*.*';
 ExcludeSpec = '*.dcu, *.~*, *.bak';
 MyVar = ibec_CompressFile(FileSpec, ExcludeSpec, __atZip, ArcName, CompressOptions, cbb);
 end;

See also:
ibec_DecompressFile

543

ibec_CompressVar
ibec_CompressVar compresses Value using the LZ77 algorithm.

Syntax

 function ibec_CompressVar(Value : variant; Options : string) : string;

Description

ibec_CompressVar compresses Value using the LZ77 algorithm and returns the string that represents a compressed content of Value.

Parameters

The Options parameter is reserved for future use.

Example

 execute ibeblock
 as
 begin
 -- Compressing
 MyVar = ibec_LoadFromFile('D:\Script.sql');
 MyVar = ibec_CompressVar(MyVar, '');
 -- Decompressing
 MyVar = ibec_DeCompressVar(MyVar, '');
 ibec_SaveToFile('D:\Script.copy.sql', MyVar, __stfOverwrite);
 end

See also:
ibec_DecompressVar

544

ibec_CreateModelScript
Creates an SQL script from a specified Database Model file.

Syntax

 function ibec_CreateModelScript(ModelFileName : string; ScriptFileName : string; Options : cardinal):

integer;

Example

 execute ibeblock
 as
 begin
 ibec_create_model_script('C:\npfe_1.grc', 'C:\npfe_1.sql', __msoDontQuoteIdents +

 __msoIncludeDescriptions);
 end

See also:
Example: Creating a script from a Database Designer model file

545

ibec_CreateReport
Prepares a report from a specified source (FastReport) and returns prepared report data.

Syntax

 function ibec_CreateReport(ReportSource : string; Params : array of variant; Options : string) : variant;

Description

ibec_CreateReport prepares a report from a specified source (FastReport) and returns prepared report data. For preparing the intial report please refer to
the IBExpert Report Manager.

This feature can be used for executing reports created with the IBExpert Report Manager in command-line mode, for example with batch files. The monthly
sales report, invoices or other such reports can be designed in the Report Manager and executed with simple SQL statements. The result can thenbe saved
in the database as a pdf file or other formats and sent by e-mail, exporting using ibec_ExportReport.

Example

 execute ibeblock
 as
 begin
 Params['HeaderMemo'] = '';
 Params['MEMO2'] = 2;

 select ibe$report_source from ibe$reports
 where ibe$report_id = 4
 into :RepSrc;

 Report = ibec_CreateReport(RepSrc, Params, null);
 ibec_SaveToFile('D:\reptest.fp3', Report, 0);
 end

See also:
Report Manager
ibec_ExportReport

546

ibec_DecompressFile
Description

This functionallows you to extract files from archives from files compressed using the ibec_CompressFile function.

Archives currently supported by ibec_DecompressFile function include the following formats:

ZIP, ZIP SFX, ZOO, ZOO SFX, RAR, ARJ, ARJ SFX, ARC, ARC SFX, ACE, CAB, HA, JAR (JavaSoft java format), LHA, LHA SFX, LZH, LZH SFX, PAK, PAK SFX, TAR, GZIP, Z, BH,
BH SFX.

Syntax

 function ibec_DecompressFile(ArcName : string; FileSpec : string; ExcludeFileSpec : string;
 TargetDir : string; Options : string; CallbackBlock : string) : variant;

ibec_DecompressFile returns the number of extracted files if there were no errors. Otherwise it returns NULL.

Parameters

ArcName Defines the file name of the archive from which to extract files.

FileSpec See description of corresponding parameter for ibec_CompressFile.

ExcludeFileSpec See description of corresponding parameter for ibec_CompressFile.

TargetDir
Defines the directory in which the files from an archive are to be extracted. If this parameter does not containa blank
string, thenthe UseStoredDirs option is automatically set to False. To extract files into original directories, this property
must be blank and the UseStoredDirs optionset to True.

Options
List of additional options, whichmust be separated with semicolon. Possible options are: Password, UseStoredDirs,
DateAttribute, RecurseDirs, onfirmOverwrites, OverwriteMode, RestoreFileAttributes. See detailed description of
eachoptionbelow.

CallbackBlock
A call-back IBEBlock which will be executed for some events during the decompressionprocess. The call-back IBEBlock
must have at least one input parameter, whichwill be used to pass array of event values. If there is no call-back block use
NULL or an empty string as a value of this parameter.

Description of possible options

Password= <password>
Use the password option to add encrypted files to a ZIP and BlackHole archives or extract encrypted
files from ones. If the value of this property is not blank, the value will be used as the password for
encryption/decryption.

DateAttribute= FileDate |
SysDate | MaxFileDate

Use this option to define a file's date when extracted to disk. Use this property to define a file's date to be
stored into an archive. Possible values:
* FileDate - set the extracted file's date using the date stored in the archive; store the date using the
disk file's date being compressed.
* SysDate - set the extracted file's date using the systems date/time; store the date using the current
system's date.
* MaxFileDate - set the extracted file's date using the date from the newest file in the archive; store the
date using the newest file's date matching FileSpec.

RecurseDirs TRUE | FALSE - Use this option to recurse sub-directories for files matching the FileSpec parameter.
The default value is False.

OverwriteMode Skip | Overwrite - Use the OverwriteMode property to either skip or overwrite files that already exist on
disk. The default value is Skip.

ConfirmOverwrites TRUE | FALSE - The ConfirmOverwrites option is directly related to the OverwriteMode option. The
default value is False. This option is reserved for future use, please don't change it yet!

RestoreFileAttributes TRUE | FALSE - When True, this sets an extracted file's attribute to the setting stored in the compressed
header for that file. The default value is True.

UseStoredDirs
TRUE | FALSE - When set to False, this uses the current directory to extract files into, if the TargetDir
property is blank. When set to True, the default is the current directory information existing in regard to
the internal compressed file. The default value is False.

Example

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (Vals variant)
 as
 begin
 EventName = Vals[EVENT];
 Action = Vals[ACTION];
 File name = Vals[FILE NAME];
 if (Action = COMPRESS) then
 sPref = Adding ;
 else
 sPref = Extracting ;
 if (EventName = FILEBEGIN) then
 ibec_Progress(sPref + File name + ...);
 else if (EventName = PROGRESS) then

547

 begin
 iBytes = Vals[BYFILE];
 if (ibec_Mod(iBytes, 5) = 0) then
 ibec_Progress(sPref + File name + ... + ibec_Cast(iBytes, __typeString) +

 %);
 end;
 end';
 ibec_DecodeDate(ibec_Now(), iYear, iMonth, iDay);
 ArcName = 'E:\IBE_' + ibec_Cast(iYear, __typeString) + '_' + ibec_Cast(iMonth, __typeString)

 +
 '_' + ibec_Cast(iDay, __typeString) + '.zip';
 if (ibec_FileExists(ArcName)) then
 begin
 ibec_ShowMessage('Nothing to do.');
 Exit;
 end;

 -- Decompressing

 FileSpec = '*.*';
 ibec_ForceDirectories('E:\TestDecompress\');
 MyVar = ibec_DecompressFile(ArcName, FileSpec, , 'E:\TestDecompress\', , cbb);
 end;

See also:
ibec_CompressFile

548

ibec_DecompressVar
Syntax

 function ibec_DecompressVar(Value : variant; Options : string) : string;

Description

ibec_DecompressVar performs decompresion of Value (previouslycompressed with the ibec_CompressVar function) and returns the string that repreent the
decompressed content of Value.

Parameters

The Options parameter is reserved for future use.

Example

 execute ibeblock
 as
 begin
 -- Compressing
 MyVar = ibec_LoadFromFile('D:\Script.sql');
 MyVar = ibec_CompressVar(MyVar, '');
 -- Decompressing
 MyVar = ibec_DeCompressVar(MyVar, '');
 ibec_SaveToFile('D:\Script.copy.sql', MyVar, __stfOverwrite);
 end

See also:
ibec_CompressVar

549

ibec_DisableFeature
Using this feature it is possible to disable all menu items, and then, using ibec_EnableFeature, to blend only those in which youwish the user to see. A
particularlyuseful security feature!

 execute ibeblock
 as
 begin
 ibec_DisableFeature(0); --disable all
 ibec_EnableFeature(1003); --enable Tools menu
 ibec_EnableFeature(2148); --enable menuitem tools-data analysis
 end

The example above enables only the IBExpert Tools menu item, Data Analysis. The numbers quoted directly after the IBEBlock keyword canbe found in the
IBExpert Tools menu, Localize IBExpert.

See also:
Example: Disable and enable IBExpert features

550

ibec_EnableFeature
Using this feature it is possible, after disabling all IBExpert menu items using ibec_DisableFeature, to blend in only those menu items which youwish the user
to see. A particularly useful security feature!

 execute ibeblock
 as
 begin
 ibec_DisableFeature(0); --disable all
 ibec_EnableFeature(1003); --enable Tools menu
 ibec_EnableFeature(2148); --enable menuitem tools-data analysis
 end

The example above enables only the IBExpert Tools menu item, Data Analysis. The numbers quoted directlyafter the IBEBlock keyword can be found in the
IBExpert Tools menu, Localize IBExpert.

See also:
Example: Disable and enable IBExpert features

ibec_EncodeDate and ibec_DecodeDate
The functions, ibec_EncodeDate and ibec_DecodeDate are new to IBExpert version2005.09.25. These functions are similar to the Delphi EncodeDate and
DecodeDate functions.

551

ibec_Exec
Syntax

 function ibec_Exec(CommandLine : string; Options : string;
 CallbackBlock : string) : variant;

Description

The ibec_Exec functionruns the specified application.

Parameters

CommandLine The command line (filename plus optional parameters) for the application to be executed.

Options String containing additional options delimited with semicolon; possible options are:
OutFile=<file_

name> Name of the file where the output of the application will be stored.

ConvertToANSI If specified, the output will be translated from the OEM-defined character set into an ANSI string.

CallbackBlock
A callback IBEBlock whichwill be executed for eachoutput line. The callback IBEBlock must have at least one input
parameter, whichwill be used to pass an output line within it. If there is no callback block use NULL or an empty string as
a value of this parameter.

Example

The following example uses the ibec_Exec function to restore a database from a backup copy using GBAK.EXE:

 execute ibeblock
 as
 begin

 cbb = 'execute ibeblock (LogStr variant)
 as
 begin
 ibec_Progress(LogStr);
 end';

 res = ibec_Exec('C:\Program Files\Firebird\Bin\gbak.exe
 -r -v -rep -user SYSDBA -pas masterkey
 E:\test_db.fbk E:\test_db.fdb',
 'OutFile=E:\Restore.log; ConvertToANSI', cbb);

 if (res = 0) then
 ibec_ShowMessage('Restore process completed successfully');
 else
 ibec_ShowMessage('Restore process failed with exit code = '||res);
 end

552

ibec_ExecSQLScript
Executes an SQL script from a variable or a file.

Syntax

 function ibec_ExecSQLScript(Connection : variant; SQLScript : string; Options : string; ProgressBlock : variant) : variant;

SQLScript script text or name of script file.

Options additional options. There are two additional options currently available: ServerVersion and StopOnError.
ProgressBlock an IBEBlock which will be executed for every progress message generated during script execution.

Description

ibec_ExecSQLScript executes an SQL script from a variable or a file.

Connection is an active connection created with the ibec_CreateConnection functionwhich will be used while executing a script. If Connection is not
specified (NULL) the script must contain the CREATE DATABASE or the CONNECT statement, otherwise an exception will be raised.

ibec_ExecSQLScript returns NULL if there were no errors while executing a script. Otherwise it returns an error(s) message.

Example

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (BlockData variant)
 as
 begin
 sMessage = BlockData;
 if (sMessage is not null) then
 ibec_Progress('SQL Script: ' + sMessage);
 end';

 db = ibec_CreateConnection(__ctFirebird, ...);
 try
 Scr = 'INSERT INTO MYTABLE (ID, DATA) VALUES (1, 'Bla-bla'); ' + 'INSERT INTO MYTABLE (ID, DATA) VALUES
 (2, 'Bla-bla'); ' + 'COMMIT;';
 ibec_ExecSQLScript(db, Scr, 'ServerVersion=FB21; StopOnError=FALSE', cbb); ...
 ibec_ExecSQLScript(db, 'D:\Scripts\CheckData.sql', 'ServerVersion=FB21', null); finally
 ibec_CloseConnection(db);
 end
 end

553

ibec_ExportReport
Syntax

 function ibec_ExportReport(PreparedReport : variant; FileName : string; ExportType : integer; Options : string) : boolean;

Description

ibec_ExportReport exports report, created with the IBExpert Report Manager and prepared using the ibec_CreateReport function, into a specified format.

The following export types are supported as value of the ExportType parameter:

 __erPDF (= 0)
 __erTXT (= 1)
 __erCSV (= 2)
 __erHTML (= 3)
 __erXLS (= 4)
 __erXML_XLS (= 5)
 __erRTF (= 6)
 __erBMP (= 7)
 __erJPEG (= 8)
 __erTIFF (= 9)
 __erGIF (= 10)

Options

The following additional export options are supported:

Background=TRUE|FALSE Export of graphic image assigned to a page into result file. It considerably increases output file size. Applicable
for PDF, HTML, XLS, XML export types. Default value is FALSE.

Compressed=TRUE|FALSE Output file compressing. It reduces file size but increases export time. Applicable for PDF export. Default value is
TRUE.

EmbeddedFonts=TRUE|
FALSE

Applicable for PDF export type. All fonts used in report will be contained in the PDF output file for correct file
displaying on computers where these fonts maybe absent. Output file size increases considerably. Default value
is FALSE.

PrintOptimized=TRUE|
FALSE

Applicable for PDF export type. Output of graphic images in high resolution for further correct printing. This option
enabling is necessary only when the document contains graphics and its printing is necessary. It considerably
increases output file size. Default value is FALSE.

EmptyLines=TRUE|FALSE Export of empty lines, applicable for TXT export. Default value is FALSE.

Frames=TRUE|FALSE Export of text objects frames, applicable for TXT export. Default value is FALSE.

OEMCodePage=TRUE|FALSE Resulting file OEM coding selecting. Applicable for TXT and CSV exports. Default value is FALSE.

PageBreaks=TRUE|FALSE Export of page breaks to resulting file. Applicable for TXT export type. Default value is TRUE.

Separator=<string> Values separator. Default value is semicolon (;). To avoid incorrect parsing of the options string double quote a
separator value: Separator=","

ExportStyles=TRUE|
FALSE

Transferring of text objects design styles. Disabling increases exporting but worsens document appearance.
Applicable for HTML, XLS and XML documents. Default value is TRUE.

ExportPictures=TRUE|
FALSE

Includes graphic images exporting possibility. Applicable for HTML, XLS and RTF documents. Default value is
TRUE.

Navigator=TRUE|FALSE Includes special navigator for fast navigation between pages. Applicable for HTML pages. Default value is FALSE.

Multipage=TRUE|FALSE Everypage of the report will be written to a separate file. Applicable for HTML documents. Default value is FALSE.

AsText=TRUE|FALSE Applicable for XLS export type. All objects are transferred into table/diagram as text ones. This optionmay be
useful when transferring numeric fields with complicated formatting. Default value is FALSE.

MergeCells=TRUE|FALSE
Applicable for XLS export type. Cells integration in resulting table/diagram for achieving maximum
correspondence to the original. Disabling increases exporting but reduces document appearance. Default value
is TRUE.

Wysiwyg=TRUE|FALSE Full compliance to report appearance. Applicable for XML, XLS and RTF documents.

CropImages=TRUE|FALSE After exporting blank area cropping will be performed along edges. Applicable for BMP, JPEG, TIFF and GIF export
types. Default value is FALSE.

Monochrome=TRUE|FALSE Monochrome picture creating. Applicable for BMP, JPEG, TIFF and GIF export types. Default value is FALSE.

JPEGQuality=<integer> JPEG file compression ratio. Applicable for JPEG files. Default value is 90.

Quality=<integer> Same as JPEG quality.

Example

 execute ibeblock
 as
 begin
 Params['HeaderMemo'] = '';
 Params['MEMO2'] = 2;

 SELECT IBE$REPORT_SOURCE FROM ibe$reports
 where ibe$report_id = 4
 into :RepSrc;

 Report = ibec_CreateReport(RepSrc, Params, null);

554

 ibec_SaveToFile('D:\reptest.fp3', Report, 0);
 Res = ibec_ExportReport(Report, 'D:\reptest.pdf', __erPDF, 'EmbeddedFonts=TRUE');
 Res = ibec_ExportReport(Report, 'D:\reptest.jpg', __erJPEG, 'CropImages; Quality=90');
 end

See also:
Report Manager
ibec_CreateReport

ibec_FormatIdent
... coming soon.

See also:
Example: Recreating indices 1

ibec_FreeGlobalVar
Description

This functionremoves a specified variable from a list of global variables, and frees memory associated with the variable. If an empty string is specified as
VarName all global variables will be destroyed. This function returns a number of destroyed global variables.

Syntax

 function ibec_FreeGlobalVar
 (VarName : string) : variant;

555

(:keywords ibec_GetGlobalVar

ibec_GetGlobalVar
ibec_GetGlobalVar returns the value of a specified global variable. If the variable does not exist, this functionreturns the value passed in DefaultValue.

Syntax

 function ibec_GetGlobalVar
 (VarName : string; DefaultValue : variant) :variant;

Example

The following example illustrates the use of this function, together with ibec_SetGlobalVar, described within an SQL script:

 CONNECT ...;

 execute ibeblock
 as
 begin
 select myfield from mytable
 where something = 25
 into :MyVar;
 ibec_SetGlobalVar('MyGlobalVar', MyVar);
 end;

 ...

 execute ibeblock
 as
 begin
 MyVar = ibec_GetGlobalVar('MyGlobalVar', null);
 if (MyVar = 1) then
 insert into mytable ...;
 else if (MyVar = 2) then
 update mytable set ...;
 end;

ibec_GetIBEVersion
ibec_GetIBEVersion functionwas implemented in IBExpert version 2007.07.18. This functionreturns a string representation of the IBExpert/IBEScript version.

Syntax

 function ibec_GetIBEVersion() : string;

556

ibec_GetTickCount
Retrieves the number of milliseconds that have elapsed since Windows was started.

Syntax

 function ibec_GetTickCount : integer;

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 Time1 = ibec_GetTickCount();

 select * from rdb$fields as dataset ds;
 close dataset ds;

 Time2 = ibec_GetTickCount();
 cout = 'Time elapsed: ' || ((Time2 - Time1) / 1000) || ' seconds';
 suspend;
 end

See also:
IBEBLOCK and Test Data Generator

557

ibec_ibec_GetViewRecreateScript
Creates a Recreate script for a specified view(s) and returns it as a result.

Syntax

 function ibec_GetViewRecreateScript(Connection : variant; ViewName : string;
 Options : string; ProgressBlock : variant) : string;

Connection An active connectioncreated with the ibec_CreateConnection function.
ViewName List of names of view(s), delimited with semicolon or comma, for which a Recreate script will be created.

Options List of options delimited with semicolon; possible options are:
GenerateCreate Determines whether a CREATE DATABASE statement should be included at the beginning of the generated script.

GenerateConnect Determines whether a CONNECT statement should be included at the beginning of the generated script.

IncludePassword Determines whether the password should be included into the CREATE DATABASE or the CONNECT statement in the
resulting SQL script.

SupressComments Use to supress comments in the resulting script.

ExtractDescriptions Determines whether database objects' descriptions should be included in the generated script. Bydefault this
option is enabled.

DescriptionsAsUpdate Determines whether the rawUPDATE statement should be used for object descriptions instead of the IBExpert
specific DESCRIBE statement.

UseComment Generates the COMMENT ON statement for object descriptions (Firebird 2.x).

DontUseSetTerm Don't use SET TERM statements, all statements will be separated by semicolon only.
UseCreateOrAlter Generates CREATE OR ALTER instead of CREATE/ALTER where possible.

ProgressBlock An IBEBlock which will be executed for every progress message generated during script execution. Maybe NULL or
empty.

Description

ibec_GetViewRecreateScript creates a Recreate script for a specified view(s) and returns it as a result.

Use the IBExpert DB Explorer context-sensitive menu item, Apply Block to selected objects ... to recreate selected views based on IBEBlock and the ibec_
GetViewRecreateScript function.

Example

 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (MsgData variant)
 as
 begin
 ibec_Progress(MsgData);
 end';
 ...
 RecreateScript = ibec_GetViewRecreateScript(mydb, 'VIEW_A; VIEW_B; VIEW_C',
 'GenerateConnect; IncludePassword; UseCreateOrAlter', cbb);
 Res = ibec_ExecSQLScript(null, RecreateScript, 'ServerVersion=FB21', cbb);
 end

ibec_GUID
This functioncreates a string representation of a GUID, a unique 128-bit integer used for CLSIDs and interface identifiers.

558

ibec_High
Returns the highest value within the range of the index type of the array.

Syntax

 function ibec_High(AArray : array of variants): integer;

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 vals = 0;
 iresult = ibec_High(vals);
 suspend; /* iresult = 0 */

 vals[1] = 12;
 iresult = ibec_High(vals);
 suspend; /* iresult = 1 */

 vals[10] = 'ibexpert';
 iresult = ibec_High(vals);
 suspend; /* iresult = 10 */

 ibec_SetLength(vals, 5);
 iresult = ibec_High(vals);
 suspend; /* iresult = 4 */

 ibec_SetLength(vals, 500);
 iresult = ibec_High(vals);
 suspend; /* iresult = 499 */

 ibec_SetLength(vals, 0);
 iresult = ibec_High(vals);
 suspend; /* iresult = 0 */
 end

See also:
ibec_SetLength
Data Comparer using cursors

559

ibec_IIF
Tests a condition and returns Value1 if the Condition is True and Value2 if the Condition is False.

Syntax

 function ibec_IIF(Condition : boolean; Value1, Value2 : variant): variant;

Description

Tests a condition and returns Value1 if the Condition is True and Value2 if the Condition is False.

Example

 execute IBEBlock
 returns (cout varchar(100))
 as
 begin
 i = 1;
 while (I < 50) do
 begin
 cout = ibec_IIF((ibec_mod(i, 2) = 0), i || ' is even number', i || ' is odd number');
 suspend;
 i = i + 1;
 end
 end

See also:
IIF
Firebird 2.0.4. Release Notes: IIF expression syntaxadded

560

ibec_IntToHex
Returns the hex representation of an integer.

Syntax

 function ibec_IntToHex(Value: Integer; Digits: Integer): string;

Description

ibec_IntToHex converts a number into a string containing the number's hexadecimal (base 16) representation. Value is the number to convert. Digits
indicates the minimum number of hexadecimal digits to return.

Example

 execute ibeblock
 returns (iint integer, shex varchar(5))
 as
 begin
 iint = 0;
 while (iint < 1000) do
 begin
 shex = '$' || ibec_IntToHex(iint, 4);
 iint = iint + 1;
 suspend;
 end
 end

See also:
Creating an UPDATE script with domain descriptions

561

ibec_MessageDlg
The ibec_MessageDlg function was implemented in IBExpert version 2006.12.11. This functiondisplays a message dialog box in the center of the screen.

Syntax

 function ibec_MessageDlg(Msg: string; DlgType: integer; Buttons: integer): integer;

Description

Call ibec_MessageDlg to bring up a message box and obtain the user's response. The message box displays the value of the Msg parameter. Use the DlgType
parameter to indicate the purpose of the dialog. Possible values of the DlgType parameter are:

__mtWarning = 0 A message box containing a yellow exclamationpoint symbol.

__mtError = 1 A message box containing a red stop sign.

__mtInformation = 2 A message box containing a blue i.
__mtConfirmation = 3 A message box containing a green question mark (?).

__mtCustom = 4 A message box containing no bitmap.

Use the Buttons parameter to indicate which buttons should appear in the message box. The following values and combinations can be used for the Buttons
parameters:

__mbYes = 1 A button with Yes on its face.

__mbNo = 2 A button the text No on its face.

__mbOK = 4 A button the text OK on its face.

__mbCancel = 8 A button with the text Cancel on its face.

__mbAbort = 16 A button with the text Abort on its face.

__mbRetry = 32 A button with the text Retry on its face.

__mbIgnore = 64 A button the text Ignore on its face.

__mbAll = 128 A button with the text All on its face.

__mbNoToAll = 256 A button with the text No to All on its face.

__mbYesToAll = 512 A button with the text Yes to All on its face.

__mbHelp = 1024 A button with the text Help on its face.

ibec_MessageDlg returns the value of the button the user selected. These are the possible return values:

__mrNone
__mrOk
__mrCancel
__mrAbort
__mrRetry
__mrIgnore
__mrYes
__mrNo
__mrAll
__mrNoToAll
__mrYesToAll

562

ibec_Ord
Returns the ordinal value of the specified character.

Syntax

 function ibec_Ord(Chr : char): integer;

Description

The ibec_Ord functionreturns the ordinal value of the specified character. If Chr is an empty string or NULL, thenresult is 0.

Example

 execute IBEBlock
 returns (cout varchar(1))
 as
 begin
 i = 0;
 while (i < 256) do
 begin
 cout = ibec_Chr(i);
 i = i + 1;
 suspend;
 end
 end

See also:
ibec_Chr

ibec_ParseCSVLine
Syntax

 function ibec_fs_ParseCSVLine(DestValues : array of variants; CSVLine : string; QuoteChar : char; Delimiter : string; Options :
cardinal): integer;

See also:
Importing data from a CSV file

563

ibec_Progress
Displays a progress message.

Syntax

 function ibec_Progress(Mes : string): string;

Description

Call ibec_Progress function to displaya message. The Msg parameter is the message string that appears in the upper status panel of the SQL Editor or
Script Editor. If you're executing an IBEBlock using the IBEScript tool the message will appear on the screen and will be included into log file .

Example

 execute IBEBlock
 returns (table_name varchar(31), irecords integer)
 as
 begin
 for select rdb$relation_name
 from rdb$relations
 order by rdb$relation_name
 into :table_name
 do
 begin
 ibec_Progress('Counting records of ' || ibec_Trim(table_name));
 execute statement 'select count(*) from ' || ibec_Trim(table_name) into :irecords;
 suspend;
 end
 end

See also:
Comparing databases using IBEBlock
Comparing scripts with IBEBlock

564

ibec_Random
Generates random numbers within a specified range.

Syntax

 function ibec_Random(Range : integer): integer;

Description

ibec_Random returns a random number within the range 0 <= X < Range. If Range=0, the result is a real-type random number within the range 0 <= X < 1.

Example

 execute IBEBlock
 returns (iout integer, dpout double precision)
 as
 begin
 i = 0;
 while (i < 100) do
 begin
 iout = ibec_Random(100);
 dpout = ibec_Random(0);
 i = i + 1;
 suspend;
 end
 end

See also:
ibec_Random2
ibec_RandomChar
ibec_RandomString
ibec_RandomVal
Data Comparer using cursors
IBEBLOCK and Test Data Generator

565

ibec_Random2
Generates random numbers withina specified range.

Syntax

 function ibec_Random2(MinValue, MaxValue : integer): integer;

Description

ibec_Random2 returns a random number within the range MinValue <= X <= MaxValue.

Example

 execute IBEBlock
 returns (iout integer)
 as
 begin
 i = 0;
 while (i < 100) do
 begin
 iout = ibec_Random2(50, 100);
 i = i + 1;
 suspend;
 end
 end

See also:
ibec_Random
ibec_RandomChar
ibec_RandomString
ibec_RandomVal
Data Comparer using cursors
IBEBLOCK and Test Data Generator

566

ibec_RandomChar
Generates random char within a specified range.

Syntax

 function ibec_RandomChar(MinOrdValue, MaxOrdValue : integer): string;

Description

ibec_RandomChar returns a random char within the range MinOrdValue <= X <= MaxOrdValue.

Example

 execute IBEBlock
 returns (cout varchar(1))
 as
 begin
 i = 0;
 while (i < 100) do
 begin
 cout = ibec_RandomChar(1, 255);
 i = i + 1;
 suspend;
 end
 end

See also:
ibec_Random
ibec_Random2
ibec_RandomString
ibec_RandomVal
Data Comparer using cursors
IBEBLOCK and Test Data Generator

ibec_RandomString
Returns a random string.

Syntax

 function ibec_RandomString(MinLen, MaxLen, MinOrdValue, MaxOrdValue : integer): string;

See also:
ibec_Random
ibec_Random2
ibec_RandomChar
ibec_RandomVal
Data Comparer using cursors
IBEBLOCK and Test Data Generator

ibec_RandomVal
See also:
ibec_Random
ibec_Random2
ibec_RandomChar
ibec_RandomString
Data Comparer using cursors
IBEBLOCK and Test Data Generator

567

ibec_SetGlobalVar
ibec_SetGlobalVar allows youto create/modify a global variable. This functionalways returns 0.

Syntax

 function ibec_SetGlobarVar
 (VarName : string; VarValue : variant):variant;

Description

If you're using the ibec_SetGlobalVar functionwithin scripts executed with IBEScript, it is not necessary to free global variables - theywill be destroyed
automaticallyafter the script has finished.

If you're using the ibec_SetGlobalVar functionwithin IBExpert (SQL Editor or the Script Executive), any global variables created will continue to exist until you
close IBExpert. So if necessary, youshould free them manually using the ibec_FreeGlobalVar function.

Example

The following example illustrates the use of this function, together with ibec_GetGlobalVar, described within an SQL script:

 CONNECT ...;

 execute ibeblock
 as
 begin
 select myfield from mytable
 where something = 25
 into :MyVar;
 ibec_SetGlobalVar('MyGlobalVar', MyVar);
 end;

 ...

 execute ibeblock
 as
 begin
 MyVar = ibec_GetGlobalVar('MyGlobalVar', null);
 if (MyVar = 1) then
 insert into mytable ...;
 else if (MyVar = 2) then
 update mytable set ...;
 end;

568

ibec_SetLength
Sets the length of a dynamic-arrayvariable.

Syntax

 function ibec_SetLength(AArray : array of variants; NewLength : integer): integer;

Description

AArray is a dynamic-arrayvariable.

ibec_SetLength reallocates the array referenced by AArray to the given length. Existing elements in the arrayare preserved, the content of newlyallocated
elements is NULL. ibec_SetLength returns the number of arrayelements.

Example

 execute IBEBlock
 returns (iresult integer)
 as
 begin
 vals = 0;
 iresult = ibec_SetLength(vals, 10);
 suspend; /* iresult = 10 */

 iresult = ibec_SetLength(vals, -1);
 suspend; /* illegal NewLength, iresult = 10 */

 iresult = ibec_SetLength(vals, '25');
 suspend; /* iresult = 25 */

 iresult = ibec_SetLength(vals, NULL);
 suspend; /* illegal NewLength, iresult = 25 */
 end

See also:
ibec_High

ibec_ShiftRecord
Syntax

 function ibec_ShiftRecord(AArray : array of variants; Shift : integer): integer;

569

ibec_smtp_SendMail
This functionsends an email using SMTP protocol.

Syntax

 function ibec_smtp_SendMail(SMTPHost : string; SMTPPort : string; UserName : string;
 Password : string; From : string; To : string; CC : string; BCC : string;
 Subject : string; Message : string; AttachedFiles : string;
 AdditionalHeaders : string; Options : string; CallbackBlock : string)

 : variant;

A detailed description of this functionwill be available later.

Example

 execute ibeblock
 as
 begin
 CRLF = ibec_CRLF();
 cbb = 'execute ibeblock (Vals variant)
 as
 begin
 sPref = ;
 sEvent = Vals[EVENT];
 if ((sEvent = COMMAND) or (sEvent = HEADER)) then
 sPref = ==> ;
 else if (sEvent = RESPONSE) then
 sPref = <== ;
 sMes = sPref + Vals[TEXT];
 ibec_Progress(sMes);
 LogFile = ibec_GetGlobalVar(LogFileH, null);
 if (LogFile is not NULL) then
 ibec_fs_Writeln(LogFile, sMes);
 end';
 sMessage = 'Just a test' + CRLF +
 'This message was sent by ibec_smtp_SendMail function';
 sAttachments = 'D:\smtpsendmail.ibeblock' + CRLF +
 'D:\script.sql';
 sAddHeaders = 'IBE-Type: IBEBlock' + CRLF +
 'IBE-Comment: Just a comment';
 LogFile = ibec_fs_OpenFile('D:\smtp.log', __fmCreate);
 try
 if (LogFile is not null) then
 ibec_SetGlobalVar('LogFileH', LogFile);
 ibec_smtp_SendMail('mail.myserver.com',
 'smtp',
 'Bill',
 'windows_must_die!',
 '"Bill Gates" <Bill@microsoft.com>',
 'all@world.com',
 '',
 '',
 'Test message from IBEBlock ibec_smtp_SendMail function',
 :sMessage,
 :sAttachments,
 :sAddHeaders,
 'Encoding=windows-1251; Confirm; Priority=Highest',
 cbb);
 finally
 ibec_fs_CloseFile(LogFile);
 end;
 end

ibec_WaitForEvent
The ibec_WaitForEvent functioncan be used to monitor events sent by the POST_EVENT command. It returns the event name if an event is fired or NULL if
timeout is expired.

Syntax

 ibec_WaitForEvent(Connection : variant; EventName : string; Timeout : cardinal) : variant;#

Timeout should be specified in milliseconds. Timeout = 0means infinitely waiting for event!

570

mailto:Bill@microsoft.com
mailto:all@world.com

IBEBlock Examples
This section includes a few examples illustrating the usage of EXECUTE IBEBLOCK (please refer to the individual subjects for details).

All scripts, demos etc. can be downloaded from http://www.ibexpert.com/download/other_files/ (save BlockScriptSamples.zip to the hard drive and extract).

Automatic script execution
ODBC Access
Extract metadata using IBEBlock

DomExtract.ibeblock
FldType.ibeblock
GensExtract.ibeblock
SPExtract.ibeblock
RunMe.ibeblock

Comparing databases using IBEBlock
Comparing scripts with IBEBlock
Data Comparer using cursors
IBEBLOCK and Test Data Generator
Joining tables from different databases
Recreating indices 1
Recreating indices 2
Building an OLAP cube
Inserting files into a database
Inserting file data into a database
Importing data from a CSV file
Importing data from a file
Export data into DBF
Creating a script from a Database Designer model file
Creating an UPDATE script with domain descriptions

FldTypeHTML.ibeblock
InputForm.ibeblock
TableDDL.ibeblock
RunMe.ibeblock

Performing a daily backup of the IBExpert User Database
Disable and Enable IBExpert features
Retrieve all valid e-mail addresses from an input text
Working with POP3 servers

Automatic script execution
It is possible to execute anyscript automatically, simply by placing the script in a file, ibexpert.usr, in the main IBExpert directory.

Since IBExpert version 2006.08.12 it is also possible to execute a script automatically immediately after IBExpert starts. Please refer to IBExpert After Start
Script for further information and an example.

Try it!

571

http://www.ibexpert.com/download/other_files/

ODBC Access
1. Download IBEBlockScriptSamples.zip from http://www.ibexpert.com/download/other_files/
2. Copy Demo.mdb and ODBCAcc.ibeblock (found in the Blocks/ODBC Access directory) into a separate directory
3. Copy ODBCAcc.ibeblock (copyof script below) into the SQL Editor.
4. You canfind the correct connection string for the ODBC driver you are using here: http://www.connectionstrings.com/
5. Modify the path to Demo.mdb.
6. Press [F9] to execute the block.

execute ibeblock
returns (CustNo integer, Company varchar(100), Addr1 varchar(100))
 as
 begin
 InCust = 3000;
 OdbcCon = ibec_CreateConnection(__ctODBC, 'DBQ=D:\Delphi5\CMP\mODBC\DB\demo.mdb;DRIVER=Microsoft Access Driver (*.mdb)');
 ibec_UseConnection(OdbcCon);

 execute statement 'select Company from customer where CustNo = 4312' into :MyCust;

 for select CustNo, Company, Addr1 from customer
 where CustNo > :InCust
 order by company
 into :CustNo, :Company, :Addr1
 do
 begin
 suspend;
 end
 ibec_CloseConnection(OdbcCon);
 end

572

http://www.ibexpert.com/download/other_files/
http://www.connectionstrings.com/

Extract metadata using IBEBlock
1. Download IBEBlockScriptSamples.zip from http://www.ibexpert.com/download/other_files/, and copy all IBEBlocks found in the Extract Metadata

directory into a separate directory.
2. Load the RunMe.ibeblock into the SQL Editor.
3. Replace the default values of CodeDir and ScriptFile input parameters with your own.
4. Press [F9] to execute the block.

Note: this is just an example, therefore only generators, domains and procedures will be extracted into the script.

The individual sample scripts:

DomExtract.ibeblock
FldType.ibeblock
GensExtract.ibeblock
SPExtract.ibeblock
RunMe.ibeblock

can be viewed in the following sections.

See also:
Extract Metadata
ibec_ExtractMetadata

573

http://www.ibexpert.com/download/other_files/,andcopyallIBEBlocksfoundinthe

DomExtract.ibeblock
 execute ibeblock (
 CodeDir varchar(1000) = 'E:\IBEBlocks\' comment 'Path to necessary IBEBlocks',
 FileStrm variant)
 as
 begin
 FldTypeFunc = ibec_LoadFromFile(CodeDir || 'FldType.ibeblock');

 if (FileStrm is not null) then
 FS = FileStrm;
 else
 FS = ibec_fs_OpenFile('E:\BlockScript.sql', __fmCreate);

 for select f.rdb$field_name, -- 0
 f.rdb$validation_source, -- 1
 f.rdb$computed_source, -- 2
 f.rdb$default_source, -- 3
 f.rdb$field_length, -- 4
 f.rdb$field_scale, -- 5
 f.rdb$field_type, -- 6
 f.rdb$field_sub_type, -- 7
 f.rdb$description, -- 8
 f.rdb$segment_length, -- 9
 f.rdb$dimensions, -- 10
 f.rdb$null_flag, -- 11
 f.rdb$character_length, -- 12
 f.rdb$collation_id, -- 13
 f.rdb$character_set_id, -- 14
 f.rdb$field_precision, -- 15
 ch.rdb$character_set_name, -- 16
 co.rdb$collation_name -- 17
 from rdb$fields fleft join rdb$character_sets ch on (f.rdb$character_set_id = ch.rdb$character_set_id)
 left join rdb$collations co on ((f.rdb$collation_id = co.rdb$collation_id) and
 (f.rdb$character_set_id = co.rdb$character_set_id))
 where not (f.rdb$field_name starting with 'RDB$')
 order by rdb$field_name
 into :DomProps
 do
 begin
 DomName = DomProps[0];
 execute ibeblock FldTypeFunc(DomProps[6], DomProps[7], DomProps[4], DomProps[5], DomProps[9],
 DomProps[12], DomProps[15], 3)
 returning_values :FieldType;
 DomType = FieldType;

 -- Character Set
 if ((DomProps[6] in (14, 37, 261)) and (DomProps[16] is not null)) then
 DomType = DomType || ' CHARACTER SET ' || ibec_trim(DomProps[16]) || ibec_Chr(13) || ibec_Chr (10);

 -- Default Value
 if ((DomProps[3] is not null) and (DomProps[3] <> '')) then
 DomType = DomType || ibec_trim(DomProps[3]) || ibec_Chr(13) || ibec_Chr(10);

 -- NOT NULL flag
 if (DomProps[11] is not null) then
 DomType = DomType || 'NOT NULL' || ibec_Chr(13) || ibec_Chr(10);

 -- Check source
 if ((DomProps[1] is not null) and (DomProps[1] <> '')) then
 DomType = DomType || ibec_trim(DomProps[1]) || ibec_Chr(13) || ibec_Chr(10);

 -- Collate
 if ((DomProps[17] is not null) and (DomProps[17] <> '')) then
 DomType = DomType || 'COLLATE ' || ibec_trim(DomProps[17]) || ibec_Chr(13) || ibec_Chr(10);

 DomType = ibec_Chr(13) || ibec_Chr(10) || ibec_Trim(DomType) || ';';
 ibec_progress('Writing domain ' || DomName);
 ibec_fs_Writeln(FS, 'CREATE DOMAIN ' || ibec_Trim(DomProps[0]) || DomType);
 ibec_fs_Writeln(FS, '');
 end

 if (FileStrm is null) then
 ibec_fs_CloseFile(FS);
 end

574

FldType.ibeblock
 execute ibeblock (
 FType integer,
 FSubType integer,
 FLen integer,
 FScale integer,
 FSegmentSize integer,
 FCharLen integer,
 FPrecision integer,
 SQLDialect integer = 3)
 returns (TypeAsString varchar(200))
 as
 begin
 TypeAsString = '';
 if ((FCharLen = 0) or (FCharLen is NULL)) then
 FCharLen = FLen;

 if (FType = 261) then
 TypeAsString = ibec_Concat('BLOB SUB_TYPE ', FSubType, ' SEGMENT SIZE ', FSegmentSize);
 else if (FType = 14) then
 TypeAsString = 'CHAR(' || FCharLen || ')';
 else if (FType = 37) then
 TypeAsString = 'VARCHAR(' || FCharLen || ')';
 else if (FType = 12) then
 TypeAsString = 'DATE';
 else if (FType = 13) then
 TypeAsString = 'TIME';
 else if (FType = 35) then
 begin
 if (SQLDialect = 3) then
 TypeAsString = 'TIMESTAMP';
 else
 TypeAsString = 'DATE';
 end
 else if (FType = 7) then
 begin
 if ((FScale < 0) or (FSubType = 1) or (FSubType = 2)) then
 begin
 if (FSubType = 2) then
 TypeAsString = 'DECIMAL';
 else
 TypeAsString = 'NUMERIC';
 if (FPrecision > 0) then
 TypeAsString = TypeAsString || '(' || FPrecision || ',' || (FScale * -1) || ')';
 else
 TypeAsString = TypeAsString || '(4,' || (FScale * -1) || ')';
 end
 else
 TypeAsString = 'SMALLINT';
 end
 else if (FType = 8) then
 begin
 if ((FScale < 0) or (FSubType = 1) or (FSubType = 2)) then
 begin
 if (FSubType = 2) then
 TypeAsString = 'DECIMAL';
 else
 TypeAsString = 'NUMERIC';
 'if (FPrecision > 0) then
 TypeAsString = TypeAsString || '(' || FPrecision || ',' || (FScale * -1) || ')';
 else
 TypeAsString = TypeAsString || '(9,' || (FScale * -1) || ')';
 end
 else
 TypeAsString = 'INTEGER';
 end
 else if (FType = 27) then
 begin
 if ((FScale < 0) or (FSubType = 1) or (FSubType = 2)) then
 begin
 if (FSubType = 2) then
 TypeAsString = 'DECIMAL';
 else
 TypeAsString = 'NUMERIC';
 if (FPrecision > 0) then
 TypeAsString = TypeAsString || '(' || FPrecision || ',' || (FScale * -1) || ')';
 else
 TypeAsString = TypeAsString || '(9,' || (FScale * -1) || ')';
 end
 else
 TypeAsString = 'DOUBLE PRECISION';
 end
 else if (FType = 16) then
 begin
 if ((FScale < 0) or (FSubType = 1) or (FSubType = 2)) then
 begin
 if (FSubType = 2) then
 TypeAsString = 'DECIMAL';
 else
 TypeAsString = 'NUMERIC';
 if (FPrecision > 0) then

575

 TypeAsString = TypeAsString || '(' || FPrecision || ',' || (FScale * -1) || ')';
 else
 TypeAsString = TypeAsString || '(18,' || (FScale * -1) || ')';
 end
 else
 TypeAsString = 'BIGINT';
 end
 else if (FType = 10) then
 TypeAsString = 'FLOAT';
 suspend;
 end

576

GensExtract.ibeblock
 execute ibeblock (
 SetValues smallint = 0,
 FileStrm variant)
 as
 begin
 if (FileStrm is not null) then
 FS = FileStrm;
 else
 FS = ibec_fs_OpenFile('E:\BlockScript.sql', __fmCreate);

 for select g.rdb$generator_name
 from rdb$generators g
 where g.rdb$system_flag is null
 order by g.rdb$generator_name
 into :GenName
 do
 begin
 GenName = ibec_trim(GenName);
 s = 'CREATE GENERATOR ' || GenName || ';';
 if (SetValues = 1) then
 begin
 execute statement 'select gen_id(' || GenName || ', 0) from rdb$database' into :GenValue;
 s = s || ibec_Chr(13) || ibec_Chr(10) ||
 'SET GENERATOR ' || GenName || ' TO ' || GenValue || ';';
 end
 ibec_progress('Writing generator ' || GenName);
 ibec_fs_Writeln(FS, s);
 ibec_fs_Writeln(FS, '');
 end

 if (FS is null) then
 ibec_fs_CloseFile(FS);
 end

577

SPExtract.ibeblock
 execute ibeblock ExtractProcedures (
 CodeDir varchar(1000) = 'E:\IBEBlocks\' comment 'Path to necessary IBEBlocks',
 CreateAlter varchar(6) = 'CREATE',
 Dialect smallint = 3,
 EmptyBody boolean = FALSE,
 FileStrm variant)
 as
 begin
 CRLF = ibec_CRLF;
 WriteDDLBlock =
 'execute ibeblock (sName variant, sDDL variant, sInParams variant, sOutParams variant, sSrc variant, FS variant)
 as
 CRLF = ibec_CRLF();
 if (sInParams <> ´´´´) then
 sDDL = sDDL || ́ ´ (´´ || CRLF || ´´ ´´ || ibec_Trim(sInParams) || ´´)´´;
 if (sOutParams <> ́ ´´´) then
 sDDL = sDDL || CRLF || ´´RETURNS (´´ || CRLF || ´´ ´´ || ibec_Trim(sOutParams) || ́ ´)´´;
 sDDL = sDDL || CRLF || ́ ´AS´´ || CRLF;
 sDDL = sDDL || sSrc || ́ ´^´´;
 ibec_progress(''Writing procedure ́ ´ || sName);
 ibec_fs_Writeln(FS, sDDL); ibec_fs_Writeln(FS, ́ ´´´); ibec_fs_Writeln(FS, ́ ´´´);
 end';

 RdbPrecisionExists = TRUE;
 FldTypeFunc = ibec_LoadFromFile(CodeDir || 'FldType.ibeblock');

 sName = ´´; sDDL = ´´; sInParams = ´´; sOutParams = ´´; sParam = ´´; iPrec = 0;
 if (FileStrm is not null) then
 FS = FileStrm;
 else
 FS = ibec_fs_OpenFile('E:\BlockScript.sql', __fmCreate);

 Stmt = ibec_Concat(
 'select pr.rdb$procedure_name, ', CRLF, -- 0
 ' pp.rdb$parameter_name, ', CRLF, -- 1
 ' pp.rdb$parameter_type, ', CRLF, -- 2
 ' fs.rdb$field_name, ', CRLF, -- 3
 ' fs.rdb$field_type, ', CRLF, -- 4
 ' fs.rdb$field_length, ', CRLF, -- 5
 ' fs.rdb$field_scale, ', CRLF, -- 6
 ' fs.rdb$field_sub_type, ', CRLF, -- 7
 ' fs.rdb$segment_length, ', CRLF, -- 8
 ' fs.rdb$dimensions, ', CRLF, -- 9
 ' cr.rdb$character_set_name,', CRLF, -- 10
 ' co.rdb$collation_name, ', CRLF, -- 11
 ' pp.rdb$parameter_number, ', CRLF, -- 12
 ' fs.rdb$character_length, ', CRLF, -- 13
 ' fs.rdb$default_source ', CRLF); -- 14

 if (not EmptyBody) then
 Stmt = ibec_Trim(Stmt) || ',' || CRLF || ' pr.rdb$procedure_source' || CRLF;
 else
 sSrc = 'BEGIN' || CRLF || ' EXIT;' || CRLF || 'END';

 if (RdbPrecisionExists) then
 Stmt = ibec_Trim(Stmt) || ',' || CRLF ||
 ' fs.rdb$field_precision' || CRLF;
 Stmt = Stmt ||
 'from rdb$procedures pr' || CRLF ||
 'left join rdb$procedure_parameters pp on pp.rdb$procedure_name = pr.rdb$procedure_name' || CRLF ||
 'left join rdb$fields fs on fs.rdb$field_name = pp.rdb$field_source' || CRLF ||
 'left join rdb$character_sets cr on fs.rdb$character_set_id = cr.rdb$character_set_id' || CRLF ||
 'left join rdb$collations co on ((fs.rdb$collation_id = co.rdb$collation_id) and' || CRLF ||
 ' (fs.rdb$character_set_id = co.rdb$character_set_id))' || CRLF ||
 'order by pr.rdb$procedure_name, pp.rdb$parameter_type, pp.rdb$parameter_number';

 SetTermWritten = FALSE;

 for execute statement :Stmt into :SPProps
 do
 begin
 if (SetTermWritten = FALSE) then
 begin
 ibec_fs_Writeln(FS, 'SET TERM ̂ ;' || CRLF);
 SetTermWritten = TRUE;
 end;
 if (RdbPrecisionExists = TRUE) then
 iPrec = ibec_IIF(EmptyBody = 1, SPProps[15], SPProps[16]);

 SPName = ibec_Trim(SPProps[0]);
 if (sName <> SPName) then
 begin
 if (sDDL <> ´´) then
 execute ibeblock WriteDDLBlock(sName, sDDL, sInParams, sOutParams, sSrc, FS);

 sName = SPName;
 if (not EmptyBody) then
 sSrc = ibec_Trim(SPProps[15]);
 sDDL = CreateAlter || ' PROCEDURE ' || SPName;
 sInParams = ´´; sOutParams = ´´; sParam = ´´;

578

 end
 if (SPProps[1] is not null) then
 begin
 execute ibeblock FldTypeFunc(SPProps[4], SPProps[7], SPProps[5], SPProps[6], SPProps[8],
 SPProps[13], SPProps[16], Dialect)
 returning_values :sParam;
 sParam = ibec_Trim(SPProps[1]) || ' ' || sParam;
 -- Character Set
 if ((SPProps[4] in (14, 37, 261)) and (SPProps[10] is not null)) then
 sParam = sParam || ' CHARACTER SET ' || ibec_trim(SPProps[10]);
 -- Default Value
 if ((SPProps[14] is not null) and (SPProps[14] <> '')) then
 sParam = sParam || ' DEFAULT ' || ibec_trim(SPProps[14]);
 if (SPProps[2] = 0) then
 begin
 if (sInParams <> '') then
 sInParams = sInParams || ',' || CRLF || ' ';
 sInParams = sInParams || sParam;
 end
 else if (SPProps[2] = 1) then
 begin
 if (sOutParams <> '') then
 sOutParams = sOutParams || ',' || CRLF || ' ';
 sOutParams = sOutParams || sParam;
 end
 end
 end
 if (sDDL <> '') then
 execute ibeblock WriteDDLBlock(sName, sDDL, sInParams, sOutParams, sSrc, FS);

 if (SetTermWritten) then
 ibec_fs_Writeln(FS, 'SET TERM ; ^' || CRLF);

 if (FileStrm is null) then
 ibec_fs_CloseFile(FS);
 end

579

RunMe.ibeblock
 execute ibeblock ExtractMetadata (
 CodeDir varchar(1000) = 'E:\IBEBlocks\' comment 'Path to necessary IBEBlocks'
 ScriptFile varchar(1000) = 'E:\BlockScript.sql' comment 'Name of the script file')
 returns (TimeAll float)
 as
 begin
 Time1 = ibec_GetTickCount;
 SPExtr = ibec_LoadFromFile(CodeDir || 'SPExtract.ibeblock');
 DomExtract = ibec_LoadFromFile(CodeDir || 'DomExtract.ibeblock');
 GensExtract = ibec_LoadFromFile(CodeDir || 'GensExtract.ibeblock');

 FS = ibec_fs_OpenFile(ScriptFile, __fmCreate);
 execute ibeblock DomExtract (FS);
 execute ibeblock GensExtract (1, FS);
 execute ibeblock SPExtr (CodeDir, 'CREATE', 3, TRUE, FS);
 execute ibeblock SPExtr (CodeDir, 'ALTER', 3, FALSE, FS);
 ibec_fs_CloseFile(FS);
 Time2 = ibec_GetTickCount();
 TimeAll = (Time2 - Time1) / 1000;
 suspend;
 end

580

Comparing databases using IBEBlock
 execute ibeblock
 as
 begin
 create connection MasterDB dbname 'localhost:c:\MasterDB.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create connection SubscriberDB dbname 'localhost:c:\SubscriberDB.fdb'
 password 'masterkey' user 'SYSDBA'
 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 cbb = 'execute ibeblock (LogMessage variant)
 as
 begin
 ibec_progress(LogMessage);
 end';

 ibec_CompareMetadata(MasterDB, SubscriberDB, 'E:\CompRes.sql', 'OmitDescriptions;
 OmitGrants', cbb);

 close connection MasterDB;
 close connection SubscriberDB;
 end

See also:
Extract Metadata

581

Comparing scripts with IBEBlock
 execute ibeblock
 as
 begin
 cbb = 'execute ibeblock (
 LogMessage variant)
 as
 begin
 ibec_progress(LogMessage);
 end';

 ibec_CompareMetadata('c:\myscripts\master.sql','c:\myscripts\subscriber.sql', 'E:\CompRes.sql','', cbb);
 end

Using the ServerVersion parameter (IBExpert version 2005.12.04):

ibec_CompareMetadata(MasterDB,
 SubscriberDB,
 'E:\CompRes.sql',
 'OmitDescriptions; OmitGrants; ServerVersion=FB1?',
 cbb);

See also:
Extract Metadata

582

Automatic database structure comparison with recompilation of
triggers and procedures
 execute ibeblock
 as
 begin
 create connection MasterDB dbname 'localhost:c:\db1.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'fbclient.dll';

 create connection SubscriberDB dbname 'localhost:c:\db2.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'fbclient.dll';

 cbb = 'execute ibeblock (LogMessage variant)
 as
 begin
 ibec_progress(LogMessage);
 end';
 ibec_CompareMetadata(MasterDB, SubscriberDB, 'E:\CompRes.sql', 'OmitDescriptions; OmitGrants', cbb);

 close connection MasterDB;
 close connection SubscriberDB;
 end ;

 input 'E:\CompRes.sql';

 execute ibeblock
 as
 begin
 create connection SubscriberDB dbname 'localhost:c:\db2.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'fbclient.dll';

 e=ibec_RecompileProcedure(SubscriberDB, '');
 e=ibec_RecompileTrigger(SubscriberDB,'')
 close connection SubscriberDB;
 end;

583

Data Comparer using cursors
The following example illustrates the use of cursors to compare two tables in different databases.

 execute ibeblock (
 ProcessInserts boolean = TRUE,
 ProcessUpdates boolean = TRUE,
 ProcessDeletes boolean = TRUE)
 returns (
 InsertedRecs integer = 0 comment ́ ´Records inserted´´,
 UpdatedRecs integer = 0 comment ´´Records updated´´,
 DeletedRecs integer = 0 comment ´´Records deleted´´,
 TotalTime double precision = 0 comment ́ ´Time spent (seconds)́ ´)
 as
 begin
 RecNum = 50000; -- How many records will be inserted into our test table

If the databases already exist we will not try to create them. Of course, this this approach does not apply to remote databases.

 if (not ibec_fileexists(´ ć:\MasterDB.fdb´´)) then
 create database ́ ´localhost:c:\MasterDB.fdb´´ user ´´SYSDBA´´ password ´´masterkey´´
 page_size 4096 sql_dialect 3

CLIENTLIB isn't mandatory if you're using the standard gds32.dll.

 clientlib ´´C:\Program Files\Firebird\bin\fbclient.dlĺ ´;

 if (not ibec_fileexists(´´c:\SubscriberDB.fdb´´)) then
 create database ́ ´localhost:c:\SubscriberDB.fdb´´ user ́ ´SYSDBÁ ´ password ́ ´masterkey´´
 page_size 4096 sql_dialect 3
 clientlib ´´C:\Program Files\Firebird\bin\fbclient.dlĺ ´;

Creating two named connections to our databases...

 create connection MasterDB dbname ́ ´localhost:c:\MasterDB.fdb´´
 password ́ ´masterkey´´ user ´´SYSDBA´´
 clientlib ́ ´C:\Program Files\Firebird\bin\fbclient.dll´´;

 create connection SubscriberDB dbname ´´localhost:c:\SubscriberDB.fdb´´
 password ́ ´masterkey´´ user ´´SYSDBA´´
 sql_dialect 3
 clientlib ́ ´C:\Program Files\Firebird\bin\fbclient.dl´´';

Now we shall create the IBE$$TEST_DATA table in eachdatabase and populate it with some data:

 CreateStmt =
 ´´create table IBE$$TEST_DATA (
 ID integer not null,
 ID2 varchar(20) not null,
 F_INTEGER integer,
 F_VARCHAR varchar(100),
 F_DATE date,
 F_TIME time,
 F_TIMESTAMP timestamp,
 F_NUMERIC numeric(15,2),
 F_BOOL char(1) check (F_BOOL in (´´T´´, ´´F´´)),
 F_BLOB blob sub_type 1,
 F_SEASON varchar(15) check(F_SEASON in (´´Sprinǵ ´, ́ ´Summeŕ ´, ́ ´Autumń ´, ́ ´Winteŕ ´)))´´;

IBE$$TEST_DATA will have a primary keyconsisting of two fields. This is just to demonstrate how to do this when a primary key consists of more than one field.

 AlterStmt =
 ´´alter table IBE$$TEST_DATA add constraint PK_IBE$$TEST_DATA primary key (ID, ID2)́ ´;

First we're working with the MasterDB:

 use MasterDB;

If IBE$$TEST_DATA doesn't exist in the database we must create it:

 if (not exists(select rdb$relation_name from rdb$relations where rdb$relation_name = ´´IBE$$TEST_DATA´´)) then
 begin

Creating the table itself...

 execute statement :CreateStmt;

DDL statements must be committed explicitly:

 commit;

...and create a primary key:

584

 execute statement :AlterStmt;
 commit;

So, we've just created the table. Now we should populate it with data. We will generate some random data for each field, and use an autoincrement for the first
primary key field value:

 i = 0;
 while (i < RecNum) do
 begin
 fid2 = ibec_randomstring(1,20,65,90);
 fint = ibec_random2(1, 100000);
 fvarc = ibec_randomstring(1,100,65,90);
 fdate = ibec_random2(20000,40000);
 ftime = ibec_random(0);
 ftimest = ibec_random2(20000,40000) + ibec_random(0);
 fnum = ibec_random2(1,40000) + ibec_random(0);
 fbool = ibec_randomval(´´T´´,́ ´F́ ´);
 fblob = ibec_randomstring(500, 1000, 0, 255);
 fseason = ibec_randomval(´´Spring'´ ,́ ́ ´Summeŕ ´, ́ ´Autumń ´, ́ ´Winteŕ ´);

 insert into IBE$$TEST_DATA values (:i, :fid2, :fint, :fvarc, :fdate, :ftime, :ftimest, :fnum, :fbool, :fblob, :fseason);
 i = i + 1;

We will displaya progress message after each500 records inserted. In the SQL Editor it will be displayed on the progress panel above the Code Editor.

 if (ibec_mod(i, 500) = 0) then
 begin
 ibec_progress(i || ´´ records inserted...´´);

Don't forget to commit!

 commit;
 end
 end

Once more COMMIT. Maybe there are some uncommited INSERTs...

 commit;
 end

Let's work with the second connection...

 use SubscriberDB;

If IBE$$TEST_DATA doesn't exist in the database we must create it:

 if (not exists(select rdb$relation_name from rdb$relations where rdb$relation_name = IBE$$TEST_DATA)) then
 begin
 execute statement :CreateStmt;

Don't forget to commit eachDDL statement explicitly!

 commit;
 execute statement :AlterStmt;
 commit;

The idea is that we fetch the data from the first database and insert it into IBE$$TEST_TABLE in the second database:

 use MasterDB;

 i = 0;
 k = 0;

FOR ... SELECT will select data from the first database...

 for select * from IBE$$TEST_DATA
 into vals
 do
 begin

...and we will insert them into the second database:

 use SubscriberDB;
 k = k + 1; -- Just a counter...

Now we should modify some of the data. Otherwise we''ll have nothing to compare ;-)

 if (ibec_mod(k,100) <> 0) then

Each hundredth record will be skipped...

 begin
 if (ibec_mod(i,10) = 0) then

585

the 8th field of each tenthrecord will be changed to NULL...

 vals[7] = null;
 if (ibec_mod(i,30) = 0) then

...and the 10th field of each 30th record will be modified...

 vals[9] = ibec_randomstring(500, 1000, 0, 255);

Finally insert a record:

 insert into SubscriberDB.IBE$$TEST_DATA values :vals;
 i = i + 1;

After each500 inserted records we will displaya progress message. We will also commit after every 500 INSERTs:

 if (ibec_mod(i, 500) = 0) then
 begin
 ibec_progress(i || ́ ´records inserted...´´);
 commit;
 end
 end
 end

Once againCOMMIT...

 use SubscriberDB;
 commit;

Now we will insert some more data into the second database just to provide further discrepancies between the two tables...

 i = k + 1;
 while (i < (RecNum + 1000 + 1)) do
 begin
 fid2 = ibec_randomstring(1,20,65,90);
 fint = ibec_random2(1, 100000);
 fvarc = ibec_randomstring(1,100,65,90);
 fdate = ibec_random2(20000,40000);
 ftime = ibec_random(0);
 ftimest = ibec_random2(20000,40000) + ibec_random(0);
 fnum = ibec_random2(1,40000) + ibec_random(0);
 fbool = ibec_randomval(´´T́ ´,́ ´F´´);
 fblob = ibec_randomstring(500, 1000, 0, 255);
 fseason = ibec_randomval(´´Sprinǵ ´, ´´Summeŕ ´, ´´Autumń ´, ´´Winteŕ ´);

 insert into IBE$$TEST_DATA values (:i, :fid2, :fint, :fvarc, :fdate, :ftime, :ftimest, :fnum, :fbool, :fblob, :fseason);

 if (ibec_mod(i, 500) = 0) then
 begin
 ibec_progress(i || ´´records inserted...´´);
 commit;
 end
 i = i + 1;
 end
 commit;
 end

So, let's begin to compare data. Our goal is make the second IBE$$TEST_DATA a full copyof the first IBE$$TEST_DATA.

First of all we should get the primary keyof the reference table:

 use MasterDB;
 i = 0;
 for select i.rdb$field_name
 from rdb$relation_constraints rc, rdb$index_segments i, rdb$indices idx
 where (i.rdb$index_name = rc.rdb$index_name) and
 (idx.rdb$index_name = rc.rdb$index_name) and
 (rc.rdb$constraint_type = ´´PRIMARY KEY´´) and
 (rc.rdb$relation_name = ´´IBE$$TEST_DATA´´)
 order by i.rdb$field_position
 into fldname
 do
 begin
 PKFields[i] = fldname;
 i = i + 1;
 end

Now we need to get a list of remaining fields:

 SelStmt = ´´select rdb$field_name
 from rdb$relation_fields
 where (rdb$relation_name = ´´IBE$$TEST_DATA´´)´´;

Here we add a condition to exclude primary keyfields from the SELECT result:

 i = 0;
 HighDim = ibec_high(PKFields);

586

 for i = 0 to HighDim do
 SelStmt = SelStmt || ´´ and (rdb$field_name <> ´´ || ibec_trim(PKFields[i]) || ́ ´)´´;

We need the natural order of the fields...

 SelStmt = SelStmt || ´´ order by rdb$field_positioń ´;

Finally execute the SELECT statement just created and get an arrayof all non-PK fields:

 i = 0;
 for execute statement :SelStmt
 into :s
 do
 begin

Trim spaces, we don't need them...

 NonPKFields[i] = ibec_trim(:s);
 i = i + 1;
 end

Let's compose necessary statements:

 SelStmt will be used to retrieve data
 UpdStmt will be used to update the second table if two records differ:
 SelStmt = ´´´´;
 UpdStmt = ´´update ibe$$test_data set ́ ´;
 WhereClause = ´´ where ́ ´;

 HighDim = ibec_high(NonPKFields);
 for i = 0 to HighDim do
 begin
 SelStmt = SelStmt || NonPKFields[i];
 SelStmt = SelStmt || ´´, ´´;
 UpdStmt = UpdStmt || ibec_chr(13) || NonPKFields[i] || ´´ = :´´ || NonPKFields[i];
 if (i < HighDim) then
 UpdStmt = UpdStmt || ́ ´, ´´;
 end

Here we compose a WHERE clause with primary keyfields: WHERE (PK_FIELD1 = :PK_FIELD1) AND (PK_FIELD2 = :PK_FIELD2) AND ...

 HighDim = ibec_high(PKFields);
 for i = 0 to HighDim do
 begin
 SelStmt = SelStmt || ibec_trim(PKFields[i]);
 WhereClause = WhereClause || ´´(´´ || ibec_trim(PKFields[i]) || ´´ = :́ ´ || ibec_trim(PKFields[i]) || ´´)´´;
 if (i < HighDim) then
 begin
 SelStmt = SelStmt || ́ ´, ´´;
 WhereClause = WhereClause || ´´ and ´´;
 end
 end

 SelStmt = ´´select ´´ || SelStmt || ´´ from IBE$$TEST_DATA order by ´´;

 for i = 0 to HighDim do
 begin
 SelStmt = SelStmt || ibec_trim(PKFields[i]);
 if (i < HighDim) then
 SelStmt = SelStmt || ́ ´, ´´;
 end

 PKFieldCount = ibec_high(PKFields)+1;
 PKFieldIndex = ibec_high(NonPKFields)+1;

 StartTime = ibec_gettickcount(); -- Note the time...

 MasterCR = ibec_cr_OpenCursor(MasterDB, SelStmt);
 SubscriberCR = ibec_cr_OpenCursor(SubscriberDB, SelStmt);

Compose the INSERT statement:

 InsFields = ´´´´; InsValues = ´´´´;
 FldCount = ibec_cr_FieldCount(SubscriberCR);
 for i = 0 to (FldCount-1) do
 begin
 FldName = ibec_Trim(ibec_cr_FieldName(SubscriberCR, i));
 InsFields = InsFields || FldName;
 InsValues = InsValues || '´´:́ ´ || FldName;
 if (i < (FldCount-1)) then
 begin
 InsFields = InsFields || ´´, ́ ´;
 InsValues = InsValues || ´´, ́ ´;
 end
 end
 InsStmt = ´´insert into ibe$$test_data (´´ || InsFields || ´´) values (´´ || InsValues || ´´)´´;

 ibec_UseConnection(SubscriberDB);

587

 while (not (ibec_cr_Eof(MasterCR) and ibec_cr_Eof(SubscriberCR))) do
 begin
 CompResult = 0;
 if (ibec_cr_Eof(MasterCR)) then
 CompResult = 1;
 else if (ibec_cr_Eof(SubscriberCR)) then
 CompResult = -1;
 else
 begin
 ibec_cr_Fetch(MasterCR, MasterPK, PKFieldIndex, PKFieldCount);
 ibec_cr_Fetch(SubscriberCR, SubscriberPK, PKFieldIndex, PKFieldCount);
 CompResult = ibec_CmpRecords2(MasterPK, SubscriberPK);
 end

 if (ProcessUpdates and (CompResult = 0)) then
 begin
 ibec_cr_Fetch(MasterCR, MasterVals, 0, PKFieldIndex);
 ibec_cr_Fetch(SubscriberCR, SubscriberVals, 0, PKFieldIndex);
 CompResult = ibec_CmpRecords(MasterVals, SubscriberVals);
 if (CompResult <> -1) then
 begin
 UpdatedRecs = UpdatedRecs + 1;
 ibec_progress(´´Record must be updated...´´);
 ibec_cr_Fetch(MasterCR, MasterVals, 0, null);
 execute statement :UpdStmt || WhereClause values :MasterVals;
 end

 ibec_cr_Next(MasterCR);
 ibec_cr_Next(SubscriberCR);
 end
 else if (ProcessInserts and (CompResult < 0)) then
 begin

Redundant master record found. Insert it into the subscriber:

 InsertedRecs = InsertedRecs + 1;
 ibec_progress(´´Record must be inserted...́ ´);
 ibec_cr_Fetch(MasterCR, MasterVals, 0, null);
 execute statement :InsStmt values :MasterVals;
 ibec_cr_Next(MasterCR);
 end
 else if (ProcessDeletes and (CompResult > 0)) then
 begin

Redundant subscriber record found. Delete it.

 DeletedRecs = DeletedRecs + 1;
 ibec_progress(´´Record must be deleted...´´);
 ibec_cr_Fetch(SubscriberCR, SubscriberPK, PKFieldIndex, PKFieldCount);
 execute statement ́ ´delete from ibe$$test_data ´´ || WhereClause values :SubscriberPK;
 ibec_cr_Next(SubscriberCR);
 end;
 end

 ibec_cr_CloseCursor(MasterCR);
 ibec_cr_CloseCursor(SubscriberCR);

 commit;

Done. Close bothconnections:

 close connection MasterDB;
 close connection SubscriberDB;

Let's count the elapsed time...

 EndTime = ibec_gettickcount();
 TotalTime = (EndTime - StartTime) / 1000;
 suspend;
 end

See also:
Cursor functions

588

IBEBLOCK and Test Data Generator
The following IBEBlock creates a table named IBE$TEST_DATA and populates it with random data.

 execute ibeblock
 returns (info varchar(100))
 as
 begin
 RecNum = 10000;

 if (exists (select rdb$relation_name from rdb$relations where rdb$relation_name = 'IBE$$TEST_DATA')) then
 begin
 execute statement 'drop table IBE$$TEST_DATA';
 commit;
 end

 execute statement
 'create table IBE$$TEST_DATA (
 F_INTEGER integer,
 F_VARCHAR varchar(100),
 F_DATE date,
 F_TIME time,
 F_TIMESTAMP timestamp,
 F_NUMERIC numeric(15,2),
 F_BOOL char(1) check (F_BOOL in (´´T́ ´, ́ ´F́ ´)),
 F_BLOB blob sub_type 1,
 F_SEASON varchar(15) check(F_SEASON in (´´Spring´´, ´´Summer´´, ´´Autumn´´, ´´'Winteŕ ´)),
 F_RELS varchar(64))';
 commit;

 StartTime = ibec_gettickcount();

 i = 0;
 for select rdb$relation_name
 from rdb$relations
 into :rel_names
 do
 begin
 rels[i] = :rel_names;
 i = i + 1;
 end

 i = 0;
 while (i < RecNum) do
 begin
 fint = ibec_random2(1, 100000);
 fvarc = ibec_randomstring(1,100,65,90);
 fdate = ibec_random2(20000,40000);
 ftime = ibec_random(0);
 ftimest = ibec_random2(20000,40000) + ibec_random(0);
 fnum = ibec_random2(1,40000) + ibec_random(0);
 fbool = ibec_randomval('T','F');
 fblob = ibec_randomstring(500, 1000, 0, 255);
 fseason = ibec_randomval('Spring', 'Summer', 'Autumn', 'Winter');
 frel = rels[ibec_random2(0,ibec_high(rels))];

 insert into IBE$$TEST_DATA values (:fint, :fvarc, :fdate, :ftime, :ftimest, :fnum, :fbool, :fblob, :fseason, :frel);
 i = i + 1;

 if (ibec_mod(i, 500) = 0) then
 begin
 ibec_progress(i || ' records inserted...');
 commit;
 end
 end

 commit;

 EndTime = ibec_gettickcount();
 info = 'Total time: ' || ((EndTime - StartTime) / 1000) || ' seconds';
 suspend;
 info = 'Per record: ' || ((EndTime - StartTime) / 1000 / RecNum) || ' seconds';
 suspend;
 end

See also:
Test Data Generator

589

Joining tables from different databases
The following example illustrates how to join two tables from different databases:

 execute ibeblock (iii integer, ivc varchar(100))
 returns (id integer, ename varchar(100), company varchar(100))
 as
 begin

 -- drop database 'localhost/3060:c:\db1.fdb' user 'SYSDBA' password 'masterkey' clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 -- drop database 'localhost/3060:c:\db2.fdb' user 'SYSDBA' password 'masterkey' clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create database 'localhost/3060:c:\db1.fdb' user 'SYSDBA' password 'masterkey'
 page_size 4096 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create database 'localhost/3060:c:\db2.fdb' user 'SYSDBA' password 'masterkey'
 page_size 4096 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create connection db1 dbname 'localhost/3060:c:\db1.fdb'
 password 'masterkey' user 'SYSDBA'
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create connection db2 dbname 'localhost/3060:c:\db2.fdb'
 password 'masterkey' user 'SYSDBA'
 sql_dialect 3
 clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 use db1;

 vstmt = 'create table "employees" (' || '
 id integer not null primary key,
 full_name varchar(100),
 company_id integer)';

 execute statement :vstmt;

 commit;

 use default;

 select count(*) from help_items into :icount;

 use db1;

 insert into "employees" (id, full_name, company_id) values (1, 'Alexander Khvastunov', 2);
 insert into "employees" (id, full_name, company_id) values (2, 'Bill Gates', 1);
 insert into "employees" (id, full_name, company_id) values (3, 'John Doe', NULL);
 insert into "employees" (id, full_name, company_id) values (4, 'Vladimir Putin', 3);
 insert into "employees" (id, full_name, company_id) values (5, 'Somebody', 15);

 use db2;

 execute statement
 'create table companies (
 id integer not null primary key,
 company_name varchar(100))';

 commit;

 insert into companies (id, company_name) values (1, 'Microsoft');
 insert into companies (id, company_name) values (2, 'HK-Software');
 insert into companies (id, company_name) values (3, 'The Kremlin?');

 commit;

 use db1;

 for execute statement 'select id, full_name, company_id from "employees"'
 into :id, :ename, :cid
 do
 begin
 use db2;

 company = NULL;

 select company_name from companies
 where id = :cid
 into :company;

 suspend;
 end

 close connection db1;
 close connection db2;
 end

590

Recreating indices 1
The following example illustrates how to recreate database indices:

 execute ibeblock
 returns (info varchar(1000))
 as
 begin
 i = 0;
 for select i.rdb$index_name, i.rdb$relation_name, i.rdb$unique_flag,
 i.rdb$index_inactive, i.rdb$index_type
 from rdb$indices i
 left join rdb$relation_constraints rc on (i.rdb$index_name = rc.rdb$index_name)
 where (i.rdb$system_flag is null) and (rc.rdb$index_name is null)
 into :IdxName, :IdxRelName, :IdxUnique, :IdxInactive, :IdxType
 do
 begin
 sFields = ´´;
 for select rdb$field_name from rdb$index_segments
 where rdb$index_name = :IdxName
 order by rdb$field_position
 into :ifields
 do
 begin
 if (sFields <> ´´) then
 sFields = sFields || ', ';
 sFields = sFields || ibec_formatident(ibec_trim(ifields));
 end
 DropStmt[i] = 'drop index ' || ibec_formatident(ibec_trim(IdxName));
 CreateStmt[i] = 'create ' || ibec_iif(IdxUnique = 1, 'unique ', ´´) || ibec_iif(IdxType = 1, 'descending ', ́ ´) ||
 ' index ' || ibec_formatident(ibec_trim(IdxName)) ||
 ' on ' || ibec_formatident(ibec_trim(IdxRelName)) || ' (' || sFields || ')';
 i = i + 1;
 end
 i = 0;
 while (i <= ibec_high(DropStmt)) do
 begin
 s = DropStmt[i];
 info = s;
 suspend;
 ibec_progress(info);
 execute statement :s;
 commit;

 s = CreateStmt[i];
 info = s;
 suspend;
 ibec_progress(info);
 execute statement :s;
 commit;

 i = i + 1;
 end
 end

See also:
Firebird for the Database Expert: Episode 1 - Indexes
Recreating Indices 2

591

Recreating indices 2
The following example illustrates how to recreate database indices using AS DATASET:

 execute ibeblock
 returns (info varchar(1000))
 as
 begin
 select i.rdb$index_name, i.rdb$relation_name, i.rdb$unique_flag,
 i.rdb$index_inactive, i.rdb$index_type
 from rdb$indices i
 left join rdb$relation_constraints rc on (i.rdb$index_name = rc.rdb$index_name)
 where (i.rdb$system_flag is null) and (rc.rdb$index_name is null)
 as dataset ds_indices;

 while (not ibec_ds_eof(ds_indices)) do
 begin
 IdxName = ibec_trim(ibec_ds_getfield(ds_indices,0));
 IdxRelName = ibec_trim(ibec_ds_getfield(ds_indices,1));
 IdxUnique = ibec_ds_getfield(ds_indices,2);
 IdxInactive = ibec_ds_getfield(ds_indices,3);
 IdxType = ibec_ds_getfield(ds_indices,4);

 sFields = ´´;
 for select rdb$field_name from rdb$index_segments
 where rdb$index_name = :IdxName
 order by rdb$field_position
 into :IdxField
 do
 begin
 IdxField = ibec_trim(IdxField);
 if (sFields <> ´´) then
 sFields = sFields || ', ';
 sFields = sFields || ibec_formatident(IdxField);
 end

 DropStmt = 'drop index ' || ibec_formatident(IdxName);
 CreateStmt = 'create ' || ibec_iif(IdxUnique = 1, 'unique ', ´´) || ibec_iif(IdxType = 1, 'descending ', ´´) ||

 ' index ' || ibec_formatident(IdxName) ||
 ' on ' || ibec_formatident(IdxRelName) || ' (' || sFields || ')';

 info = DropStmt;
 suspend;
 ibec_progress(info);
 execute statement :DropStmt;
 commit;

 info = CreateStmt;
 suspend;
 ibec_progress(info);
 execute statement :CreateStmt;
 commit;

 ibec_ds_next(ds_indices);
 end

 close dataset ds_indices;
 end

See also:
Firebird for the Database Expert: Episode 1 - Indexes
Recreating Indices 1

592

Building an OLAP cube
The following illustrates the constructionof an OLAP cube:

 execute ibeblock
 as
 begin
 SelectSQL = 'select rf.rdb$relation_name, f.rdb$field_type, f.rdb$field_length, f.rdb$field_precision
 from rdb$relation_fields rf, rdb$fields f
 where rf.rdb$field_source = f.rdb$field_name';

 vDimensions[0] = 'FieldName=RDB$RELATION_NAME; Alias="Table Name"';
 vDimensions[1] = 'FieldName=RDB$FIELD_TYPE; Alias="Field Type';

 vMeasures[0] = 'FieldName=RDB$FIELD_TYPE; Alias="Field Count"; CalcType=ctCount; Format=0';
 vMeasures[1] = 'FieldName=RDB$FIELD_LENGTH; Alias="Total Length"; CalcType=ctSum; Format=0';
 vMeasures[2] = 'FieldName=RDB$FIELD_PRECISION; Alias="Avg Precision"; CalcType=ctAverage';

Build and save cube in binary format:

 ibec_BuildCube('C:\test_cub.cub', SelectSQL, vDimensions, vMeasures, null);

Build and save cube in XML format:

 ibec_BuildCube('C:\test_cub.xml', SelectSQL, vDimensions, vMeasures, null);
 end

593

Inserting files into a database
IBEBlock can be used to insert files extremely simply and quickly into your database:

 execute ibeblock
 as
 begin
 MyVar = ibec_LoadFromFile(C:\f.jpg);
 insert into ... values (..., :MyVar);
 commit;
 end

Another possible way is to use different SET BLOBFILE statements before eachINSERT/UPDATE statement:

 SET BLOBFILE 'C:\f.jpg';
 INSERT INTO ... VALUES (..., :h00000000_FFFFFFFF);
 SET BLOBFILE 'C:\f2.jpg';
 INSERT INTO ... VALUES (..., :h00000000_FFFFFFFF);
 SET BLOBFILE 'C:\f3.jpg';
 INSERT INTO ... VALUES (..., :h00000000_FFFFFFFF);

See also:
Inserting file data into a database

594

Inserting file data into a database
The following script should be executed in the IBExpert Script Executive or with IBEScript.

 set names win1251;
 set sql dialect 3;
 set clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create database 'localhost/3060:D:\allscripts.fdb'
 user 'SYSDBA' password 'masterkey'
 page_size 8192 default character set WIN1251;

 create generator gen_script_id;

 create table scripts (
 ID INTEGER NOT NULL PRIMARY KEY,
 FILENAME VARCHAR(2000),
 SCRIPT_TEXT BLOB SUB_TYPE TEXT);

 create trigger script_bi for scripts
 active before insert position 0
 as
 begin
 if (new.id is null) then
 new.id = gen_id(gen_script_id, 1);
 end;

 execute ibeblock
 as
 begin
 ibec_progress('Searching for script files...');
 files_count = ibec_getfiles(files_list, 'D:\', '*.sql',_gfRecursiveSearch + __gfFullName);

 if (files_count > 0) then
 begin
 i = 0;
 while (i < ibec_high(files_list)) do
 begin
 file_name = files_list[i];
 file_size = ibec_filesize(file_name) / 1024 / 1024; -- File size in megabytes
 if (file_size < 10) then
 begin
 script_data = ibec_loadfromfile(file_name);
 ibec_progress('Adding script file ' || :file_name);
 insert into scripts (filename, script_text) values (:file_name, :script_data);
 commit;
 end
 i = i + 1;
 end
 end
 end;

See also:
Inserting files into a database

595

Importing data from a CSV file
The following example creates a simple comma-separated values (CSV) file and imports its data into a database:

 execute ibeblock
 returns (outstr varchar(100))
 as
 begin

First, let's create a simple CSV-file with some data:

 FS = ibec_fs_OpenFile('C:\MyData.csv', __fmCreate);
 if (not FS is null) then
 begin
 s = '1:John:Doe:M';
 ibec_fs_Writeln(FS, s);
 s = '2:Bill:Gates:M';
 ibec_fs_Writeln(FS, s);
 s = '3:Sharon:Stone:F';
 ibec_fs_Writeln(FS, s);
 s = '4:Stephen:King:M';
 ibec_fs_Writeln(FS, s);
 ibec_fs_CloseFile(FS);
 end

If table IBE$$TEST_PEOPLE exists we'll drop it:

 if (exists(select rdb$relation_name from rdb$relations where rdb$relation_name = 'IBE$$TEST_PEOPLE')) then
 begin
 s = 'DROP TABLE IBE$$TEST_PEOPLE';
 execute statement s;
 commit;
 end

Let's create a new table that will store the imported data:

 s = 'CREATE TABLE IBE$$TEST_PEOPLE (
 ID integer,
 FIRST_NAME varchar(50),
 LAST_NAME varchar(50),
 SEX varchar(1))';
 execute statement s;
 commit;

 i = 0; (-- Just a counter of inserted records)
 FS = ibec_fs_OpenFile('C:\MyData.csv', __fmOpenRead);
 if (not FS is null) then
 begin
 while (not ibec_fs_Eof(FS)) do
 begin
 s = ibec_fs_Readln(FS);
 ValCount = ibec_ParseCSVLine(Vals, s, ́ ´, ':', __csvEmptyStringAsNull);
 INSERT INTO IBE$$TEST_PEOPLE (ID, FIRST_NAME, LAST_NAME, SEX) VALUES :Vals;
 commit;
 i = i + 1;
 end
 ibec_fs_CloseFile(FS);
 end

 outstr = i || ' records inserted into IBE$$TEST_PEOPLE';
 suspend;
 end

See also:
Create multiple CSV files from a script
Import CSV Files
INSERTEX (CSV file import)

596

Importing data from a file
1. Load the script into the Script Executive.
2. Make anynecessary modifications.
3. Press [F9] to execute the script.

Script

 set names win1251;
 set sql dialect 3;
 set clientlib 'C:\Program Files\Firebird\bin\fbclient.dll';

 create database 'localhost/3060:D:\allscripts.fdb'
 user 'SYSDBA' password 'masterkey'
 page_size 8192 default character set WIN1251;

 create generator gen_script_id;

 create table scripts (
 ID INTEGER NOT NULL PRIMARY KEY,
 FILENAME VARCHAR(2000),
 SCRIPT_TEXT BLOB sub_type text);

 create trigger script_bi for scripts
 active before insert position 0
 as
 begin
 if (new.id is null) then
 new.id = gen_id(gen_script_id, 1);
 end;

 execute ibeblock
 as
 begin
 ibec_progress('Searching for script files...');
 files_count = ibec_getfiles(files_list, 'D:\', '*.sql', __gfRecursiveSearch + __gfFullName);

 if (files_count > 0) then
 begin
 i = 0;
 while (i < ibec_high(files_list)) do
 begin
 file_name = files_list[i];
 if (ibec_filesize(file_name) < 10240000) then
 begin
 script_data = ibec_loadfromfile(file_name);
 ibec_progress('Adding script file ' || :file_name);
 insert into scripts (filename, script_text) values (:file_name, :script_data);
 commit;
 end
 i = i + 1;
 end
 end
 end;

Export data into DBF
The following illustrates use of the SELECT ... EXPORT AS ... INTO function:

 execute ibeblock
 as
 begin
 SELECT * FROM RDB$FIELDS
 EXPORT AS DBF INTO 'E:\TestExport.dbf'
 OPTIONS 'ConvertToDOS; LongStringsToMemo; DateTimeAsDate';

Creating a script from a Database Designer model file
The following IBEBlock illustrates how to create a script from a Database Designer Model file:

 execute ibeblock
 as
 begin
 FileName = 'C:\model.grc';
 if ibec_FileExists(FileName) then
 ibec_CreateModelScript(FileName, 'C:\model.sql', __msoDontQuoteIdents + __msoIncludeDescriptions);
 end

597

Creating an UPDATE script with domain descriptions
The following IBEBlock creates a script with UPDATE statements for all database domains that have a description:

 execute ibeblock
 as
 begin
 FHSQL = ibec_fs_OpenFile('E:\DomDescs.sql', __fmCreate);
 FHBlobs = ibec_fs_OpenFile('E:\DomDescs.lob', __fmCreate);
 if ((not FHSQL is null) and (not FHBlobs is null)) then
 begin
 ibec_fs_Writeln(FHSQL, 'SET BLOBFILE ´´E:\DomDescs.lob́ ´;');
 ibec_fs_Writeln(FHSQL, ́ ´);
 for select rdb$field_name, rdb$description
 from rdb$fields
 where (rdb$description is not null)
 order by 1
 into :FieldName, :FieldDesc
 do
 begin
 if (FieldDesc <> ´´) then
 begin
 FieldName = ibec_Trim(FieldName);
 iOffs = ibec_fs_Position(FHBlobs);
 iLen = ibec_fs_WriteString(FHBlobs, FieldDesc);
 sParamName = ':h' || ibec_IntToHex(iOffs, 8) || '_' || ibec_IntToHex(iLen, 8);
 UpdStmt = 'UPDATE RDB$FIELDS' || ibec_Chr(13) || ibec_Chr(10) ||
 'SET RDB$DESCRIPTION = ' || :sParamName ||
 ibec_Chr(13) || ibec_Chr(10) ||
 'WHERE (RDB$FIELD_NAME = ´´' || FieldName || ´´');';
 ibec_fs_Writeln(FHSQL, UpdStmt);
 ibec_fs_Writeln(FHSQL, ´´);
 end
 end
 ibec_fs_Writeln(FHSQL, 'COMMIT WORK;');
 ibec_fs_CloseFile(FHSQL);
 ibec_fs_CloseFile(FHBlobs);
 end
 commit;
 end;

IBEBlock User Forms
1. Copy all IBEBlocks into a separate directory.
2. OpenTableDDL.ibeblock and change the path to FldTypeHTML.ibeblock in the first statement.
3. Load RunMe.ibeblock into the SQL Editor.
4. Press [F9] to execute the block.

The sample IBEBlocks include:

FldTypeHTML.ibeblock
InputForm.ibeblock
TableDDL.ibeblock
RunMe.ibeblock

See also:
User Form functions

598

FldTypeHTML.ibeblock
 execute ibeblock (
 FType integer,
 FSubType integer,
 FLen integer,
 FScale integer,
 FSegmentSize integer,
 FCharLen integer,
 FPrecision integer,
 SQLDialect integer = 3)
 returns (TypeAsString varchar(200))
 as
 begin
 TypeAsString = ´´;
 if ((FCharLen = 0) or (FCharLen is NULL)) then
 FCharLen = FLen;

 if (FType = 261) then
 TypeAsString = 'BLOB SUB_TYPE ' || FSubType || ' SEGMENT SIZE ' || FSegmentSize;
 else if (FType = 14) then
 TypeAsString = 'CHAR(' || FCharLen || ')';
 else if (FType = 37) then
 TypeAsString = 'VARCHAR(' || FCharLen || ')';
 else if (FType = 12) then
 TypeAsString = 'DATE';
 else if (FType = 13) then
 TypeAsString = 'TIME';
 else if (FType = 35) then
 begin
 if (SQLDialect = 3) then
 TypeAsString = 'TIMESTAMP';
 else
 TypeAsString = 'DATE';
 end
 else if (FType in (7, 8, 27, 16)) then
 begin
 if ((FScale < 0) or (FSubType = 1) or (FSubType = 2)) then
 begin
 if (FSubType = 2) then
 TypeAsString = 'DECIMAL';
 else
 TypeAsString = 'NUMERIC';

 sPrec = FPrecision;
 if (FPrecision is NULL) then
 begin
 if (FType = 7) then
 sPrec = '4';
 else if (FType = 8) then
 sPrec = '9';
 else if (FType = 27) then
 sPrec = '15';
 else if (FType = 16) then
 sPrec = '18';
 end
 else
 sPrec = FPrecision;
 TypeAsString = TypeAsString || '(' || sPrec || ',' || (FScale * -1) || ')';
 end
 else if (FType = 7) then
 TypeAsString = 'SMALLINT';
 else if (FType = 8) then
 TypeAsString = 'INTEGER';
 else if (FType = 27) then
 TypeAsString = 'DOUBLE PRECISION';
 else if (FType = 16) then
 TypeAsString = 'BIGINT';
 end
 else if (FType = 10) then
 TypeAsString = 'FLOAT';
 suspend;
 end

See also:
User Form functions

599

InputForm.ibeblock
 execute ibeblock (
 returns (htmlpage blob)
 as
 begin
 htmlpage = '<SCRIPT> function ShowDDL(){location.href = "TableChanged"
 this.focus()}</SCRIPT>';
 htmlpage = htmlpage || '<P>Select a table from the list below to get its DLL:</P>
 <SELECT ID="TableSelect" OnChange="ShowDDL()">';
 for select rdb$relation_name, rdb$relation_id from rdb$relations
 order by rdb$relation_name
 into :rel_name, :rel_id
 do
 begin
 rel_name = ibec_Trim(rel_name);
 htmlpage = htmlpage || ibec_chr(13) || ibec_chr(10) || ' <option value="' || :rel_id || '">' || rel_name || '</OPTION>';
 end
 htmlpage = htmlpage || ibec_chr(13) || ibec_chr(10) || '</SELECT>';
 htmlpage = htmlpage || '<P></P><P ID="FAKE">';
 end

See also:
User Form functions

600

TableDDL.ibeblock
 execute ibeblock (
 Frm variant,
 Op variant)
 as
 begin
 FldType = ibec_LoadFromFile('E:\IBEBlocks\FldTypeHTML.ibeblock');

 TableID = ibec_uf_GetElementAttribute(Frm, 'TableSelect', 'value', 0);
 sDDL = ´´;
 if (TableID is not null) then
 begin
 select rdb$relation_name from rdb$relations where rdb$relation_id = :TableID into :sTableName;
 sTableName = ibec_trim(sTableName);
 sDDL = 'CREATE TABLE ' || sTableName || '(' || ibec_Chr(13) || ibec_chr(10);

 for select rf.rdb$field_name, rf.rdb$field_source, rf.rdb$field_position,
 f.rdb$field_type, f.rdb$field_length, f.rdb$field_scale,
 f.rdb$field_sub_type, f.rdb$field_precision, f.rdb$character_length,
 f.rdb$segment_length, rf.rdb$null_flag, chr.rdb$character_set_name
 from rdb$relation_fields rf, rdb$relations r, rdb$fields f
 left join rdb$character_sets chr on (f.rdb$character_set_id = chr.rdb$character_set_id)
 where (rf.rdb$relation_name = r.rdb$relation_name) and
 (rf.rdb$field_source = f.rdb$field_name) and
 (r.rdb$relation_id = :TableID)
 order by 2
 into :FieldName, :fDomain, :FieldPos, :fType, :fLen, :fScale, :fSubType, :fPrec, fCharLen,
 :fSegLen, :fNullFlag, :fCharset
 do
 begin
 sType = ibec_trim(fDomain);
 IsDomainBased = FALSE;
 if (ibec_Copy(sType, 1, 4) <> 'RDB$') then
 IsDomainBased = TRUE;
 execute ibeblock FldType(:fType, :fSubType, :fLen, :fScale, :fSegLen, :fCharLen, :fPrec, 3)
 returning_values :FieldType;
 sType = ibec_IIF(IsDomainBased, sType, FieldType);

 if (fNullFlag = 1) then
 sType = sType || ' NOT NULL';

 if (((fType = 37) or (fType = 14) or (fType = 261)) and (IsDomainBased = FALSE) and (fCharset is not NULL)) then
 begin
 sType = sType || ' CHARACTER SET ' || ibec_trim(fCharset);
 end
 sType = ibec_IIF(IsDomainBased, sType || ' <I>/* ' || FieldType || ' */</I> ', sType);
 sDDL = sDDL || ' ' || ibec_trim(FieldName) || ' ' || sType || ',' || ibec_Chr(13) || ibec_chr(10);
 suspend;
 end
 iLen = ibec_Length(sDDL) - 3;
 sDDL = ibec_Copy(sDDL, 1, iLen);
 sDDL = sDDL || ');';
 end

 OldData = ibec_uf_GetFormData(Frm);
 iPos = ibec_Pos('<P ID="FAKE">', OldData);
 if (iPos > 0) then
 OldData = ibec_Copy(OldData, 1, iPos + 12);

 sDDL = OldData || '<P>The DDL of the selected table is:</P><P></P><PRE>' || sDDL || '</DDL>';

 ibec_uf_SetFormData(Frm, sDDL);
 ibec_uf_SetElementAttribute(Frm, 'TableSelect', 'value', TableID, 0);
 end

See also:
User Form functions

601

RunMe.ibeblock
 execute ibeblock (
 CodeDir varchar(1000) = 'E:\IBEBlocks\' comment 'Path to necessary IBEBlocks')
 as
 begin

 FrmBlock = ibec_LoadFromFile(CodeDir || 'TableDDL.ibeblock');

 Block1 = ibec_LoadFromFile(CodeDir || 'InputForm.ibeblock');
 execute ibeblock Block1 returning_values :MyPage;

 MyFrm = ibec_uf_CreateForm(MyPage);
 if (MyFrm is not null) then
 begin
 Res = ibec_uf_ShowForm(MyFrm, 'Caption="Select table from the list below"; Top=100; Height=600; BarTitle="Super Puper
Form!"', FrmBlock);
 end
 end

See also:
User Form functions

602

Performing a daily backup of the IBExpert User Database
The following example demonstrates the usage of ibec_reg_xxx functions to perform a daily backup of the IBExpert User Database:

 execute ibeblock
 as
 begin
 CurrentDate = ibec_Date();

 reg = ibec_reg_Open(__HKEY_CURRENT_USER, 0);
 try
 if (ibec_reg_OpenKey(reg, 'Software\HK Software\IBExpert\CurrentData', FALSE)) then
 begin
 try
 UDBLastBackupDate = ibec_reg_ReadDate(reg, 'UDBLastBackupDate');
 if (UDBLastBackupDate = CurrentDate) then
 Exit;
 except
 end;
 UDBConnectString = ibec_reg_ReadString(reg, 'UDBConnectString');
 UDBClientLib = ibec_reg_ReadString(reg, 'UDBClientLib');
 UDBUserName = ibec_reg_ReadString(reg, 'UDBUserName');
 UDBPassword = ibec_reg_ReadString(reg, 'UDBPassword');
 end
 finally
 ibec_reg_Close(reg);
 end;

 if ((UDBConnectString is null) or (UDBConnectString = ´´)) then
 Exit;

 ibec_Progress('Starting backup of IBExpert User Database...');
 BackupDir = 'D:\Backups\IBExpert User Database\';
 ibec_ForceDirectories(BackupDir);

 ibec_DecodeDate(CurrentDate, iYear, iMonth, iDay);
 BackupFileName = BackupDir || iDay || ' || iMonth || ' || iYear || '.fbk';

 res = ibec_BackupDatabase(UDBConnectString, BackupFileName,
 'ClientLib=' || UDBClientLib || '; Password=' ||
 UDBPassword || '; User=' || UDBUserName,
 null);

 if (ibec_FileExists(BackupFileName)) then
 begin
 ibec_Progress('Compressing ' || BackupFileName || '...');
 res = ibec_Exec('"C:\Program Files\WinRAR\rar.exe" a "' || BackupFileName || '.rar" "' ||
 BackupFileName || '" -m5 -ri1', ́ ´, null);
 if (res = 0) then
 ibec_DeleteFile(BackupFileName);
 end

 if (res = 0) then
 begin
 reg = ibec_reg_Open(__HKEY_CURRENT_USER, 0);
 try
 if (ibec_reg_OpenKey(reg, 'Software\HK Software\IBExpert\CurrentData', FALSE)) then
 ibec_reg_WriteDate(reg, 'UDBLastBackupDate', CurrentDate);
 finally
 ibec_reg_Close(reg);
 end;
 end
 end

Disable and enable IBExpert features
Using this feature it is possible to disable all menu items, and blend only those in, whichyou wish the user to see. A particularly useful security feature!

execute ibeblock as begin
 ibec_DisableFeature(0); --disable all
 ibec_EnableFeature(1003); --enable Tools menu
 ibec_EnableFeature(2148); --enable menuitem tools-data analysis
end

The example above enables only the IBExpert Tools menu item, Data Analysis. The numbers quoted directlyafter the IBEBlock keyword can be found in the
IBExpert Tools menu, Localize IBExpert.

603

604

Retrieve all valid e-mail addresses from an input text
This IBEBlock retrieves all valid e-mail addresses from an input text (any_text):

 execute ibeblock (any_text varchar(10000))
 returns (email varchar(100))
 as
 begin
 re = ibec_re_Create('[_a-zA-Z\d\-\.]+@[_a-zA-Z\d\-]+(\.[_a-zA-Z\d\-]+)+');
 try
 Res = ibec_re_Exec(re, any_text);
 while (Res) do
 begin
 email = ibec_re_Match(re, 0);
 suspend;
 Res = ibec_re_ExecNext(re);
 end
 finally
 ibec_re_Free(re);
 end
 end

605

Working with POP3 servers
The following is an example of using the Functions for working with POP3 servers:

 execute ibeblock
 as
 begin
 CRLF = ibec_CRLF();

 ses = ibec_pop3_OpenSession('Host=mypop3.com; User=iam; Pass=12345');
 try
 --Alternative way to set pop3 session properties:
 --sHost = ibec_pop3_SetProperty(ses, 'Host', 'mypop3.com');
 --sUser = ibec_pop3_SetProperty(ses, 'UserName', 'iam');
 --sPass = ibec_pop3_SetProperty(ses, 'Password', '12345');
 --sPort = ibec_pop3_SetProperty(ses, 'Port', 'pop3');

 ibec_Progress('Connecting to mypop3...');
 if (ibec_pop3_ConnectAndAuth(ses)) then
 begin
 ibec_Progress('Retrieving Uidl...');
 Res = ibec_pop3_Uidl(ses);
 sResp = ibec_pop3_GetProperty(ses, 'Uidl');

 UidlItems = ibec_Explode(CRLF, sResp);
 foreach (UidlItems as UID key Idx skip nulls) do
 begin
 if (UID = '') then
 Continue;
 UidData = ibec_Explode(' ', UID);
 iMsgNum = ibec_Cast(UidData[0], __typeInteger);
 ibec_Progress('Getting message ' + UidData[1] + '...');
 Res = ibec_pop3_Retr(ses, iMsgNum);
 if (Res) then
 begin
 ibec_ForceDirectories('D:\Mails');
 MsgData = ibec_pop3_GetProperty(ses, 'MsgData');
 ibec_SaveToFile('D:\Mails\' + UidData[1], MsgData, 0);
 end;
 end;
 end;
 ibec_Progress('Quit...');
 ibec_pop3_Quit(ses);
 finally
 ibec_pop3_CloseSession(ses);
 end;
 end;

See also:
Functions for working with POP3 servers

606

IBExpertWebForms

IBExpertWebForms - The First Steps
What is required for using IBExpertWebForms?
How do I set up the database?
Whichcontrol elements are available in IBExpertWebForms?
How do I insert control elements in my IBExpertWebForm?
How do I create an event?
How do I handle the database components?
You would like more examples?

IBExpertWebForms Tutorials
If you are new to IBExpertWebForms, thenthe first three tutorials should help you get started:

IBExpertWebForms Tutorial Lesson 1 - Installation
IBExpertWebForms Tutorial Lesson 2 - MyFirst WebForm
IBExpertWebForms Tutorial Lesson 3 - Database driven WebForms

What is required for using IBExpertWebForms?
Since IBExpert version 2008.01.28 all IBExpert fully licensed versions, i.e. single, multiple, Site, Junior VAR and full VAR licenses, include our fully integrated
IBExpertWebForms module.

If you have a customer version of IBExpert, you are allowed to use IBExpertWebForms on your registered computer. If you have a Site License, you canuse
IBExpertWebForms on anycomputer in your company. If youhave a VAR or Junior VAR License, youare allowed to distribute IBExpertWebForms together
with your applications to your customers.

For details about purchasing or upgrading any of the IBExpert customer versions, please refer to http://ibexpert.net/ibe/pmwiki.php?n=Main.IBExpertLicenses.

With IBExpertWebforms you cancreate database-based web applications. Just place your VCL components in the integrated Form Designer, connect them
with your tables or queries as a data source using the integrated Object Inspector, and create your events as stored procedures inside your Firebird or
InterBase database.

The result is handled by a PHP script, which is used by the Apache web server on Windows, Linux or anyother operating system which supports Apache, PHP
and Firebird or InterBase.

The main advantage: youdo not need any know-how regarding Java script, HTML, Ajax, PHP, etc. to create your database web application. All operations are
done inside your database and you just need to learn some very simple extensions and rules based on your existing Firebird and InterBase knowledge.

How do I set up the database?
You can use IBExpertWebForms with any InterBase (6.0-2007) or Firebird Database (1.0-2.1). Everything youneed is automatically installed with the IBExpert
Trial or IBExpert Customer Version. This includes a fully functional Apache Web Server and PHP5.

The following example is shownbased on the IBExpertDemoDatabase, whichcan be found in C:\Program Files\HK-Software\IBExpert Demo Databases
\db1.sql.

If you want to create the same database, please copy rfunc.dll from this directory to your Firebird UDF directory before executing the db1.sql script in
IBExpert Tools menu/ Script Executive. To create demo data in the database, execute the procedure initially with the parameter 10000.

After registering and opening your database in IBExpert, click with the right mouse button on the database Scripts node and select NewWebForm. Confirm
the following dialog for creating the script table inside the database automatically.

This opens the Form Designer. First of all youshould allocate a new name (in the top right-hand corner of the dialog) for the IBExpertWebForm (e.g.
MyFirstIBEWebForm). Any alterations can be saved using the Save button.

607

http://ibexpert.net/ibe/pmwiki.php?n=Main.IBExpertLicenses

Here you cansee the Form Designer. This allows youto add several components to your IBExpertWebForm application. If youalready have experience with
an environment such as Delphi or VB, you will see that it is verysimilar.

608

Which control elements are available in IBExpertWebForms?
The IBExpertWebForms Form Designer has a component-oriented structure (similar to Delphi). Each component can be selected in the Form Designer and
positioned in the form itself. The components are grouped in four categories: Standard, System, DataAccess and DataControls.

Standard

System

ataAccess

ataControls

Under Standard you canfind all common components for the displayof texts, control elements for text input and selection elements, a PageControl for the
administrationof multi-page display areas, as well as a control element for the input of formatted texts (similar to WordPad). Under System, there is a Timer,
which cantrigger an event at regular intervals.

Under DataAccess and DataControls youcan find all components that work together with the database. The DataAccess components are pure database
components, such as Database Connection, Transaction Control, Dataset and Datasource. DataControls contains all visual database components. These
components can be used to displayand modify database contents.

How do I insert control elements in my IBExpertWebForm?
Important tips for the use of the Form Designer and the Object Inspector

As IBExpertWebForms is currently still in the development phase we would like to point out two problems:

1. When youclick on a component in the Form Designer, in order to, for example, edit a property, the cursor may occasionallyget "caught" on the mouse
cursor (recognizable by the thick black frame representation of the component, as is the case with drag 'n' drop operations). Should this occur simply
click the mouse a second time.

2. When a property or event in the Object Inspector is altered or created, the value is not immediatelysaved. A previously edited value is only saved
when you immediatelybriefly click on any other property directlyafter editing.

Click on the desired component, using the tabs Standard, System, DataAccess and DataControls in the Form Designer. Thenclick with the mouse on the
IBExpertWebForm where youwish this component to be positioned.

The first example shows the typical “Hello, World” Application. So we need 3 components, a TWFEdit, a TWFButton and a TWFLabel.

609

Onthe left-hand side of the Object Inspector, you can create and modify all properties and events of a selected component. For example, the text of a
TWFLabel component canbe modified using the property Caption, or the font modified using the TFont Properties Editor (select the property Font and then
click on …). The bject Inspector can be used to modify a whole range of properties and events.

610

How do I create an event?
Events are incidents that occur during runtime which are, for example, triggered by clicking on a button. A stored procedure in the database can be assigned
to each event. For example: in order to create an OnClick event for a TWFButton, go to the Events page in the Object Inspector, and simplydouble-click
OnClick. The Stored Procedure Editor is opened, and you canspecify the event using PSQL.

Double-click OnClick in the Object Inspector (Events page). The Stored Procedure Editor is opened, and youcan formulate the event using PSQL. If
necessary, deactivate the Lazy Mode in order to view the complete stored procedure.

As an example we will now display the contents of the input field, when the button is clicked on. For this we first need an input parameter for the stored
procedure, whichwe shall phrase as follows:

611

Now we need a returnparameter for the text element, whichcan be defined as follows:

We now need to make a statement in the stored procedure body, so that the contents of the input element can be allocated to the text element.

612

Finally the stored procedure needs to be compiled, by clicking on the following icon:

For the first test, close the procedure Editor after compiling and save the WebForm.

Now you cantest the form in the browser by pressing [Ctrl+F9]. This will display the Config dialog:

The default Port value is 3080. If youwant to use this application with a typicalhttp port, just change it to the standard port 80 before clicking OK. This will
change the configuration of your integrated Apache server to use this port. Please note: If this port is already in use by another application, change it to a free
port, for example 3080.

After changing the Apache configuration, IBExpert will automatically start your Web browser and show you this application.

After changing the text, just press the button WFButton1 and it will be shown in the WFLabel1.

613

614

How do I handle the database components?
In IBExpertWebForms there is a component bar, DataAccess, with a range of components with whichyou cancreate a database connection and start
database queries. These components are not visual, i.e. they cannot be seen in the web browser later. Another component bar, DataControls, canbe
subsequently used to edit data in the web browser if wished.

If you just want to work with table data in the current database, youdo not have to create the TWFDatabase and the TWFTransaction component, since an
instance which will be used in our example called CURRENT_DATABASE and CURRENT_TRANSACTION is automatically created.

To send a database query to the database or to specifya SELECTSQL for the display of data, create a TWFDataset component and connect this with the
Database and Transaction properties to the available instances.

To put a SELECT statement to the database, use the SelectSQL property. This opens the Property Editor, where you specifyany SELECT statement. You can
also use the IBExpert Query Builder (IBExpert Tools menu), to create SELECTSQLs. We will now use the following SELECT statement select first 10 * from
products and confirm with OK.

To test the query, double-click on the Active property. If the status changes from Active to True, the query is error-free and the properties Database and
Transactionhave beenset correctly; otherwise youwill receive a corresponding error message.

Now we need a TWFDataSource component, to obtaina data source for our visual database component in the component bar DataControls. Set the
property DataSet to WFDataset1.

615

After changing the dataset property, you should click on the Name property, so that the properties are stored. Finallywe can place components from the
DataControls onto the form.

In the following example a TWFDBNavigator, TWFDBEdit and a TWFDBGrid have been created:

The following lists the properties and their values, as defined to achieve the above result:

DBNavigator1
 DataSource=WFDataSource1

DBEdit1
 DataField=PRICE
 DataSource=WFDataSource1

DBGrid1
 DataSource=WFDataSource1

We still need a stored procedure to ensure that WFDataSet1 is opened, the moment the form is displayed in the web browser. For this we will select the Form
form1 and create an OnShowEvent procedure. Simply double click on the OnShowEvent and add the procedure source code as shown. This procedure
only has returnparameters and no input parameters.

616

The return parameter property may containany of the supported properties and methods of the available components. In the example the open method of the
WFDataset1 component is invoked. The return parameter, val, allows values for properties to be deposited. However in our example, valwas not used, as
we want to invoke a method.

Now start the WebForm againwith [F9]. This button hides the Config dialog and starts the new WebForm in your browser.

You would like more examples?

617

Download the Pizzashop Demo from http://www.ibexpert.com/download/IBExpertWebForms/pizza.zip.

After downloading pizza.zip, unpack it and do a restore with Firebird 2.0. We recommend storing the database on your local machine in a directory, for
example, c:\pizza\pizza.fdb (this path is hard coded in the database component, should youwish to change it).

Register the database in IBExpert and open the Pizza Shop form for a simple demo of the pizza web shop example or the hkx form for a more complex
example. We will add documentation in the near future.

If youwant to analyze the forms, just take a look at the table ibe$scripts.

618

http://www.ibexpert.com/download/IBExpertWebForms/pizza.zip

IBExpertBackupRestore

What is IBExpertBackupRestore?
Service description
Setup and usage
Configuring the database for a backup

What is IBExpertBackupRestore?
The IBExpertBackupRestore scheduler service is an comprehensive utility, providing automatic backup and restore facilities for Firebird and InterBase
databases with backup file compressioneven an option to automatically mail backup/restore log files.

This service is part of IBExpert KG IBExpert Developer Studio for Firebird and InterBase database development and administration.

Service Description
Using IBExpertBackupRestore it is possible to set up automatic backups for anynumber of databases, with separate backup, restore, schedule and log
mailing parameters for eachdatabase. The service is controlled by the HK-Software Services Control Center (SCC) utility, which canbe found in the IBExpert
Services menu.

Here youcan see the screenshot of the HK-Software SCC with the IBExpertBackup/RestoreScheduler configuration loaded. In the HK Services list tree view
you canactually see the service item with two tasks below it. Each task is a database backup/restore schedule configuration.

619

Setup and usage
1. Default task settings

1. Active
2. Backup and restore
3. Compress
4. Database connection configuration
5. Path to gbak.exe
6. Logging
7. Mail notification
8. Revolve backup count
9. Schedule

2. _ProcessPriority
3. _StatusRefreshInterval
4. Common service properties

Setup and usage
Start the HK-Software Services Control Center, found in the IBExpert Services menu, and select IBExpert Backup Restore in the HK services list.

We now need to configure the default task settings. We know that some parameters will remain the same for all further tasks (for example: path to gbak.exe,
SMTP settings, etc.), so we should configure those first.

Expand the DefaultTaskSettings item on the Service setup and control page.

The following lists the various default settings and options available:

Active
Backup and Restore
Compress
Database connection configuration
Path to gbak.exe
Logging
Mail Notification
Revolve Backup Count
Schedule

After configuring the default task settings, all new tasks will have this configurationwhen created. It is of course possible to alter specific options for individual
tasks.

Default task settings

Active

WhenTrue then the task just created will be active.

Backup and Restore

This contains the basic backup and restore settings, processed by gbak.exe. Also there are few settings specific to the HK service, such as:

BackupFolder: the folder where all backups will be stored
Restore/Enabled: when True, thenservice will restore a database from a successful backup file. This can be used to validate the backup file.
RestoreFolder: the folder to restore the database to, from the backup file just made.

620

If you need to perform any additional operations before/after the backup/restore (for example script execution, data validation, etc.) you mayuse the Actions
options in the IBExpertBackupRestore scheduler service. The screenshot below shows the corresponding sectionwith the BeforeBackup action expanded in
SCC on the Service setup and control page.

Imagine that you've configured this task to backup a database my_server:c:\my_database.gdb and username and password are SYSDBA/masterkey. The
BeforeBackup configuration example above means that before starting the database backup, the service will execute the command line:

 C:\My programs\DataCheck.exe my_server:c:\my_database.gdb SYSDBA masterkey

If you need to interrupt the backup/restore process because some data validation or other operation has failed, youcan use the InterruptOnFail optionof the
corresponding action. The execution of any action will be recognized as failed if the executed program sets the exit code not equal to 0 (zero).

The command line for each action may be configured using executable file parameters as well as with scheduler service macros. The macros will be replaced
with corresponding values.

Here a description of the macros:

Macro Value
%database Full connection string to source database.
%server Database server name.

%database_file Database file path.
%restored_database Full connection string to restored database.

%backup_file Path to backup file.
%role SQL role from DBConnectionParams.

%user Username from DBConnectionParams.
%password Password from DBConnectionParams.

To test the functionality of Actions you mayuse the special executable, DumpAction.exe, which only writes its command line to a log file (DumpAction.exe.log)
and sets the exit code necessary. The exit code for this executable should be configured using a template such as:

 DumpAction.exe -RESULT <integer_value>

For example, such a configurationof a BeforeRestore action will always stop the scheduler performing the restore, because the exit code of such an action
will be 2.

621

All actions with the corresponding results will be listed in the service report e-mail message as in the example shownbelow:

In the Backup / Options section you canconfigure the backup options as required by simply setting the corresponding items to True. The Verify options were
introduced in IBExpert version2008.08.08.

After that youwill see the selected items in square brackets [] under Backup / Options,

and the corresponding gbak command line parameters under Backup.

In the screenshots shown above youcan see the backup configuration specified with the No garbage collection and Ignore checksum options.

WhenRestore / Enabled is set to True, the IBExpertBackupRestore restore scheduler will perform a restore from the backup just made. This feature can be
useful if youwant to validate the backup file or wish to use the freshly restored database for better performance.

The restored database information collection functionalitiywas introduced in IBExpert version2008.08.08. Restore / Info can be used to execute up to 5
different queries, enabling you to obtainuseful information about the status of the database, for example, the record count of a particular table, the last logged
update timestamp or some special report. WhenCollectInfo is set to True, the restored database's main parameters, such as fle size, page size, pages count
etc., can be viewed.

622

In the Restore / Settings section youcan set up the desired restore parameters, such as restore folder, restore options, database page size, etc. For
example, if youwant to restore a database from freshbackup into C:\My_Folder, create a database file, if no such file yet exists in the restore folder, or
replace it if the file aleady exists. If you wish youmay also deactivate indices (DeactivateIndexes) to improve the performance of the restore. And perhaps you
wish to re-specify the page size (PageSize) of the restored database to 16384. The screenshot below displays the corresponding Restore/Settings
configuration:

If you want make a restore just to validate a fresh backup file, you probablydon’t need to store the restored database file. So it is evenpossible to configure the
IBExpertBackupRestore Scheduler to delete the restored database file following the restore. Just set the corresponding option to True.

Restore to an alternatative server

Backup and restore is veryresource-consuming operation. To help your main database server breathe more easily, youcan set the scheduler service to
perform restores on an alternative server. This can be done using the UseAlternateServer option found in the Restore parameters.

623

Whenthis option is enabled you can backup your database from one server and restore it to another.

Compress

If youwant to compress a successfully created backup file, youshould use this configuration section. You can also configure the service here to delete the
backup file, following the successful compression (DeleteBackupAfterCompress option).

To make the backup compression work you should set Enabled to True, and thenconfigure the appropriate compress settings. You can use the built-in ZIP
compressor or configure the service to run an external compressor exe file. Here is a screenshot of the compress settings configured to use the built-in ZIP
compressor:

Here is a screenshot of a configurationusing an external compressor (for example WinRAR):

The CompressCommandLine optioncan contain three macros, which will be replaced with the corresponding values when calling the compressor:

%backup Backup file name with extension.

%compressed Compressed file name = backup file name + extension.

%back_filename Backup filename without extension.

The extension is configured in CompressedFileExt.

Database connection configuration

The essential key to anydatabase manipulation (except moving it into the recycler!) is establishing the database connection. All necessary properties can be
configured in the DBConnectionParams section:

This is fairly self-explanatory; althoughshould yourequire detailed information regarding Firebird/InterBase database connection parameters, please refer to
the online IBExpert documentation.

624

Path to gbak.exe

The IBExpertBackupRestore Scheduler collaborates with gbak.exe to enhance the backup/restore tasks. So youneed to let the service know where this file
can be found:

Logging

It’s likelyyou’d like to have log files of your backup/restore operations. Those files may help you to understand what’s wrong with your database, should an error
occur during the backup/restore process. To enable such log files, just set the corresponding option to True, as shown below:

Mail notification

You may use the mail notification feature if you want to receive reports about the IBExpertBackupRestore Scheduler activity. The service sends an e-mail
message with log files attached when the backup/restore task is completed.

The MailLogOn option is used to define the situations, when log files should be mailed. For example, if you’d like to receive log files when a backup or restore
has failed, youshould specify the options as follows:

To use the mail notification feature, the Enabled parameter in the MailNotification sectionshould be set to True.

The IBExpertBackupRestore Scheduler uses a built-in SMTP client to send e-mails, so youneed to set up the SMTP parameters in the task configuration to
enable this to work properly. Simply double-click on the SmtpSettings option, to open the configuration dialog window.

In this dialog youshould set up the Sender, SMTP server configuration and one or more recipients.

Revolve backup count

The IBExpertBackup/RestoreScheduler works as a rotator when creating a new backup. If a new backup is successfully created, the oldest one will be
deleted. Such mechanics let youconfigure the service to store just n last backups. The n value can be configured in this option:

Schedule

625

So far youmay still be confused as to why we have decided to call this tool "a scheduler". Well, it’s quite simply because that’s just what it is!

Double-click on the Schedule option to openthe schedule configurationdialog window:

Daily schedule:

every day at the specified time.
every nth day, starting from date.
every given day of week.

Monthly schedule:

Everynth day of the selected months at the given time.

Custom schedule:

626

Selected days of every week of selected months at given time.

_ProcessPriority

This parameter can be set to Idle, Normal or High (the default is Idle).

_StatusRefreshInterval

Here the refresh interval in seconds can be specified (default value is 5).

Common service properties
The path to the executable file, hkIBRS.exe is displayed. You can specify the Startup type selecting an option from the drop-down list (options: Manual,
Automatic or Disabled).

The Service Status can be viewed at the bottom of the window, and the Start and Stop buttons used to manuallystart or stop the service.

Once you are sure you've configured your default settings as youneed them, don't forget to save your configuration by clicking the disk icon in the toolbar,
before moving on to configuring your individual databases for their backup.

627

Configuring the database for a backup
After configuring the default task settings, all new tasks will have the same configurationwhen created. You can of course alter specific options in the individual
tasks if wished.

Let’s configure the IBExpertBackupRestore Scheduler to backup our database:

1. Right-click on the IBExpert Backup Restore service’s item in the SCC. Then click Add task in the popup menu. After that youwill see the new task item
(Task 0) under the Backup Restore service’s item. You may rename it by clicking on the name simultaneously holding the [Ctrl] keydown. In the example
below youcan see a new task, renamed to Employee.

2. Configure the Actions (if any) and the Backup and Restore settings (backup folder, restore folder, page size, backup options and restore options) as shown
in the screenshot:

3. Setup the GBK file compress with the built-in ZIP compressor, as shown on the screenshot below:

Of course youcan also specifyan external compressor application of your choice. (Further information can be found in the previous chapter.)

4. Setup the database connection parameters and path to gbak.exe:

5. Set up the MailNotification and SMTP settings as required:

628

6. Set up the schedule for your local time + 5 minutes so that we can see this task running.

7. Set the Active property to True.

8. Save the service’s configuration by pressing the Save button in the SCC:

9. Run the IBExpertBackup/RestoreScheduler service by pressing the Run button in the SCC:

10. Now select the task in the HK services list, thenswitch to the Service runtime info page to see the task-related service activity:

Also, if you check your mail for the address configured in the SMTP settings, there should be a report message from the backup/restore service, provided of
course that you have specified mail notification of both a successful and unsuccessful backup:

629

In the backup folder you canfind fresh backup and backup/restore log files.

And in the restore folder the restored database.

A newindex.html is produced, if youhave specified information collection in the Restore list of parameters. This displays the main database information
and, if youhave specified queries, the queries list on the right-hand side.

Whenthe sample Top sales managers query is clicked on the report appears below:

630

Clicking the ShowSQL button displays the query:

631

IBExpertInstanceManager

What is the IBExpertInstanceManager?
Specify Firebird instances in 12 easysteps

What is the IBExpertInstanceManager?
IBExpertInstanceManager is a new module in the HK-Software Control Center. It allows you to install several instances of the Firebird server on one Windows
machine using different ports. Additional functions include monitoring and performance.

Using multiple instances of the Firebird server has numerous advantages, for example, using different SYSDBA passwords, using multiple CPUs more
effectively, or using old and new Firebird versions on one machine.

This service is part of IBExpert KG IBExpert Developer Studio for Firebird and InterBase database development and administration.

The IBExpert Junior VAR license or the VAR license entitles youto distribute the IBExpertInstanceManager with your application.

632

Specify Firebird instances in 12 easy steps
1. Be sure that there is already a Firebird instance installed on your machine using the default Firebird installer. Refer to the Download and install Firebird

chapter in the IBExpert documentation for instructions on how to install Firebird.

2. Install the new IBExpert version. The IBExpert documentation chapter, Download and install IBExpert, explains installationof the various IBExpert
versions in detail. If youprefer to install the HK-Software Services Control Center manually (without using the setup program) youshould take the
following steps:

Execute hkIM.exe /reinstall.
Put hkIMsvc.hks in the svc.data folder near your hkSCC.exe.

3. Start the Services-HK Software Services Control Center. In IBExpert you can find this in the IBExpert Services menu item, HK-Software Services
Control Center.

4. Select the IBExpertInstanceManager service. Right click on it and select Add task.

5. Click on this task on the left, and select the BaseService from the list of Firebird instances installed on your PC.

633

6. Set the port number for the Firebird instance youare going to create. All other instance configurationsettings will be generated automatically.

7. Setup mail notification if required. To use this feature, set the Enabled parameter in the MailNotification section to True.

The IBExpertInstanceManager uses a built-in SMTP client to send e-mails, so youneed to set up the SMTP parameters in the task configuration to
enable this to work properly. Simply double-click on the SmtpSettings option, to open the configurationdialog window.

634

In this dialog youshould set up the Sender, SMTP server configuration and one or more recipients.

1. The Schedule offers Daily, Monthly or Custom specifications. Double-click on the Schedule option to open the schedule configuration dialog window.

Daily schedule:

every day at the specified time.
every nth day, starting from date.
every given dayof week.

Monthly schedule:

635

Everynth day of the selected months at the given time.

Custom schedule:

Selected days of every week of selected months at given time.

9. Set up validation parameters if needed. Validation is simply a test connection to the new instance's security.fdb, using the instance's port number.

10. Set the task's Active parameter to True.

11. To rename the task, click on the task name with the [Ctrl] keypressed down.

636

12. When youare happy with your specifications, they canbe saved using the disk icon in the toolbar. Then youcan simply run the service. When properly
configured the running task should show runtime info on the first run. This can be viewed on the Service runtime info page.

637

IBExpertJobScheduler

... currently in work.

What is the IBExpertJobScheduler?
Setup and usage

...currently in work.

What is the IBExpertJobScheduler?
IBExpertJobScheduler is a new module in the HK-Software Control Center.

The IBExpert Junior VAR license or the VAR license entitles youto distribute the IBExpertJobScheduler with your application.

638

Setup and usage
1. Default task settings

1. Active
2. Database connection

configuration
3. Mail notification
4. Schedule
5. Workflow control

2. _ProcessPriority
3. _StatusRefreshInterval
4. Common service properties
5. Preparing a task

Setup and usage
Start the HK-Software Services Control Center, found in the IBExpert Services menu, and select IBExpert Job Scheduler in the HK services list.

We now need to configure the default task settings. As some parameters will remain the same for all further tasks (for example: SMTP settings), these should
be configured first.

Expand the DefaultTaskSettings item on the Service setup and control page.

The following lists the various default settings and options available:

Active
Database connectionconfiguration
Mail notification
Schedule
Workflow Control

After configuring the default task settings, all new tasks will have this configuration when created. It is of course possible to alter specific options for individual
tasks.

Default task settings

Active

When True then the task just created will be active (see illustrationabove).

Database connection configuration

The next step is to establish the database connection. All necessary properties canbe configured in the DBConnectionParams section:

639

This is fairly self-explanatory; althoughshould yourequire detailed information regarding Firebird/InterBase database connection parameters, please refer to
the online IBExpert documentation.

Mail notification

The mail notification feature sends reports concerning the IBExpertJobScheduler activity. The service sends an e-mail message with log files attached when
the job is completed.

To use this feature, set the Enabled parameter in the MailNotification section to True.

The IBExpertJobScheduler uses a built-in SMTP client to send e-mails, so you need to set up the SMTP parameters in the task configuration to enable this to
work properly. Simply double-click on the SmtpSettings option, to open the configurationdialog window.

In this dialog you should set up the Sender, SMTP server configuration and one or more recipients.

Schedule

Double-click on the Schedule option to openthe schedule configurationdialog window:

Daily schedule:

640

every day at the specified time.
every nth day, starting from date.
every given dayof week.

Monthly schedule:

Every nth dayof the selected months at the given time.

Custom schedule:

641

Selected days of every week of selected months at given time.

Workflow control

Here you canspecify what the IBExpertJobScheduler should do when it encounters an error.

_ProcessPriority
This parameter can be set to Idle, Normal or High (the default is Idle).

_StatusRefreshInterval
Here the refresh interval in seconds canbe specified (default value is 5).

Common service properties
The path to the executable file, hkJS.exe is displayed. You canspecify the Startup type selecting an option from the drop-down list (options: Manual,
Automatic or Disabled).

The Service Status can be viewed at the bottom of the window, and the Start and Stop buttons used to manually start or stop the service.

Whenyou are happy with your specifications, theycan be saved using the disk icon in the toolbar. After configuring the default task settings, all new tasks will
have the same configuration when created. You can of course alter specific options for individual tasks if wished.

Preparing a task
To create individual job schedules, younow need to create a task. Right-click on the IBExpert Job Scheduler service’s item in the SCC. Thenclick Add task in
the popup menu. After that you will see the new task item (Task 0) under the Job Scheduler service’s item. You may rename it by clicking on the name
simultaneously holding the [Ctrl] key down. In the example below you can see a new task, renamed to Employee.

642

Alter your default settings if necessary. Then youcan simply run the service.

643

IBExpertLive

What is IBExpertLive?
Download and install IBExpertLive
Using IBExpertLive
Keyboard shortcuts
Anhang IAvailable Films

What is IBExpertLive?
IBExpert KG has implemented a streaming system based on the Firebird database server, whichpublishes pictures and audio, as needed to view the
presentations from the 2004 and 2005 Firebird Conferences. We will also be adding IBExpert tutorial videos enabling youto learn more about working with
Firebird and InterBase with IBExpert.

IBExpertLive is part of the IBExpert Developer Studio. There is currently about 20GB of video data available, with around 100 hours of firebird-related
presentations from last two Firebird Conferences and other events.

To use IBExpertLive, youneed a firebird connection via Internet using port 13050 to our server on IP 80.237.154.78. If it does not work, please check your
firewall settings. For reporting anyother questions/problems regarding IBExpertLive, please use the following contact addresses: E-mail: ibexpertlive@
ibexpert.biz.

There might be some videos that are not working yet, even if theyare on the list. Please bear with us; we'll have everything up and running as soon as possible.

The download address is: www.ibexpert.com/ibexpertlive/IBExpertLive_setup.exe.

Download and install IBExpertLive
IBExpertLive is installed as default, when installing the one of the IBExpert customer versions. Alternatively download the IBExpertLive setup file from: http://
www.ibexpert.com/ibexpertlive/IBExpertLive_setup.exe, and save to your hard drive (e.g. C:\Program Files\HK-Software).

Start the setup.exe file and follow through the installation instructions.

Whenstarting IBExpertLive for the first time, you will need to request a password. Simply enter your valid e-mail address and check Request password:

Your password will be sent to the e-mail address specified in a matter of minutes!

There might be some videos that are not working yet, even if theyare on the list. Please bear with us; we'll have everything up and running as soon as possible.

Should youhave anyquestions or encounter any problems please send an e-mail to ibexpertlive@ibexpert.biz.

644

www.ibexpert.com/ibexpertlive/IBExpertLive_setup.exe
www.ibexpert.com/ibexpertlive/IBExpertLive_setup.exe,andsavetoyourharddrive
mailto:Shouldyouhaveanyquestionsorencounteranyproblemspleasesendane-mailtoibexpertlive@ibexpert.biz.

Using IBExpertLive
IBExpertLive is an extremely simple and self-explanatoryapplication.

Start IBExpertLive by agreeing with the Terms of Usage (checkbox option), and thenentering your valid e-mail and password. When starting IBExpertLive for
the first time, you will need to apply for a password:

Every time IBExpertLive is started following the Login, the application checks for any available updates whichare thenautomatically installed. In such a case
IBExpertLive restarts and it is necessary to log in again.

You will see the IBExpertLive control panel on the left, and the video screen to the right:

Using the IBExpertLive control panel is intuitive. There are however a number of hidden functions (please refer to Keyboard shortcuts for details).

1. Select the sessionof your choice from the Choose Video drop-down list, at the top of the control panel.

645

2. Click the Connect button to connect to the server.

3. Once the connection has successfully beenmade, streaming starts automatically. The status is displayed in the Info box. If problems are incurred
whilst attempting to make the connection, an error message appears.

4. Navigate the video using the upper row of directional buttons.

5. Use the Fullscreen button to switchbetween full screen mode and normal mode.

6. Adjust the image to fill the program window using the Stretch checkbox option.

7. The Proportional optioncan be used to adjust the image size in the program window proportionally to the image's side length.

Keyboard shortcuts
To make life easier, there are a few hidden keyboard shortcut functions in IBExpertLive:

[Ctrl + arrow to the left] Rewind

[Ctrl + arrow to the right] Fast forward

[Ctrl + upwards arrow] Back to the beginning

[Ctrl + downwards arrow] Spring to the end

Double-click on the video screen Switches betweennormal mode and full-screen mode

Space bar Stop / play

[F] Full screen / pause

646

Available Films
As films are being added all the time, please check the available sessions regularly using the IBExpertLive Choose Video pull-down list. All films are in either
the English or German language (recognizable by the film title).

Status April 2008
300 FBCON2007 A10 Jason Chapman - FB School eng SQL Basics

001 HK German Tutorial: Grundlagen SQL und Einrichtung IBExpert Demodatenbank
002 HK German Tutorial: Einfache Firebird SQL Befehle
003 HK German Tutorial: Tabellen mit SQL verknüpfen
004 HK German Tutorial: Where Bedingungen
005 HK German Tutorial: Erstellen einer eigenen Datenbank
006 HK German Tutorial: Tabellen erstellen
007 HK German Tutorial: Tabellen mit Fremdschlüssel erstellen
008 HK German Tutorial: Benutzer erstellen und Rechte vergeben
009 HK German Tutorial: Datenbank Parameter und Hintergrundwissen
010 HK German Tutorial: Tabellen abfragen, Indizes erstellenund SQL Performance vergleichen
011 HK German Tutorial: Auswirkungen langer Char Felder
012 HK German Tutorial: UDF benutzerdefinierte Funktionen einbinden
013 HK German Tutorial: IBExpert Demo Database Collection
014 HK German Tutorial: Database Designer Entity Relationship Modeling
016 HK German Tutorial: Erstellen eines triggerbasierenden Transaktionslogs
017 HK German Tutorial: Logging in IBExpert und Trigger in der Employee Datenbank
018 HK German Tutorial: Sprachelemente für Stored Procedures
019 HK German Tutorial: Rekursionen in Prozeduren und erste eigene Prozeduren
020 HK German Tutorial: Prozeduren entwickeln und optimieren
021 HK German Tutorial: Trigger entwickeln für Transaktionsprotokolle
022 HK German Tutorial: Views und Updatable Views
023 HK German Tutorial: Views für mehrere Tabellen
024 HK German Tutorial: Wie funktioniert Firebird intern? I
025 HK German Tutorial: Wie funktioniert Firebird intern? II
026 HK German Tutorial: Wie funktioniert Firebird intern? III
027 HK German Tutorial: Wie funktioniert Firebird intern? IV
028 HK German Tutorial: FBConnections, gfix, Cache und sonstige Parameter festlegen
029 HK German Tutorial: IBETransactionMonitor, Server Properties, Backup Restore, Logging, Quellcodemanagement
030 HK German Tutorial: IBExpertSQLMonitor, Firebird ODBC und MS Access, Export, IBEBlock ODBC
031 HK German Tutorial: IBExpert Spezialfunktionen, Plananalyzer, Selektivität,Kommandozeilenprogramme, External Files
032 HK German Tutorial: Installation und Vergleich FB15-FB20, Performanceanalyse, IBExpert Doku, Extract Metadaten, Datenbanken reparieren
033 HK German Tutorial: Alias.conf, firebird.conf, Temp Pfad und Dateien
034 HK German Tutorial: firebird.log, Freeadhocudf
035 HK German Tutorial: Demodatabase Transaktionslog, rfunc UDF, Replikation
036 HK German Tutorial: Internet Firebirdverbindung mit Zebedee
037 HK German Tutorial: Testdaten generieren, Performancemessung, Indizes, Plan, Selektivität
038 HK German Tutorial: Set Statistics, Indexoptimierung, order by, Fremschlüsselindizes
039 HK German Tutorial: Datenbankstatistik, Backup Restore Optimierung
040 HK German Tutorial: Trigger statt FK, MGA, Versionierung
041 HK German Tutorial: SQL,in,exists,updateable views,Performance, firebird.conf Konfiguration, lange Varchar, Cache
042 HK German Tutorial: external files,csvexport
043 HK German Tutorial: IBExpert Export
044 HK German Tutorial: CSV Import Insertex, Tabelle in andere Datenbank kopieren
045 HK German Tutorial: IBExpert.usr Menüs einschränken, Sprachanpassung
046 HK German Tutorial: mit ibeblock Metadatenextract per Kommandozeile automatisierenund mit DLL in eigene Programme integrieren
047 HK German Tutorial: Metadatenextract mit Daten, Blobunterstützung in Scripts
048 HK German Tutorial: ibeblock ODBC Zugriff, MS Access Datenbankeneinbinden,Daten vonODBC nach Firebird kopieren
049 HK German Tutorial: ibeblock Datenbankenverknüpfen
050 HK German Tutorial: Dateien importieren, Bilder importieren per Script
051 HK German Tutorial: Dateien per Script updaten
052 HK German Tutorial: Verbindungen über das Internet mit Zebedee verschlüsseln und komprimieren, Dyndns mit no-ip.com nutzen
053 HK German Tutorial: Performance Internetbetrieb vonDatenbankservern, Pingzeit,Route
054 HK German Tutorial: HK Services, Transaction Monitor
055 HK German Tutorial: Delphi BDE Applikationenauf IBObjects umstellenmit GReplace
056 HK German Tutorial: Datenbanken nachträglichCharacter Set und Dialekt konvertieren
057 HK German Tutorial: Extrahieren vonDaten und ausführen per DLL
058 HK German Tutorial: Applikation Optimieren durchEinsatz spezieller IBO Komponenten, IB_DSQL, IB_CURSOR
059 HK German Tutorial: Performancevergleich IBO Query, IBO Cursor, BDE Query etc.
060 HK German Tutorial: Performanceprobleme durch Autobackground Commit Close Openvermeiden, Master Detail
061 HK German Tutorial: Lazarus: OpenSource Delphi für Windows und Linux, Zeos, AvERP Open Source Warenwirtschaft, Datenmodellierung,
Laufzeitformular

110 FBCON2006 B01-Paul Ruizendaal - Solution Stacks Built on Firebird and PHP - Another Flame in the Lamp?
111 FBCON2006 C01-Milan Babuskov- Developing Cross Platform Aplications with Firebird and wxWidgets
112 FBCON2006 B02-Martijn Tonies - The Firebird System Tables
113 FBCON2006 C02-Mauritio Longo - Supporting Complex On Line Systems with Satellite Databases
114 FBCON2006 B03-Thomas Steinmaurer - Owner Migration the Easy Way
115 FBCON2006 C03-Andrew Morgan- Towards a Universal UDF Testing Framework
116 FBCON2006 B04-Björn Reimer/Dirk Baumeister - Firebird Clients and System Tables
117 FBCON2006 C04-Fikret Hasovic - Cross - Platform Development Using Lazarus
118 FBCON2006 A05-FirebirdFoundation - Opening and Welcome (just audio)

647

119 FBCON2006 A06-PaulReeves - Building Firebird on Windows and Linux
120 FBCON2006 B06-DmitrySibiryakov- Replicationwith IBReplicator
121 FBCON2006 C06-CarlosCantu - New ShutdownModes and Backups in Firebird 2.0
122 FBCON2006 A07-DmitryYemanov- Cost-based Optimization and Statistics
123 FBCON2006 B07-ErickSasse - N-Tier applications with Firebird and RemObjects DataAbstract
124 FBCON2006 C07-HolgerKlemt - Creating moderndatabase webaplications using Firebird, php and AJAX
125 FBCON2006 A08-IvanPrenosil - Data Types in Practice/Optimizing Counts(Dual Topics)
126 FBCON2006 B08-GaryFranklin/BillOliver - Real World Applications Using Firebird
127 FBCON2006 C08-AlexSkvirski - Firebird Connectivity Tools or is there anyPerformance loss out there?
128 FBCON2006 A09-RomanRokytskyy- External routines:interface, usage and possibilities
129 FBCON2006 B09-MauricioLongo - Applications with Morfik WebOS and Firebird
130 FBCON2006 C09-DmitriKouzmenko - Optimizing Server Performance
131 FBCON2006 A10-HolgerKlemt - Creating Transaction Logs in Interbase
132 FBCON2006 B10-MilanBabuskov - Managing Metadata Chaanges
133 FBCON2006 C10-GaryFranklin/BillOliver - Delivering and using the Vulcan embeddet Server as Part of SAS
134 FBCON2006 D11-VladislavHorsun - New SQL Features in coming Versions of Firebird
135 FBCON2006 B12-RomanRokytskyy- Jaybird new release new features
136 FBCON2006 C12-DmitriKouzmenko - Database Healthand Corruption

Roadshow Hamburg2006 Part1
Roadshow Hamburg2006 Part2

101 HK Presentation: Improving performance with IBExpert (Budapest 02/2005)
102 HK Presentation: A review of IBExpert's range of functions (Budapest 02/2005)

FDD 1
FDD 2

151 FBCON2005 Ann Harrison - Detecting correcting and preventing database corruption(FBC2005)
153 FBCON2005 Nando Dessena - Deploying Firebird transparentlyon Windows (FBC2005)
154 FBCON2005 Paul Reeves - From Basic to Advanced ISQL scripting (FBC2005)
150 FBCON2005 Andrew Morgan - Embedding and using sophisticated mathematics in Firebird (FBC2005)
155 FBCON2005 Fikret Hasovic - Opensource Delphi (FBC2005)
156 FBCON2005 LuizPaulo de Oliveira Santos - Firebird APIin Delphi Lazarus and Free Pascal (FBC2005)
157 FBCON2005 Jason Wharton - IB Objects for Newbies (FBC2005)
158 FBCON2005 LuizPaulo de Oliveira Santos - Techniques for migrating from MySQL to Firebird (FBC2005)
159 FBCON2005 Stefan Heymann - What Developers Should Know about Character Sets and Unicode etc (FBC2005)
160 FBCON2005 Lucas Franzen - STORED PROCEDURES (FBC2005)
152 FBCON2005 Evgeney Putilin - Firebird and Java Stored Procedures (FBC2005)
161 FBCON2005 Claus Heeg - Migration and integrationof other databases into Firebird using Cold Fusion (FBC2005)
162 FBCON2005 Holger Klemt - Setting Up a bidirectional Replicationbased on EXECUTE STATEMENT Commands (FBC2005)
163 FBCON2005 Paul Ruizendaal - Solution Stacks Built on Firebird and PHP - Another Flame in the LAMP (FBC2005)
164 FBCON2005 Pavel Cisar - Firebird Quality Assurance (FBC2005)
165 FBCON2005 Dmitri Kouzmenko - Firebird Performance Optimization for Different Applications (FBC2005)
166 FBCON2005 Thomas Steinmaurer - Audit Trails Transaction Log Redo with the IB LogManager product family (FBC2005)
167 FBCON2005 Milan Babuskov - The power of Firebird events (FBC2005)
168 FBCON2005 Martijn Tonies - The Firebird system tables (FBC2005)
169 FBCON2005 Kim Madsen - SOA using kbmMW (FBC2005)
170 FBCON2005 Daniel Magin - Developing DataBase ASP.net Applicationwith Delphi 2006 (FBC2005)
171 FBCON2005 Mauricio Longo - Dynamic Databases - A Conceptual Overview (FBC2005)
172 FBCON2005 Carlos Cantu - PSQL in Action (FBC2005)
173 FBCON2005 Jim Starkey- Configuring Firebird and Vulcan (FBC2005)
174 FBCON2005 Jim Starkey- Vulcan status features and goals (FBC2005)
175 FBCON2005 Arno Brinkman - Understanding the Optimizer I (FBC2005)
176 FBCON2005 Paul Beach Dmitry Yemanov- Firebird future development (FBC2005)
177 FBCON2005 Mauricio Longo - FireQ - Firebird Based Messaging Infrastructure (FBC2005)
178 FBCON2005 Roman Rokytskyy- JayBird - JCA/JDBC driver for Firebird (FBC2005)
179 FBCON2005 Roman Rokytskyy- JayBird - JCA/JDBC driver for Firebird (FBC2005)
180 FBCON2005 Lester Caine - Firebird on PHP Integrate or Abstract (FBC2005)
181 FBCON2005 Jeanot Bijpost - An introduction to Cathedron(FBC2005)
182 FBCON2005 Andrew Morgan - Creating and managing recursive structures (FBC2005)
183 FBCON2005 Holger Klemt - Server Performance - How to make your application run faster (FBC2005)
184 FBCON2005 Ann Harrison - First steps in performance tuning (FBC2005)
185 FBCON2005 Milan Babuskov - FlameRobin- administration tool for Firebird DBMS (FBC2005)
186 FBCON2005 Claus Heeg - Building ERP web applications based on Firebird and cold Fusion (FBC2005)
187 FBCON2005 Serg Vostrikov- Getting Started with FIBPlus (FBC2005)
188 FBCON2005 Arno Brinkman Dmitry Yemanov - Under the hood Data access paths (FBC2005)
189 FBCON2005 Pavel Cisar - Making your ownFirebird PowerTools with Python (FBC2005)
190 FBCON2005 Stefan Heymann - Using Firebird for Quality Management Software (FBC2005)
191 FBCON2005 Serg Vostrikov- Special FIBPlus features network traffic optimizationand FIBPlus Repository (FBC2005)
192 FBCON2005 Fikret Hasovic - Firebird in n-tier setup with Delphi and kbmMW (FBC2005)
193 FBCON2005 Jeanot Bijpost - From Model Driven Development to Model Driven Architectures (FBC2005)
194 FBCON2005 Alex Peshkov - New security features in Firebird 2.0 (FBC2005)
196 FBCON2005 Arno Brinkman - Understanding the Optimizer II (FBC2005)

202 FBCON2004 Helen Borrie - Creating a shop (the new Firebird Example Database) (FBC2004)
203 FBCON2004 Helen Borrie - Stocking the Shelves and Browsing the store (FBC2004)
204 FBCON2004 Arno Brinkmann - Understanding the Optimizer in Firebird (FBC2004)
205 FBCON2004 Arno Brinkmann - The Optimizer in SQL Examples (FBC2004)
206 FBCON2004 Pavel Cisar - Wrestling Firebird (FBC2004)
207 FBCON2004 Pavel Cisar - Firebird QA (FBC2004)

648

208 FBCON2004 Lucas Franzen - STORED PROCEDURES I(FBC2004)
209 FBCON2004 Lucas Franzen - STORED PROCEDURES II (FBC2004)
210 FBCON2004 Ann Harrison- Lock print (FBC2004)
211 FBCON2004 Frank Ingermann - Client Performance (FBC2004)
212 FBCON2004 Frank Ingermann - FBFreeDB (FBC2004)
213 FBCON2004 Holger Klemt - The Power of "Execute Statement" (FBC2004)
214 FBCON2004 Holger Klemt - corrupt Databases, examples and Solutions (FBC2004)
215 FBCON2004 Holger Klemt - Firebird performance Workshop (FBC2004)
216 FBCON2004 Manuel Morbitzer - PHP and Firebird (FBC2004)
217 FBCON2004 Manuel Morbitzer - Firebird and Visual Studio .NET (FBC2004)
218 FBCON2004 Paul Reeves - Building Firebird Installation Kits for Win32 (FBC2004)
219 FBCON2004 Paul Reeves - Firebird System Tables (FBC2004)
220 FBCON2004 Nicolay Samofatov- External tables (FBC2004)
221 FBCON2004 Nicolay Samofatov- new backup technology (FBC2004)
222 FBCON2004 Jim Starkey - Vulcan Architecture (FBC2004)
223 FBCON2004 Jim Starkey - Vulcan DesignGoals (FBC2004)
224 FBCON2004 Thomas Steinmaurer - Serverseitige Programmier-Techniken (FBC2004)
225 FBCON2004 Thomas Steinmaurer - Neuerungen in Firebird 1.5 (FBC2004)
226 FBCON2004 Martijn Tonies - AnIntroduction to Firebird for database developers (FBC2004)
227 FBCON2004 Martijn Tonies - The Firebird PSQL language (FBC2004)
228 FBCON2004 Jason Wharton- IBO and Firebird / IBO Advanced (FBC2004)
229 FBCON2004 Hilmar Brodner - AvERP IGrundlagen und Administration (FBC2004)
231 FBCON2004 Paul Ruizendaal - Moving applications from Oracle to Firebird (FBC2004)
232 FBCON2004 Artur Anjos - Using Firebird over the Internet (FBC2004)
233 FBCON2004 BastianMorbitzer - PHPtree - Firebird basierende PHP Anwendung für Dokumentationund Hilfssystem (FBC2004)
234 FBCON2004 BastianMorbitzer - The Future of a global Firebird Online Documentation System (FBC2004)
200 FBCON2004 Frank Ingermann - The Sparkey of the year Event (FBC2004)
201 FBCON2004 Ann Harrison- QLI (FBC2004)
235 FBCON2004 Lester Caine - PHP - Life after Builder6 (FBC2004)
236 FBCON2004 Marc o Dunehue - Firebird and Java I(FBC2004)
237 FBCON2004 Marc o Donehue - Firebird and Java II (FBC2004)
238 FBCON2004 Bernd UA - Delphi 8 and Firebird .NET Provider (FBC2004)

649

IBExpertSQLMonitor

What is IBExpertSQLMonitor?
Download and install IBExpertSQLMonitor
IBExpertSQLMonitor Workflow Scheme
Services Control Center
SQL Proxy: logging and security
StatToHtml: log to HTML and FTP
StatToDB
IBExpertSQLMonitor Help
IBExpert Documentation
IBExpertSQLMonitor FAQs

650

What is IBExpertSQLMonitor?
1. IBExpertSQLMonitor features
2. IBExpertSQLMonitor licenses

What is IBExpertSQLMonitor?
IBExpertSQLMonitor is a Firebird/InterBase administrator/developer tool, combining SQL monitor functionalitywith server performance monitoring and
additional security features. SQL monitor ability is access library independent, so youcan log SQL traffic made by any components or tools connecting to a
Firebird/InterBase server by TCP/IP.

The main module – SQL Proxy - is a proxy that works between client and server and maps all traffic from one TCP/IP port/address combination to another.
This module logs SQL traffic and calculates traffic statistics. SQL Proxy also works as a simple firewall between clients and server and provides
corresponding functionality.

If you need to see SQL logs, made by SQL Proxy, in HTML format – just use the StatToHtml service. This module is used to transform logs and statistics into
HTML form. It can also filter logs by execution time, enabling youto see only time-consuming statements.

If your logs are to be stored in a database – just use the StatToDB service, specially made to write logs into a selected Firebird/InterBase database, enabling
you further analyze the contents.

All modules are controlled by a single HK-Software Services Control Center (SCC) application. Using the SCC youcan start/stop any of the
IBExpertSQLMonitor services and change anyavailable settings, to set up the configuration youneed. It is also possible to view all running services’ runtime
info, Firebird/InterBase client server traffic logs and statistics on the SCC interface.

There are two versions with some limitations in the download and customer areas on the IBExpert web site:

Trial version: limited to localhost and protocol for one session only. A copyof the IBExpertSQLMonitor is included in the IBExpert Developer Studio.
Customer version: limited to local access (localhost) and protocol for unlimited sessions. Please refer to for further information.

Download the free Trial Version(part of the IBExpert Developer Studio): http://www.ibexpert.com/download/other_files, file name: IBMonitor_setup_
trial.exe.

Download Version for IBExpert Customers: http://www.ibexpert.com/customer/IBExpertNetworkMonitorFull.zip.

IBExpertSQLMonitor features
Access library independent SQL monitor, with plan retrieval and execution time logging;
Filters SQL commands using an include/exclude template. For example, if youdon't wish to log system (containing RDB$) traffic or want to log only
SALES table related statements;
Calculates traffic statistics (i/o bytes, statements count) by host names and sessions;
Transforms all logs and stats into HTML form if needed, and uploads it on a selected ftp *;
Filters logged statements by execution time, for example, if youwish to see only time-consuming commands *;
Saves all logs into a selected database, if needed for further analysis **;
Client/server traffic and performance runtime info presentation in tables and diagrams (common statistics, active connections, etc.);
Separate services with flexible setup for specific functionalities;
Single Control Center for all modules. Also used for runtime info monitoring.
Basic firewall functionality for better server security.

* using separate StatToHtml service ** using separate StatToDB service

IBExpertSQLMonitor licenses
You wish to purchase the software for installationon a server with remote access?

Limited to 10 active sessions logged, remote and local access: EUR 199.00
Limited to 100 active sessions logged, remote and local access: EUR 499.00
Unlimited active sessions logged, remote and local access: Price on request.

At the moment IBExpertSQLMonitor only works on Windows, no Linux version available yet.

All customers resident in Germanyor other EU member nations mayorder directly by e-mail, fax or mail (please refer to contact for details). Please do not
forget to include your invoice address and your VAT or sales tax ID number, along with the product description, quantity and registration information. Should
you require an original invoice copy, please let us know.

If you wish to pay by credit card, or youare resident in a non-EU country, please order in our online shop.

651

http://www.ibexpert.com/download/other_files,filename
http://www.ibexpert.com/customer/IBExpertNetworkMonitorFull.zip

Download and install IBExpertSQLMonitor
1. Making the connection
2. Setting up the HTML Service
3. Select the application

Download and install IBExpertSQLMonitor
Both the Trial and the Customer versions can be downloaded from the IBExpert website:

Trial version: limited to localhost and protocol for one sessiononly.
Customer version: limited to local access (localhost) and protocol for unlimited sessions.

The Trial version is incorporated in the IBExpert Developer Studio Trial Version whichcan be downloaded here: http://www.ibexpert.com/download/setup_
trial.exe

The download version for registered IBExpert Customers is: http://www.ibexpert.com/customer/IBExpertNetworkMonitorFull.zip

Making the connection
For both versions, youneed to take the following steps:

Start the HK Service Config Center hkscc.exe.
Bind port should be 3050
Bind IP should be 127.0.0.2
Map IP should be 127.0.0.1
Map port should be the InterBase default port 3050.

You canchange these values if needed, but the following description is based on these default values.

Click left on SQL proxy.
OpenLog Levels and set the level you need for all operations.
Set log dir to a directorywhere the log files should be saved (default c:\temp\).
Set StatsSaveInterval to, for example, 15 (file is stored every 15 seconds).
Click on Save button at the top of the form.
Click on Start button at the top of the form.

Now the proxy should work, log files are saved every 15 seconds and stored in the directory c:\temp\.

Setting up the HTML Service
Click left on StatToHtml .
Set log dir to the same place as above in SQL proxy.
Set tmpDir to a directory where HTML files should be stored.
Check StatsSaveInterval default, for example, every 30 seconds.
Check WrapLineLength (for example to 100 characters per line).
If needed set up the FTP upload location.
Click on Save button at the top of the form.
Click on Start button at the top of the form.

Select the application
Start anydatabase application with a changed server name. For example, when you typicallyuse

 localhost:C:\path\file.fdb
now use

 127.0.0.2:C:\path\file.fdb

After several seconds you canopen the index.html file in TmpDir and see what has happened.

IBExpertSQLMonitor Workflow Scheme

652

http://www.ibexpert.com/download/setup_
http://www.ibexpert.com/customer/IBExpertNetworkMonitorFull.zip

The Firebird/InterBase server listens to a specified IP and port (server IP and server port) and waits for client connections.

SQL proxy listens to the TCP/IP protocol on other IP and port combinations (proxy IP and proxy port), logs all SQL, calculates traffic statistics, and then
redirects traffic to the Firebird/InterBase server. It thengets a response from the server and redirects it to the client. This module also checks client
validity and rejects a client connection request if that client is acknowledged to be invalid.
StatToHtml gets log files and statistics collected by the SQL proxy and transforms them into HTML files, comfortable for end-user reading.
StatToDB is used to store log files in a database, if the user wants to examine logs using SQL queries.

Services Control Center SCC
HK-Software Service Control Center (SCC) is intended to control all IBMonitor services using a single user interface. The SCC mainwindow canbe viewed
below:

The upper panel is used to control services activity: Run, Stop, Pause, estart and Save buttons. The left side contains a list of installed services and the
description of the service that is currently selected in the list.

653

The Page control, displayed as three tabs to the right of the services list, is used to set up the selected service and display its runtime information if the service
is running.

First page: Service setup and control – includes settings and properties of the selected service.
Second page: contains the selected Service Runtime Info.
Third page: Performance - contains module-specific performance diagrams.

More detailed description of the individual page contents can be found in the module descriptions.

654

SQL Proxy: logging and security
1. SQL Monitoring and Logging: a quick start guide
2. SQL proxy settings

1. Configuration
2. Log levels
3. Filters
4. Other settings

3. Security features
1. Bad password connections and BlockInterval
2. Check user privileges
3. Extended security configuration

a. DENY and ALLOW sections
b. ALARM section
c. DBUSERS section

SQL Proxy: logging and security
SQL Monitoring and Logging: a quick start guide
Let’s set up IBMonitor to do some simple logging while we’re working in IBExpert with employee.gdb on localhost.

1. Start the SCC from the Windows Start menu. Select SQL Proxy in the services list.

2. Set the proxy configurationsettings to comply with those below, and thenpress the Start button at the top of the SCC form.

The Service runtime info and Performance pages displayzeros at this stage, because we haven’t had anytraffic yet. So let’s do it.

3. Start IBExpert and register employee.gdb on localhost. Use the Test Connect button to check that you’ve properly registered this database.

4. In the Database Properties window set the Server name to localhost/3051. The window should look something like this (the database file path may
be different):

655

1. Connect from IBExpert to the employee.gdb, you have just configured.

2. Now look at the Service Runtime info and Performance pages on the SCC. There youwill see the traffic statistics made by IBExpert when you
connected to employee.gdb.

The Service runtime info page contains the following information:

Total sessions count: count of client/server sessions made via SQL proxy.
Active sessions count: count of sessions currently opened via SQL proxy.
BytesSent, BytesReceived: total volume of client/server traffic.
SELECT…EXECUTE: total count of corresponding SQL statement calls.

The Performance page contains two charts showing ActiveSessions, BytesSent and BytesReceived values for a certain period of time.

656

7. Execute a simple query from IBExpert. For example: select * from country. You cansee that the information on the Service runtime info and
Performance pages has changed.

Now select the Active connections categoryon the Service runtime info page. There you should be able to see the employee.gdb connection made by
IBExpert.

Double-click on any line with a connection description in the Runtime info table. After that youcan see the Session info window, containing the log of
executed SQL statements:

657

and traffic statistics for the selected connection:

If youcan not see your connection in the Active connections category – maybe there has not been anytraffic activity during the NoPacketTimeout time interval.
In this case, select the Timed out connections category on the Service runtime info page.

Now let’s look into the Log_Dir folder to find the log files we’ve just produced by our work in IBExpert. The default log dir folder is C:\temp. If youopen it you
should see a picture like this:

main.log is a single log file containing all notifications of clients’ connect/disconnect attempts:

Other *.log files are client/server sessions’ logs. Our exercises with employee.gdb resulted in two log files: the first is produced by our connection and the
second is produced by the additional IBExpert connection to the database.

658

SQL proxy settings

Configuration

Actually these properties are basic proxy settings: which IP and port the proxy should listen to and where it should redirect incoming requests.

Proxy_IP and Proxy_Port: IP and port that the proxy should listen to. You should use them as part of the server name in the database connection
parameters to get your SQL traffic logged.
Server_IP and Server_Port: IP and port of the Firebird/InterBase server to be monitored.

On the screenshot below youcan see the default configuration: SQL proxy listens to port 3051 on localhost and redirects all requests to port 3050 (that is the
default Firebird/InterBase server port) to localhost.

Log levels

Bydefault SQL proxy will log all SQL statements and their execution time. For SELECT and EXECUTE statements it will also log the statement execution plan(if
the ForceGetPlan option is True).

Here is the default LogLevels options screenshot:

If you want to log only certain statement types (for example CREATE, ALTER and DROP), youcan control SQL proxy behavior using the LogLevels property.

Here is the setup for our example:

After changing the properties in the SQL proxy setup as required, youshould close the database connection, and thenpress the Save button in the SCC and
answer Yes in this confirmation dialog:

Now if you connect to the Firebird/InterBase server via SQL proxy, it will log only CREATE, ALTER and DROP statements.

Filters

The other way to log only certain specified transactions is to set log filters. There are two kinds of filters in SQL proxy:

Database name filter;
SQL statement filter.

659

Both have the same simple syntaxbased on Include and Exclude templates.

The Include template should be started by the plus [+] sign, and the Exclude template by a minus [-] sign. Templates should be separated by semicolons.

For example, if youwant to log only employee.gdb-related traffic you should set a corresponding Include template in the DatabaseName filter:

Now imagine that you have a lot of employee.gdb files placed in different folders. You want to log all of them, excluding C:\test_only\employee.gdb. In this
case you should add an Exclude template to the DatabaseName filter:

The same logic is used when setting up the Statements filter. If youwant to log only country-related statements set an Include template accordingly:

And if you wish to exclude update and alter statements from log files just add Exclude templates to the Statements filter:

Now let’s see the filter working.

Execute or prepare SQL statements in IBExpert, such as, for example:

 select * from country

 select * from employee

 update country set currency=currency

 alter table country add test_field integer

Now double-click on a line with a connection description in the runtime info table (see below) to open the Session info window. In the table on the Session log
page youcan see only one statement:

 select * from country

All other statements are excluded from the log by the statements filter.

So, if you can’t achieve your required log configuration by setting LogLevels or just want to specifydatabase name-based or statement-based log filters use
the SQL proxy’s Filters property.

Other settings

Section or parameter Description
Format of timestamps in log files.
Default is "YYYY"/"MM"/"DD HH":"NN":"SS"
YYYY - year
MM - month
DD - day
HH - hour
NN - minutes

660

SS - seconds
Any characters in double quotes are constants.

ForceGetPlan If True then SQL proxy will try to get an execution plan for every logged statement with help of additional
connections to database. Default is True.

SpecialPort The port used by SQL proxy for the force statement plan retrieval. Default is 3050.

Log_Dir Path to the folder where SQL proxy will create the log files. Default is C:\temp\.

NoPacketTimeout Connection timeout interval (in seconds). If no packets are passed through the client/server channel during this
time, the connection is market as "timed out". Default is 120.

FullSaveOnServiceStop If False thenonly changed connections statistics will be saved on service stop. Default is False.

StatsSaveInterval Time interval (in seconds) defining the traffic statistics saving periodicity. Default is 5.

_
StatusRefreshInterval

Time interval (in seconds) of the runtime info refresh. Default is 5. This means that every 5 seconds SQL proxy will
send runtime info packets to the SCC.

_ClientLibraryFile
Firebird/InterBase client library file. SQL proxy mayopen additional connections to your databases for plan
retrieval or checking user privileges (see the Security Features section). You can set whichdll it should use as the
client library. Default is gds32.dll.

_ProcessPriority SQL proxy process priority (Idle, Normal). Default is Idle.

Security features

Bad password connections and BlockInterval

If you suspect that your Firebird/InterBase server maybe subject to a brute force attack, this feature is useful. Using BadPasswordAttemptCount you canset
the maximal count of invalid password connectionattempts from one IP address. The default value of this property is 10. This means that when someone tries
to connect to your Firebird/InterBase server via SQL proxy 10 times, their IP address will be blocked by SQL proxy for certain specified period of time. The
block time interval in seconds is set by the BlockInterval property. The default value is 120 seconds.

Let’s imitate such a situationby setting an invalid password in the employee.gdb connection we’ve made in IBExpert. The first few times we’ll receive a Your
user name and password are not defined message from the Firebird/InterBase server.

But if we click the Test button againa number of times we will see the following error message:

661

I.e. SQL proxy has marked our IP address as invalid and has blocked it for a certain amount of time.

A list of blocked IP addresses with blocking time can be seen in the SCC, on the Service runtime info page (category Blocked IP list).

During this blocking period any connectionattempt from an invalid IP will be banned (even connections with valid username/password). "Bad guys" are
blocked before any client/server packet exchange can take place. So no Firebird/InterBase server activity can be produced by such a fugitive client.

Each connectionattempt during the blocking time will increase the blocking time. Here is the screenshot, made after some invalid password connections
attempts:

So, any persistent "bad guys" will be blocked for a very long time!

Check user privileges

In some situations it may be useful to disable the database connection to users who haven’t any privileges on database objects (tables, views, procedures,
etc.). If you need such a functionality – youmay use the CheckUserPrivileges option in SQL proxy. If this feature is switched on thenSQL proxy will check if

662

the connecting user has any privileges (by querying the RDB$USER_PRIVILEGES table in the additional database connection). If the user has no privileges their
connection request will be rejected and the client will receive the message: your user name and password are not defined.

Let’s demonstrate this function. Create a test user in IBExpert.

Now remove all privileges from PUBLIC:

Then disconnect from the database and change its registration info to make IBExpert connect to this database with our test user.

Now stop SQL proxy and activate the CheckUserPrivileges property:

Don’t forget to specify the server admin loginsettings (actually it should be the user, who has a SELECT privilege on the table RDB$USER_PRIVILEGES in
employee.gdb). This is necessary for SQL proxy to establish an additional connection to check client user privileges.

Now let’s try to connect to our database using the unprivileged user. This should be the result:

Bydefault this function is deactivated.

Extended security configuration

The extended securityconfiguration includes the following features:

valid and invalid IP address lists,
valid users list for certain specified databases,
external application execution, when a connection request comes from certain specified IP addresses (for example to send an e-mail notification to the
server administrator).

All this is configured by an INI file. If such a file already exists, all youneed to do is to set its name in SQL proxy’s ExtendedConfigFile, and then restart it.

663

Let’s take a look at the extended securityconfiguration file syntax, using the following example:

DENY and ALLOW sections

Both sections contain IP addresses or IP address ranges. The client connection will be allowed if:

the client’s IP address is present in the ALLOW section (or the ALLOW section is empty)
the client’s IP address is absent in the DENY section(or the DENY section is empty)

For example, if youremove 127.0.0.1 from the ALLOW section, and then try to connect to our test database youshould receive the following message:

The same result is achieved if you add 127.0.0.1 to both the DENY and ALLOW sections.

ALARM section

First make sure that 127.0.0.1 is valid, i.e. present in ALLOW and absent in DENY.

In the previous example shownin the DENY and ALLOW sections, the net send system command will be executed when SQL proxy receives a connection
request from IP 127.0.0.1 (ddking is here the user or computer name where a message will be sent. You will need to replace it by your Windows user name,
and Hey! Somebody connected to me. is just a message text).

Now, if you try to make a connection, youshould receive the following message:

This means that the net send … command line was executed by SQL proxy.

DBUSERS section

If youwant to control Firebird/InterBase user access to certain databases, youmay use this section.

In the previous example (ALARM section) you cansee an example of the configuration of this section.

This means that users SYSDB1 and DB1*3 (where * is a wildcard) are allowed to connect to the database C:\path\db1.fdb and any users can connect to the C:
\IB\FB15\database\EMPLOYEE.GDB database. User names in the user list maycontain the * character and should be separated by commas.

664

Let’s change the C:\IB\FB15\database\EMPLOYEE.GDB user list to see this feature working:

Make sure that this user is configured in the employee.gdb Registration Info in IBExpert and thenconnect to this database. Everything should be ok – you’re
connected and can work.

Now close connection and change DBUSERS section this way:

Then restart SQL proxy and try to connect to employee.gdb. You should receive this error message:

665

StatToHtml: logging to HTML and FTP
1. Log to HTML transform
2. StatToHtml: HTML-related properties
3. FTP upload

StatToHtml: logging to HTML and FTP
This module allows you to view the log files made by SQL proxy in HTML format. All youneed is to start a service. This service can also upload all your logs
and statistics to a selected FTP server, to let youview Firebird/InterBase server activity remotely, using just a simple web browser. To enable this feature you
should set up the FTP server properties in the StatToHtml service configuration. We'd like to illustrate these features using an example. The opensource
project Filezilla (http://filezilla.sourceforge.net/) is used as a test FTP server in the following section, Log to HTML transform .

Log to HTML transform
Following the SQL proxy testing described earlier, we now have a few log files in our log directory:

Now we are going to see StatToHtml working with these files. On the screenshot below you canview the default StatToHtml properties:

HTML log file productionoccurs by a timer when the service is working, and once againwhen service stops. To view the HTML files produced just start the
StatToHtml service by clicking on the corresponding button in the SCC and thenstop the service. You cansee that an HTML folder has been created in the
IBExpertSQLMonitor installationdirectory and there are a few HTML files (see screenshot below) corresponding to the SQL proxy log files.

666

http://filezilla.sourceforge.net/

To navigate the log files simply openthe index.html file. You should see something like this:

This is a sample screenshot of the browser window after opening the index.html file. Here youcan see a list of hosts being connected to the Firebird/
InterBase server and common traffic statistics:

sessions count
I/O volumes and
statements count

If you wish to see the statistics and sessions of a separate host – just click on respective host name in the table at the top of index.html.

You should thensee the following:

667

Onthis screen you canview selected host traffic statistics and short descriptions of the last five client/server sessions produced by this host. Older sessions
canbe viewed by clicking on the Obsolete sessions link, below the last sessions table:

Separate session statistics can be viewed by clicking the Statistics link on the respective sessionrow in the session’s table. There you canview the session
start and end time, the sessionduration time and the session statistics.

To view the selected session log click on the Log link in the session table of the host statistics window or click the Viewlog link in the session statistics
window.

668

Bydefault you will see all statements as theywere logged, without anyfiltering or wrapping. Should you wish, for example, to view only time consuming SQL
statements, simplyset the TimeFilter property. For example, if youwant to see only those statements in the HTML files whose execution time is more then10
msec, you should set TimeFilter = 10 msec.

Save the new specifications by clicking the Save button in the SCC and then start and stop the StatToHtml service, to enable it to recreate the HTML log files.
Now, when youopen any session’s log file, youwill see only statements with an execution time >= 10 msec.

In the screenshot above you can see that some statements are very long; these can be read using the horizontal scroller. If you want StatToHtml to make these
statements easier to read, youcan set up the statement wrapping by setting the WrapLineLength property. For example set it to 50:

Then save and start/stop the service. After opening any HTML log file youcan see that now all statements are smartlywrapped and became much easier to
read:

669

StatToHtml: HTML-related properties
Now let’s review HTML related properties of the StatToHtml service:

Section or parameter Description

DateTimeFormat

Format of timestamps in HTML files
"YYYY"/"MM"/"DD HH":"NN":"SS"
YYYY - year
MM - month
DD - day
HH - hour
NN - minutes
SS - seconds
Any characters in double quotes are constants.

HighLightSQL If True then SQL statements in HTML files will be highlighted for more readability. Default is True.

HtmlRefreshInterval Time (in seconds) to be used as a refreshmeta tag value in HTML files while the StatToHtml service is working.
When the service is stopped, it will rewrite all HTML log files without the refreshmeta tag. Default is 5.

Log_Dir Path to the folder where SQL proxy log files are placed. Default is C:\temp\.
StatsSaveInterval Time interval (in seconds) defining HTML files productionperiodicity. Default is 30.

TimeFilter

If you want to see only time-consuming statements iin HTML form you can use this property. Here you mayset the
statement execution time filter to make StatToHtml remove all statements with an execution time less thanthe
TimeFilter value from the HTML files. The format of this filter is the same as the format of the Execution time
columnof the HTML log files:
… Days … hours … min … sec … msec
where each “…” is some integer value
Here are filter value examples:
- 1 min
- 30 sec 10 msec
- 1 hours 30 min20 sec 10 msec
- 5 Days
Default is empty.

WrapLineLength If you want to wrap long SQL statements to make them more easily readable, you mayset this property. Default is
0 – i.e. no wrapping.

_
StatusRefreshInterval Time interval (in seconds) of runtime info refresh. Default is 5.

_ProcessPriority StatToHtml process priority (Idle, Normal). Default is Idle.

FTP upload
StatToHtml enables you to load HTML log files onto selected FTP server so that youcan view them remotely. To enable this function, youshould set up the
FTP properties of the StatToHtml service. By default this FTP functionality is disabled:

To activate it, set up the Host property to your FTP server address, also specify the FTP user login information.

670

Then switch the FTPUpload property to Enabled. We will now illustrate this feature on localhost (using the Filezilla FTP server) with two users created for our
test:

ftp_user (without password)
anonymous

Both should have the same home directory (C:\local_FTP_home in this example).

The TmpDir folder is used by the FTP upload algorithm to store uploaded files and then detect anynewly created files which need to be uploaded.

Configure StatToHtml to work with FTP on localhost, using the user ftp_user. On the screenshot below youcan see the corresponding configuration:

Now save the configuration and start/stop the service. In the Filezilla server window youshould see a lot of client activity, made by the StatToHtml service:

You can also view the StatToHtml FTP activity report on the Service runtime info page in the SCC window:

Here youcan see the total count and size of files uploaded by the service. Also youcan see the count and size of newlyuploaded files, i.e. files changed after
the last upload session. The same statistics canbe viewed in the charts on the Performance page.

Now let’s try to openour HTML material through FTP by opening a link in the browser ftp://localhost/index.html.

Here is the screenshot youshould see:

671

ftp://localhost/index.html

StatToHtml has uploaded HTML log files onto the FTP server and you can now view them remotely.

672

StatToDB
1. IBE$MONITOR_SESSIONS
2. IBE$MONITOR_EVENTS

StatToDB
This module is needed if you want to store your log files in a Firebird/InterBase database and analyze them using SQL. StatToDB, like StatToHtml described
earlier, takes log files made by SQL Proxyand puts them, as they are, in a specified database. All database objects (two tables: IBE$MONITOR_SESSIONS and
IBE$MONITOR_EVENTS, generators, 'triggers and indices) needed to store the log files are created by the service itself if necessary.

Let’s see the service working. Before starting it you should specify the database where the service is to store the log files. Actually it maybe the same
database (employee.gdb) used for the previous tests:

Now start the service, and select the Service runtime info page in the SCC to view service activity. If this database has not previouslybeen used by the
service, it will first create the necessary database objects. You should see a corresponding report line in the runtime properties table:

Status Creating DB tables - Ok.

Then, after the StatsSaveInterval time period has elapsed (default – 10 sec), youwill see the log files uploading report information to the database:

Now let’s see what has been done in the selected database by the StatToDB service. Start IBExpert and register a database connection to employee.gdb. In
the Database Properties window set IBExpert to showsystem objects in the DB Explorer:

Then connect to the database.

You should see two new tables under System Tables node:

IBE$MONITOR_SESSIONS
This table contains information about all sessions logged by SQL proxy. Here is the table structure:

673

Field name Description
SESSON_ID Session identifier. Should be used for joins with IBE$MONITOR_EVENTS table.

DATABASE_NAME Name of database, used in the session.

USER_NAME Name of user, connected to the database in the session.

IP Client’s IP address.

PORT Client’s port.

LOG_FILENAME Name of session’s log file.

LAST_SAVED_LINE Used internally by the StatToDB service.

Now, for example, if you want to check if a host has been working with your Firebird/InterBase server, youshould execute the respective SQL queryon this
table, for example:

 SELECT * FROM IBE$MONITOR_SESSIONS WHERE IP = '11.22.33.44'

This enables youto view a list of all sessions made by the specified host.

If youwant to analyze client activity by statements or statement plans – youshould query the IBE$MONITOR_EVENTS table.

IBE$MONITOR_EVENTS
This table contains lines from all log files for all sessions. Here is the table structure:

Field
name Description

EVENT_ID Just an identifier.

SESSION_
ID

Session identifier. Should be used for joins with the IBE$MONITOR_SESSIONS table to get
log lines for separate sessions.

TME Log line appearance time. Timestamp string.

TXT

Event text. May be one of the following:
. connect/disconnect message
. SQL statement
. PLAN statement.

For example, if youwant see all SELECT statements, which are not related to system tables, youmay use, for example, such a query:

Then, if you are working with logs made during SQL proxy testing, you should get a list of statements, whichyou’ve executed from IBExpert earlier:

/*CRLF*/ in SQL statements is used to replace character returns, so youmay restore the source SQL statement view if needed.

For example, you mayuse the following query to view all statement plans:

674

Or all client connect/disconnect messages:

Or view a list of active connections (no disconnect message in log) by joining both tables in such a query:

Actually, using SQL youcan perform extremely complex log file analysis by simply querying the tables made by the StatToDB service.

675

IBExpertSQLMonitor Help
1. What's New?

1. IBExpertSQLMonitor v. 2004.10.03.1
2. IBExpertSQLMonitor v. 2004.04.18.1
3. IBExpertSQLMonitor v. 2004.04.12.1

IBExpertSQLMonitor Help
The complete IBExpertSQLMonitor help files (beta version) are available directly online: http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpertSQLMonitor/.

The first view displays the documentation structure. If you are looking for help about a specific subject use the Search function.

Should younot be able to find a solution to your problem here, please use the IBExpertSQLMonitor newsgroup: news://ibexpert.info/ibmonitor.general.en or
send us an email to support@ibexpert.com.

Should youhave anycomments or queries directly regarding the documentation, or wish to contribute youown articles, please contact documentation@
ibexpert.com.

What's New?

IBExpertSQLMonitor v. 2004.10.03.1

1. Session Info:

Simply double-click any active connection in the Control Center.

2. Security Setting in the SQL Proxy:

IP address blocking after numerous bad password connection attempts.
List of blocked IPs with blocking time can be seen in hkSCC, on the service Runtime info page (category - "Blocked IP list"). During blocking time the
client will be banned any connectionattempt (evenwith a valid user name and password). "Bad Guys" are blocked before anyclient/server packet
exchange. So no IB server activity will be produced by such a fugitive client. He will simplyreceive a message such as the following (takenfrom
IBExpert connection test):

"Unable to complete network request to host "".
Failed to establish a connection.
Unknown Win32 error 10060.

3. New installer, bugfixes and small improvements...

IBExpertSQLMonitor v. 2004.04.18.1

Bugfixes and small improvements...

IBExpertSQLMonitor v. 2004.04.12.1

New Features:

1. For use with InterBase: IP 127.0.0.2 is usable:

Typical config for using IBExpertSQLMonitor with InterBase:

 bind_ip=127.0.0.2
 bind_port=3050
 map_ip=127.0.0.1
 map_port=3050

Typical connection string in an InterBase environment:

 127.0.0.2:C:\path\db.ib

IBExpertSQLMonitor should work with all InterBase versions and all Firebird versions.

2. Installer now comes with necessary dll file

3. Bugfixes and small improvements...

(:keywords :)

676

http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpertSQLMonitor/
mailto:sendusanemailtosupport@ibexpert.com.

IBExpert Documentation
Click here to view the complete IBExpert documentation: http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpert.

677

http://ibexpert.net/ibe/pmwiki.php?n=Doc.IBExpert

FAQs
1. How much load does IBExpertSQLMonitor

add to the server?
2. What figures does the Time Diff column

show in the log.html?

FAQs
Here we will attempt to answer some of the more frequently asked questions regarding IBExpertSQLMonitor. Should younot be able to find a solution to your
problem here or elsewhere within the IBExpertSQLMonitor Documentation, please contact our newsgroup: news://ibexpert.info/IBMonitor.general.en (English
language) or send an email to support@ibexpert.com.

How much load does IBExpertSQLMonitor add to the server?
Iwould like to run IBExpertSQLMonitor on a heavily loaded live server with up to over one hundred concurrent users.

A: So far even customers with extremely large installations have reported almost no loss in performance at all .

What figures does the Time Diff column show in the log.html?

The meaning of the figures displayed in the Time Diff columnis unfortunately not clear to me.

A: This displays the difference from one statement to the next statement, because in some cases (for example, with a FETCH ALL), you do not see the
correct time with the first calling statement.

678

mailto:orsendanemailtosupport@ibexpert.com.

IBExpertTransactionMonitor

... coming soon.

What is IBExpertTransactionMonitor?
Setup and usage

IBExpertTransactionMonitor
... currently in work.

IBExpertTransactionMonitor is a new module in the HK-Software Control Center.

The IBExpert Junior VAR license or the VAR license entitles you to distribute the IBExpertTransactionMonitor with your application.

679

Setup and usage
1. Default task settings

1. Active
2. Basic control settings
3. Database connection

configuration
4. Mail notification
5. Schedule
6. Program run

2. _ProcessPriority
3. _StatusRefreshInterval
4. Common service properties
5. Preparing a task

...currently in work.

Setup and usage
Start the HK-Software Services Control Center, found in the IBExpert Services menu, and select IBExpert Transaction Monitor in the HK services list.

We now need to configure the default task settings. As some parameters will remain the same for all further tasks (for example: SMTP settings), these should
be configured first.

Expand the DefaultTaskSettings item on the Service setup and control page.

The following lists the various default settings and options available:

Active
Basic control settings
Database connection configuration
Mail notification
Schedule
Program run

After configuring the default task settings, all new tasks will have this configurationwhen created. It is of course possible to alter specific options for individual
tasks.

Default task settings

Active

WhenTrue then the task just created will be active (see illustration above).

Basic control settings

680

Parameters include: ActiveCount, OldestActiveFreezed and _CheckInterval.

Database connection configuration

The next step is to establish the database connection. All necessary properties canbe configured in the DBConnectionParams section:

This is fairly self-explanatory; althoughshould you require detailed information regarding Firebird/InterBase database connection parameters, please refer to
the online IBExpert documentation.

Mail notification

The mail notification feature sends reports concerning the IBExpertTransactionMonitor activity. The service sends an e-mail message with log files attached
when the job is completed.

To use this feature, set the Enabled parameter in the MailNotification section to True.

The IBExpertTransactionMonitor uses a built-in SMTP client to send e-mails, so you need to set up the SMTP parameters in the task configuration to enable
this to work properly. Simply double-click on the SmtpSettings option, to open the configurationdialog window.

In this dialog youshould set up the Sender, SMTP server configuration and one or more recipients.

Schedule

Double-click on the Schedule option to open the schedule configuration dialog window:

Daily schedule:

681

every day at the specified time.
every nth day, starting from date.
every given day of week.

Monthly schedule:

Everynth day of the selected months at the given time.

Custom schedule:

682

Selected days of every week of selected months at given time.

Program run

Here youcan activate the ProgramRun by altering the Enable parameter to True. Then simplyspecify the file name and add parameters if required.

_ProcessPriority
This parameter can be set to Idle, Normal or High (the default is Idle).

_StatusRefreshInterval
Here the refresh interval in seconds can be specified (default value is 5).

Common service properties
The path to the executable file, hkTRMon.exe is displayed. You can specify the Startup type selecting an option from the drop-down list (options: Manual,
Automatic or Disabled).

The Service Status can be viewed at the bottom of the window, and the Start and Stop buttons used to manuallystart or stop the service.

When youare happy with your specifications, they canbe saved using the disk icon in the toolbar. After configuring the default task settings, all new tasks will
have the same configurationwhen created. You can of course alter specific options for individual tasks if wished.

Preparing a task
To create individual job schedules, you now need to create a task. Right-click on the IBExpert Transaction Monitor service’s item in the SCC. Then click Add
task in the popup menu. After that you will see the new task item (Task 0) under the Transaction Monitor service’s item. You may rename it by clicking on the
name simultaneously holding the [Ctrl] key down.

Alter your default settings if necessary. Then youcan simply run the service.

683

IBExpertDemoDB

Use the IBExpertDemoDB for benchmark testing. The UDFs and SQLs necessary to generate the demo database can be found in the IBExpert Developer
Studio's /IBExpertDemoDB directory. This documentation lists the simple steps needed to generate a demo database to the size of your choice.

The IBExpert Benchmarks article illustrates in detail how to utilize this valuable functionas a sample web shop.

684

Database Technology Articles

This sectionoffers a more in-depthview of the InterBase/Firebird database and how it functions.

Firebird Classic server versus SuperServer
Database design and database normalization
Enterprise-wide data model
Space management in InterBase
Multi-generational architecture and record versioning
Multi-versionconcurrency control
Using IBExpert and Delphi applications in a Linux environment, accessing Firebird
Bidirectional replication for InterBase and Firebird
Database Corruption
Firebird for the Database Expert: Episode 1 - Indexes
Firebird for the Database Expert: Episode 2 - Page Types
Firebird for the Database Expert: Episode 3 - On Disk Consistency
Firebird for the Database Expert: Episode 4 - OAT, OITand Sweep
Firebird for the Database Expert: Episode 5 - Locking and Record Versions
Firebird for the Database Expert - Episode 6: Why can't Ishrink my databases
Structure of a header page
Structure of a data page
Garbage Collectors
Record versions as an undo log
Where do data pages come from?
Optimize database cache utilization to improve database performance
Selecting the right datatype to improve database performance

685

Classic server versus SuperServer
1. InterBase SuperServer architecture
2. InterBase Classic architecture

1. Invoking the Classic Server
2. Lock management
3. Use of Posix signals
4. Resource use
5. Local access method
6. Monitoring
7. Security

3. Classic versus SuperServer
1. Invoking SuperServer
2. Lock management
3. Resource use
4. Threaded server & UDFs
5. Security

4. Why two implementations?
5. Changing server to solve undefined crashes

Classic server versus SuperServer
Many thanks to Paul Beach of http://www.IBPhoenix.com for this article.

InterBase SuperServer architecture
SuperServer is a multi-client, multi-threaded implementation of the InterBase server process. This implementation replaces the "Classic" implementation
used for previous versions of InterBase.

SuperServer serves many clients at the same time using threads instead of separate server processes for eachclient. Multiple threads share access to a
single server process. The benefits of SuperServer architecture include:

Having a single server process eliminates bottlenecks resulting from arbitration for shared database pages and reduces the overhead required for multiple
process startups and database queries. SuperServer improves message interaction performance because a shared library call is always faster than an
interprocess communicationrequest to a server process.

SuperServer improves database integrity because only one server process has write access to the database, rather thanone process for each client. All
database engine functionality is encapsulated into a unified, protected subsystem that is isolated from user application error.

SuperServer allows for the collection of database statistics and user information that InterBase's tools can use for performance monitoring and administrative
tasks.

SuperServer is more cost-effective than the Classic architecture. All operating systems have limits on the number of OS processes that can run concurrently.
SuperServer allows for a fixed number of database threads to be multiplexed over a potentially large number of concurrent database connections. Since these
threads are not hard-wired to anyspecific database connection, SuperServer cansupport a larger number of users with minimum resources use.

InterBase Classic architecture
Classic architecture, the design in InterBase 4.0 and earlier, was process-based. For every client connection, a separate server process was started to
execute the database engine, and each server process had a dedicated database cache. The server processes contended for access to the database, so a
Lock Manager subsystem was required to arbitrate and synchronize concurrent page access among the processes.

Invoking the Classic Server

The InterBase Classic server runs on demand as multiple processes. Whena client attempts to connect to an InterBase database, one instance of the gds_
inet_server executable runs and remains dedicated to that client connection for the duration of the connection.

The initiator of gds_inet_server is inetd, the UNIX service turnkeyprocess. It has a configuration file, /etc/inetd.conf, whichassociates services with the
executable that is to receive the connection. When inetd receives a connectionrequest for a given service, it looks up the appropriate program in /etc/
inetd.conf, executes it, and transfers the network connection to the service program.

Whenthe client chooses to disconnect, gds_inet_server closes its connection to the database and anyother files, and then exits. Whenthere are no clients
connected to any database, there should be no invocations of gds_inet_server running.

Lock management

Lock management is taken care of by another process, gds_lock_mgr. This program is started when the second client attaches to a given database. The job
of the lock manager is to serve (metaphorically) as a traffic cop. It grants locks on database resources to clients. It also requests that clients relinquish locks on
a resource when that resource is in demand by other clients. The gds_lock_mgr remains running evenafter the last client disconnects. The next time a client
connects, it can avoid the slight overhead of starting the lock manager process. For further information regarding locking, refer to Firebird for the database
expert: Episode 5 - Locking and Record Versions.

Use of Posix signals

The gds_lock_mgr process communicates with eachclient process by using a shared memory area, and a signaling mechanism using the POSIX signals
SIGUSR1 and SIGUSR2. Signals are caught in signal handling routines in libgdslib.a, and for this reasonuser applications should not perform signal handling
or any modification to the signal mask. Applications whichneed to use POSIX signals must compile with an alternate InterBase library, libgds.a. This library
functions identically to libgdslib.a, but it handles signals sent by the lock manager in a child process called gds_pipe. All client applications compiled with
libgds.a automatically run with this child process. No changes to application code are needed, only a different linking option.

686

http://www.IBPhoenix.comforthisarticle

Resource use

Each instance of gds_inet_server keeps a cache of database pages in its memory space, which is likely to result in some duplicationof cached data across
the system. While the resource use per client is greater than in SuperServer, Classic uses less overall resources when the number of concurrent connections
is low.

Local access method

The Classic architecture permits application processes to perform I/O on database files directly, whereas the SuperServer architecture requires applications
to request the IBServer I/O operations by proxy, using a network method. The local access method is faster thanthe network access method, but is only
usable by applications whichrun on the same host as the database.

Monitoring

The database information call for active connections always reports exactly one connection on a Classic server, no matter how many clients are connected to
databases on that server. The reasonfor this is that every client connection has its own gds_inet_server process on the server, and each instance of that
program knows only about its ownconnection. Only in SuperServer does the server process have the ability to report all client connections on the server.

Security

In order for InterBase Classic to work with a mixture of local and remote clients running as different user ID's, the server executables gds_inet_server and
gds_lock_mgr must run as root.

The processes must run with a real uid of root to set their effective uid to that of the client uid. The lock manager must have the superuser privilege to send
signals to the processes. In some IT environments, the presence of executables with setuid bits turned on raises concerns about security. Nevertheless, do
not change the runtime configuration of the InterBase server. The setuid root configuration of the Classic software is important to its function.

Because applications can run as anyuid, database files must be writable by all uids that access the databases. To simplify maintenance, database files are
created writable by the whole world.

With care, youcan restrict these file permissions, so that the database files are safe from accidental or deliberate damage. Make sure youunderstand file
permissions completelybefore attempting this, because all local and remote clients need write access to the database, even if they intend only to read data.

Classic versus SuperServer

Invoking SuperServer

SuperServer runs as a single process, an invocationof the ibserver executable. ibserver is started once by the system administrator or by a system boot
script. This process runs always, waiting for connection requests. Even when no client is connected to a database on the server, ibserver continues to run
quietly.

The SuperServer process is not dependant on inetd; it waits for connection requests to the gds_db service itself.

The SuperServer process is a multi-threaded application. Different threads within the process are dedicated to different tasks. For instance, one thread waits
on the gds_db service port for incoming connection requests. Other threads are analogous to individualgds_inet_server processes in the Classic model,
serving client queries. Another thread serves as the lock manager, replacing the gds_lock_mgr process from the Classic model.

Lock management

The lock manager in SuperServer is implemented as a thread in the ibserver executable. Therefore InterBase does not use the gds_lock_mgr process.
Likewise, POSIX signals are not used by the lock manager thread in SuperServer; interthread communication mechanisms are used.

Resource use

The SuperServer implementation has less overhead and uses fewer system resources per client connection thanthe Classic model. SuperServer has one
cache space for all client attachments, allowing more efficient use of cache memory. For these and other reasons, SuperServer has demonstrated an ability to
efficiently serve a higher number of concurrent clients.

Threaded server & UDFs

User-Defined Functions (UDFs) are libraries of functions that youcan add to extend the set of functions that the InterBase server supports. The functions in
your UDF library execute within the process context of the InterBase server. Due to the threaded implementation of SuperServer, there are issues with UDFs
that require that you write UDF functions more carefully than when writing UDFs for a Classic server.

You must design UDFs for SuperServer as thread-safe functions. You cannot use global variables in your UDF library, because if two clients run the UDF
simultaneously, theyconflict in their use of the global variables.

Do not use thread-local global variables to simulate global variables. SuperServer implements a sort of thread pooling mechanism, to share threads among all
the client connections. It is likely that if a given client executes a UDF twice, that each execution is not executed in the context of the same thread. Therefore,
you cannot depend on thread-local variables keeping values from one execution of the UDF to the next for a given client.

UDFs that allocate memory dynamically run the risk of creating a memory leak. Because SuperServer is supposed to stay up and running indefinitely, not just
for the duration of the client connection, memory leaks can be more damaging in SuperServer than in Classic. If your UDFs return dynamicallyallocated
objects, thenyou must use malloc() to allocate the memory for these objects (on Win32, youmust use ib_util_malloc() or the malloc() that is part of the
Microsoft Visual C++ runtime library). Do not use new or globalalloc() or the Borland malloc().

687

Finally, such functions must be declared in databases with the FREE_IT optionof the DECLARE EXTERNAL FUNCTION statement.

Bycontrast, in Classic, there is a separate process for eachclient connection, so the UDFs are guaranteed not to conflict. Global variables are safe to use.
Also, memory leaks are not as dangerous, because any leaked memory is released when the client disconnects. InterBase recommends that youdesign
UDFs for SuperServer, the more restrictive model, even if youuse a version of InterBase implemented with the Classic model. Eventually InterBase will be
implemented with SuperServer on the platform you use. If you design UDFs with this assumption, you can upgrade to a later version of InterBase without the
risk that your UDFs must be redesigned to work with SuperServer.

Security

SuperServer can be configured to run as a non-root uid, for enhanced security. In SuperServer, you canrestrict the permissions on database files to allow only
the InterBase server uid to access the database.

Why two implementations?
The Classic implementation predates the SuperServer implementation, and the SuperServer implementation is the future of InterBase. Classic configuration
is used on operating systems that currently don't have the technology for threaded applications, which is required for SuperServer. InterBase also distributes
the Classic version on platforms that have threading technology, but which benefit from the low-profile implementation.

SuperServer has a greater ability to meet the demands of a growing multi-user system, while retaining good performance and efficiency. SuperServer is
implemented in InterBase product on all platforms where it is technically practical. It is the intention that SuperServer is the future directionof InterBase on all
platforms.

Changing server to solve undefined crashes
September 2004. Many thanks to Gerhard Behnke at dpa (Deutsche Presse Agentur) for this contribution.

We managed to solve our problem with undefined Firebird crashes in the following way:

W2003/Superserver

It is essential to check Firebird's memory requirements using the Task Manager. If the requirements are approaching 2 GB, there is a danger of Firebird
crashing, e.g. if more than2 GB is required when submitting a long and detailed query.

Solution

1. Equip your server with at least 3 GB, and ensure the 3GB switch is set in the Boot.ini. In order to handle this 3 GB address space, it is necessary to
use the appropriate Firebird version (when the normal Firebird version is only linked with a different link flag). I think we maybe the only companyto
currently be in possession of such a Firebird version (Paul Reeves performed the linking for us).

2. The best solution is however to change to the Firebird Classic Server, together with sufficient RAM and more that one CPU. This certainly puts life
back into the database!

688

Database design
Database normalization

1. Rule zero
2. First normal norm
3. Second normal norm
4. Third normal norm
5. Fourth normal norm

Database design
A good database design is vital for a client/server application. It is important to think about the design of the tables among eachother to optimize data
storage, i.e. in which table should eachquantity of information be placed, and how this table should be linked to the information in other tables. The
normalization process helps here as it avoids double data storage as well as unnecessary wastage of space; data access becomes considerablymore
efficient, at the same time improving database performance and data integrity. Special business problems in the database can be solved with the aid of
database design; for example, theyenable typical relationships betweenmaster and detail tables.

Relational databases work best when data is broken up into different tables that are joined together on commoncolumns. This design results in narrower,
longer tables, where the primary key is used to access the data, and indices are used to speed this process.

Database models are generally designed to solve specific business problems: they allow typical business data relationships to be represented. This is
particularly important, for example, when many detail rows need to be joined to one master row. This is most often done by splitting the data into two or more
tables and joining them on a shared column. When data is represented in this way, some duplication is unavoidable. There are always columns that must
appear in each table in order to actually create the join. However database models allow you to minimize unnecessary duplication.

These models also ensure that if a value is updated in one table, the matching values are updated in related tables, known as referential integrity.

The IBExpert Database Designer is an ideal tool for data modeling and design, whether creating a model of an existing database for analysis, or designing a
new database.

Database normalization
The goal of normalization is to reduce redundant information. In other words, only store one piece of information one time. A table is said to have repeating
groups and to be un-normalized if:

1. it contains many repetitions of the same piece of information in the same column
2. more than one columncontains almost the same type of information
3. a columnconsists of complex information that should be broken into several smaller pieces.

Tables without repetitive values are described as normalized. The transition from one design to the other is called normalization.

Five forms of normalization can be differentiated. The first four normalization forms will be described verybriefly here, the fifth being an extremely theoretical
demand on tables. There is a wide range of specialist literature available on this subject, for those requiring more in-depth information.

Rule zero
The relational theory requires, as a rule, a unique key in each table, in order to identify information clearly. This is composed from the three following:

The table, in which the data is stored,
The field in this table, whichneeds to be accessed,
The value of the primary keyfor this data set.

It is clear that the primary key is important for the identificationof a data set. At the same time InterBase/Firebird automatically creates an index via the
primary key, so that searches in multi-table queries are much quicker than those without an index.

A table has only one primary key, althoughthe primary keycan consist of several columns. So, a simple rule for normalizing databases is - always keyyour
tables!

First normal norm
The first rule of database design states: eliminate repetitive groups. For each group of related columns, make a separate table and give that table a primary
key.

A table is said to be in first normal form if all columns containatomic (i.e. indivisible) values only. This is another way of saying that there are no repeating
groups.

First normal form problems

INSERT anomalies (e.g. certain master data cannot be recorded until an order or sale is placed), UPDATE anomalies (it is too easyto miss certain entries when
updating) and DELETE anomalies (whole records disappear from the database, including master data).

Second normal norm
The second rule of database design is: If a table columnis only dependent upon part of a multicolumn key, this column should be removed to a separate table.

689

For a table in the second normal form, it must already be in the first normal form, and all non-key-columncontents must be dependent upon the complete
primary key. The second normal form avoids double storage of information. Tables become narrower, the more the database is normalized, with less
duplicationof wide columnvalues. Where duplication is unavoidable, it can be made as small as possible by using an ID number.

Second normal form problems

There are no repetitive groups, and all columns are dependent on their table's primary key. However some irregularities canstill be found; from the relational
viewpoint, certain fields mayhave no relationship to eachother, e.g. a customer telephone number has nothing to do with an order number. It is a customer
feature, not an order feature, and leads to storage of redundant data. For this reason, it makes sense to remove this information to a separate table.

Third normal norm
The third normal form is tantamount to the second normal form, as it is also aimed to avoid UDATE, DELETE and INSERT problems. It is mainly concerned with
relationships in tables with a single column primary key.

The rule can be defined: when column contents have no connection to the table's primary key, theyshould be removed to a separate table.

A table is in the third normal form, when each columndescribes data corresponding to the primary key.

Most operations are carried out on keyfields, ensuring a high performance. Details are maintained in their owntables, secure from UPDATE, DELETE, and
INSERT anomalies.

Fourth normal norm
The majorityof applications need go no further than the third normal form. There are however certain situations, in which the data segmentationneeds to be
refined. For example, each sales team order needs to be assigned to the sales personresponsible, for a planned monthly sales per personsummary. Where
should this information be stored? A simple solution is to expand the relevant table to include the field SalesContact.

The problem becomes clear, when it is considered that often more thanone call was necessary to result in one sale. The fourthnormal form rule is: isolate
independent multiple relationships.

There are one or more calls leading to each order. The order position information has nothing to do with the telephone calls made. Therefore the call
information is removed to its own table, to ensure that, here also, the independence of information in each table is warranted.

690

Enterprise-wide data model
1. We are still confused – but on a global scale
2. Structuring data comprehensively and usefully
3. The enterprise-wide data model
4. Project model with clear task definition
5. Foundation for theme databases

Enterprise-wide data model
New technologies are not a universal remedy: ways to achieve an enterprise-wide data model

Todayalmost all enterprises are fighting against a profusionof data, simultaneously suffering from a lack of useful information. Applications have grown
isolated and exist in their ownmore or less well-documented data and file world. An important task of information management is to convert the multitude of
data into a manageable amount of significant information. "Information as a resource" has integrated itself in the series of terms that have become common
knowledge for data users. This keyword is commonly used and everyone now considers information to be of equal importance to the classical production
factors capital, human resources and plant. Information management is an old hat which has finally beenrecognized and allocated its ownorganizational unit.

The persons appointed the responsibility for this information management are those who have so far been responsible for information systems: the DP or
Organizational Manager. As an additional admonition, these managers are then required by general management to also consider old data as a new
resource, and treat it with the corresponding diligence.

This viewpoint may be exaggerated, however the impression is given in many enterprises that by appointing an Information Manager, enough has been done
to keep up with the new trend, and it is now possible to return to day-to-day business with responsibilities for:

Hardware and software selection and implementation,
Design of a hardware and software architecture for centralized and decentralized applications,
Provision of the infrastructure for information users in the various enterprise sectors,
Maintenance of standards and procedures.

But is that really all that information management needs to do? It is indisputable that the strategic direction of Information Technology is a considerable
complextask of information management, the tasks mentioned above having become considerablymore complexthan theyever were.

Information management has lost its way in the data-processing jungle. The technical range, with its overabundance of possibilities, has not just become
more extensive and complex, but has also brought with it compatibility and integrationproblems due to the lack of standardization; just consider the range of
different network types, communication technologies, CIM products.

It’s no wonder that information management can these days easily err in the data-processing jungle. But let’s assume that the IT-technical world was different:
strategically concise, tidier, clearly structured and without any technical problems.

What would thenstop the enterprise from finallybeing able to fullyutilize the longed-for possibilities to exchange all information as desired?

Everyone could then:

within the realms of his authentication, independently
use and alter others’ information, create new information and make it available to others?

What is stopping them? This picture might be enticing, but unfortunately extremely deceptive. Because eventhe most perfect technology cannot hide the fact
that, althoughbits and bytes can be distributed as wished, their information content could still continue to be unknown, or at least be misinterpretable.

Bynow it should be clear, that today’s information management insufficiently fulfils the fundamental tasks of tomorrow:

Information planning and information strategy
Design of an application architecture
Planning software applications

These three fields of responsibility are closely linked together, as an expedient planning strategy of individual software applications needs to be based on a
previously compiled applications architecture, designed for the future.

The application architecture itself will need to be based on the results of the information planand strategy, so that this task canbe regarded as, in the long-
term, the central logical basis.

The following remarks will therefore be confined to this basic function. There are two aspects to information planning. It demands firstly that you deal with the
information itself - specifically and in detail. And it needs the managerial functions that create and process the information. However the lynchpin remains the
information itself.

We are still confused – but on a global scale
So, initially the information is in the foreground. Information cannot be classified as such, until the data has been complemented by its semantic content, i.e. its
meaning, thus becoming interpretable. However the current situation in most enterprises still predominantly mirrors the conventional picture of data
processing and not that of targeted information processing. Applications systems that have grown isolated exist in their own world, where no one system is
aware of the other, and which, at best, are only able to communicate via elaborate interfaces.

Data communicationdemands a commondata appreciation though. However homonyms (terms with the same name but a different meaning) and synonyms
(terms with different names but the same meaning) have become the order of the day in both application systems as well as in individual departments.

691

Applications, whose job it is to compile summaries and analyses, composed from base data from different operative systems for planning purposes or even
as a tool to support enterprise decision making, find it extremely difficult to deliver reliable results. Reliability can only be achieved, when it can be assured that
the base data do not just have the same name, but also the same meaning.

As clear definitions and descriptions for the data meaning are still missing in many enterprises, it is right to doubt the informational value of many an analysis
or report. This situation cannot however be improved by implementation of new technology, whichserves no other purpose than to distribute the dubious data
more quickly.

New technologies alone may evenmake this problem worse, by ingeniously helping to expand localized chaotic situations into global ones, based on the
principle, "We are still confused, but on a global scale".

Structuring data comprehensively and usefully
One of the most important tasks of information management is therefore to transform the multitude of existing data into a manageable quantityof meaningful
information, in a structure that is both comprehensible and therefore usable for all information users.

This structure is the well-known data model. A data model is an illustration of the enterprise’s information (or parts thereof) and their interrelations from a purely
managerial point of view, independent of how theymight be realized in the data-processing world. These days the importance of such an enterprise-wide data
model is almost indisputable and its design and maintenance should be a task for data management, which is an integral constituent of information
management.

Unfortunately in reality, surprisingly few enterprises dare to venture the construction of such a model. One the reasons for this appears to be fear of the word
"enterprise-wide", as it gives the impression of an impossiblyhuge and insurmountable task.

But there are in fact realistic and viable ways by which "enterprise-wide" can be approached step by step, without having the rug pulled out from under your
feet. One of these methods leads to what should here be called "enterprise-wide data model", the other leads to the resulting "enterprise data model".

The constructionof both models is based on the same theoretically established and empirically tested method, that of the data model, which however will not
be gone into detail here. Both models differ in their aim and, more than anything else, in their level of detail. Both models should enable information planning
and information utilizationglobally across all projects, nevertheless each with a somewhat different specificity.

The enterprise-wide data model
The enterprise-wide data model corresponds to today’s current established data model, and has the certainly extremely ambitious aim to achieve the
following:

A complete base of all information that the enterprise has to offer (including a professional data catalog), which is able to serve bothas a detailed
fundament of information and communication between departments, and aid with data processing.
To provide a specification from whichdatabase structures canthen be derived.
To keep project interfaces small.

How is it possible to meet these highdemands? Such a detailed data model cannot realistically be achieved in one simple step, but needs to be constructed
from many small sub- data models. Each single partial model results from a project, which applies methodical data analysis. Each project creates a project-
related data model, confined to its own informational area. The terms and concepts used in this data model however need to be clearly defined and be valid for
the total enterprise.

The enterprise-wide data model evolves from the bottom up, arising from the union of the single project results into one consolidated structure.

Practice shows that this method has the following advantages:

Each project recognizes the benefits of data analysis itself as an aid.
The resulting "project data model" can be utilized immediately.
The project result has been achieved to the great level of detail required, yet with a manageable amount of effort.

Problems arise however with this method when consolidating the partial models. It often becomes apparent at the interface of two projects, that the supposed
enterprise-wide denominationand definition of the data is only actually fully valid from the limited project viewpoint, and now needs to be synchronized with the
other projects. Information streaming increases project effectiveness.

This fine-tuning can be an elaborate process, which also in addition needs to take into account the human factor, namely the danger of those involved
mistaking their owncontributions and efforts as their property.

The process is also elaborate, because alteration to names and structures could have an effect on the results of other projects (e.g. functional flow
descriptions), and other projects mayneed to adapt their results accordingly.

It is only possible to minimize this project-related annoyance if:

Each sub-project is adequately informed of the enterprise’s strategy with regard to mutual information, and feels sufficiently obliged to comply.
Each project is kept informed right from the beginning of the results of previous or progress of current projects, and is able to use these actively,
thereby saving expenditure, and evenmore importantly, effort.

This method produces immediate results, as even the initial results of the first project are a step towards information organization, without which information
management is powerless in the long-term.

However the enterprise-wide data model cannot be used as a basis for information planning until at least two years later, as it takes this long for the results of
the individual projects to be delivered, quality-controlled and synchronized with eachother.

The enterprise data model however demonstrates its benefits rapidly, because it is constructed as an independent assignment, detached from other projects
and with a different target: that of the enterprise data model.

692

The enterprise data model primarily follows a different target direction to the enterprise-wide data model. It does not aim to achieve a detailed data catalog
and will never represent a complete base of all data in the enterprise.

In contrast it should:

Provide an summaryof the enterprise’s information at top level,
Recognize information supplyareas ("theme" databases), according to which this information can grouped and summarized,
Be a decision aid, enabling projects to be defined more precisely at their initiation, and last but not least,
Produce a result with whichenterprise management can demonstrate to all information users that theytake the term "information" seriously.

These goals of a collective consolidated structural summaryof the enterprise cannot be attained by joining the individual project results, bottom-up, and then
integrating them upwards. An enterprise data model canonly be developed as an independent and self-contained project, with participation of all
management levels, as summaryand not detail information is required here. Bymanagement we meanthe specialist departments and sectors, as it is only
here that data can be defined from a managerial point-of-view.

Data collation is achieved through interviews relevant for the level concerned and related professionally and technically.

Its goes without saying that the definition and description of this data will have a different quality to that of the enterprise-wide data model. In the enterprise data
model relationships are identified clearly and precisely, always with the aim of simplification and roughabstraction. (Keep in mind that the objective here
should not be a constant information refinement down to the last detail (i.e. an endless top-down process), but the constructionof an approximate summary
model that can continue to be maintained at this crude level.)

Project model with clear task definition
As the enterprise model is a self-contained investment, without direct implementation into a data application, its initial construction should be completed within
a maximum 6 month time frame. The model can thenbe used immediately at project initiation.

The enterprise data model can be made immediatelyavailable and passed on to projects, along with a clear definition of whichof the subject areas described
belong to the project objectives. Project boundaries can be defined and established in relationship to each other right from the start, and subproject
intersections can at least be fixed at a rough level.

This anticipatorydescription of intersections considerably reduces later investment for project adjustments, as each project knows its own"data limits", and is
also aware from the start whichother information management project partners he will need to confer with for the fine-tuning phase.

The results of this project refinement are not included in the enterprise data model, but grow together to form their own independent enterprise-wide data
model.

The enterprise-wide data model and enterprise data model are therefore not "either-or" models, but are, in the true sense of the word, "as-well-as"
complements. But what do both these models have to do with future-oriented information planning and information strategy, are theynot managed by data
administration?

The problem today lies in the term administration, which has little to do with management and consequentlywith strategyand planning. Many enterprises have
started constructing an enterprise-wide data model, but its use is still mainly limited to the unification of terms and information correlations. Compared to the
alternative of prevailing data chaos this limitation is however still a huge step forward, which itself is worth a certain amount of effort.

However data and information planning require more, and open up in the long-term other perspectives. Information planning should achieve the goal of
comparing the enterprise’s current information supply situationwith future visions and to assess them, in order to recognize supplydeficits and to be able to
simulate and optimize future supply situations. This however assumes that not only the enterprise’s information is known, but also the functions that are
connected to the use of this information. Principally only the comparison of a data model with the functions or functional areas that are necessary for the
improvement or extensions of strategically important business areas, allows informational gaps and superfluous informational ballast to be detected. But what
does this mean, in view of both the above-mentioned types of data model?

The enterprise-wide data model is only suitable for detail planning aspects, because of its level of detail; that is, when dealing with the concrete definition for
contained single subject areas. In contrast, this model is unsuitable for planning or strategic aspects. And yet it is the only model, in many cases, that is (at
least in part) used by information management.

Foundation for theme databases
But who begins with strategic management tasks in other enterprise areas at the operative level, such as the Internal Revenue? Information management is
often degraded to the level of dealing with nothing other than the daily business (enterprise-wide data model), instead of setting the basis for management
tasks: the enterprise data model.

The enterprise data model offers management (and not just information management), for the first time and withina short period of time, a defined basis for
their own information and informational areas (theme databases) which is comprehensible to all.

This model allows a meaningful and clear classification of information for the enterprise’s functional areas and organizational units. It supports the construction
of a more comprehensive model, with which a conscious design and simulation of future information management is made possible.

And there is one more advantage: the enterprise data model includes business management, in its target-oriented way of thinking, in information and
informational correlations right from the beginning. Data model and information management become accessible to all concerned, becoming today’s
obligation to go on the "search for tomorrow’s information".

693

Space Management in InterBase
1. Page types
2. Basic page allocation
3. Advanced page allocation
4. Additional page allocation steps for data pages
5. Additional steps for interesting pages
6. Releasing pages
7. Releasing data pages
8. Elementary allocation on page
9. Finding space for data

Space Management in InterBase
ByAnn Harrison, IBPhoenix.

AnInterBase database consists of a set of fixed length pages of different types. Ten page types are currently defined:

Header page (HDR)
Data page (DPG)
Blob page (BLP)
Transaction InventoryPage (TIP)
Page Inventory Page (PIP)
Pointer page (PTR)
Index Root page (IRT)
B-tree page (BTR)
Write-Ahead Log page (LIP)
Generator page (GEN)

Two of these, page inventory and pointer are used for space management. For those not familiar with InterBase's on-disk structure, the next article, Page
Types, includes a brief description of each of the page types.

Page types
All page types include a header that holds generic page information.

 typedef struct pag {
 SCHAR pag_type;
 SCHAR pag_flags;
 USHORT pag_checksum;
 ULONG pag_generation;
 ULONG pag_seqno; /* WAL seqno of last update */
 ULONG pag_offset; /* WAL offset of last update */
 } *PAG;

Each specific page type adds more structural information. The first page in every database is its header (HDR) page. Secondary database files also have
header pages. Data pages (DPG) contain data; blob pages (BLP) contain blob data for those blobs that don't fit on the data page with their parent record. Any
data page contains data for only one table. Any blob page contains data for only one blob. Transaction inventory pages (TIP) contain an array of bits, two per
transaction, that indicate the state of the transaction. A transaction id is an index into this array. Every page in the database is represented by one bit in a
page inventory page (PIP). The bit indicates whether the page is currently in use. Page inventory pages (PIP) occur at fixed intervals in the database - the
interval is determined by the page size. A pointer (PTR) page is the top-level locator for data pages. It contains an array of page numbers for the data pages
of the table and a corresponding arrayof bits that indicate whether the page is full. No pointer page entry is made for blob pages or pages that contain only the
second or subsequent pages of data from a fragmented record. Index (IRT) root and b-tree (BTR) pages are what theyappear to be. The only odd thing is that
eachtable canhave only one index root page. For that reason, you can put more indexes on a table when you use a large page size. The log information
pages (LIP) for the write-ahead log are not currently used, though code to use them is included conditionally. Generator pages (GEN) contain arrays of 32 or 64
bit integers, depending on the dialect.

Basic page allocation
Page allocation is handled by the routine PAG_allocate in PAG.C. When some routine needs a new page, it calls PAG_allocate. PAG_allocate gets the page
control block from the database block to find the first page information page that has free space. If necessary, it reads that pointer page from disk. It then
scans the page, looking for the first free bit, and assigns that page number to the new page. The page image is created in the cache manager (CCH), which
give it the appropriate page type. The cache manager then returns the buffer pointer to the routine that requested the new page. Whenthe page is marked for
write, the page I/O module (PIO) writes it to the appropriate offset in the database file. Housekeeping Note: To keep the database on disk consistent, the
pointer page must be written before anypage that is allocated from it to avoid doubly allocated pages. Under ordinary circumstances, the shared cache or
page locks keep this from happening. If, however, the machine were to crash in mid-operation, the order of page writes can prevent corruption.

Advanced page allocation
If the system does not find space on the first PIP it examines, it reads the next, and so on until it searches the last PIP. If the last unallocated page is the last bit
on the last PIP, the routine allocates that page number as the next new PIP, formats it, marks the new PIP as needing to be written and the old PIP as
dependent on it. Finally, PAG_allocate calls itself to allocate the page that was requested originally, using the first bit on the new page inventory page. If the
database is defined to hold multiple files, when page allocation reaches the end of the first file, it creates a new file, gives it a new header, and resumes
allocating pages.

Additional page allocation steps for data pages

694

A data page is recorded as being in use both in the PIP and in a pointer page for that table. Once the new data page has beenmarked for write, its page
number is written into the first free slot one in the current pointer page or the first free slot on anypointer page. The order of writes is: PIP, data page, pointer-
page.

Additional steps for interesting pages
Information about interesting pages is stored in a system table called RDB$PAGES. Whenan index root page, a transaction inventory page, a generator page or
a pointer page is created, a new row is stored in RDB$PAGES. This operation can cause a new page, a new pointer page, a new page inventory page or even a
new file to be allocated.

Releasing pages
The header page is never released. Generator pages and transaction inventory pages are not released either. In theory, theycould be, but that would
complicate (slightly) some sensitive bookkeeping for (relatively) little gain. Nor are page inventory pages released. Once a database has grown to some size,
the only way to shrink it is to recreate it from a backup. When a page is empty, it is put back in the "free space pool" by clearing its bit on the appropriate page
inventory page. B-tree pages are released when the index is deleted, deactivated, or rebalanced. Blob pages are released when the blob is released,
because the record that owns it is deleted or because the blob itself was modified. Data pages created to hold the trailing part of a fragmented row are
released when the row - or at least that version of the row - is removed.

Releasing data pages
When the last row on a normal (non-overflow) data page is deleted, the page is returned to free space in a two-part operation. First, the page is removed
from its pointer page, which is the page that associates it with its table. If that empties the pointer page, then the pointer page is also marked as released on
its page inventory page. Releasing a pointer page requires changing a system table called RDB$PAGES. RDB$PAGES contains one row for each "interesting"
page in the database. Pointer pages, index root pages, generator pages, and transaction inventory pages are considered "interesting". Releasing an index
root page also requires deleting a row from RDB$PAGES. This process can recurse, just as the allocation process recurses, except that neither files nor page
inventory pages are released.

Elementary allocation on page
For most of the page types, allocation of space on page is not difficult. Generator pages, transaction inventory pages, page inventory pages, and pointer
pages are just [[Field Definitions[[#Array |arrays. When one page fills, another one is allocated. (Theoretic rather thanactual in the case of generator pages,
but the principle holds). Routines in the module PAG.Cmanage header pages - they are essentially simple structures followed by a byte array that holds the
filenames for secondary files. Space on generator pages and transaction inventory pages is never reused, so there is no reason to look for space on any
page of those types except the last. Space on page inventory pages is reused. When a page is released - no longer needed for whatever purpose it had - its
entry is cleared. For that reason, the page number of the lowest PIP with space is carried in the database control block. That number is not considered
reliable, but a good starting point.

Finding space for data
Each table carries with it a vector of its pointer page numbers, and two high-water marks, one for the first pointer page with data space, and one for the first
pointer page with space for a new data page. Whenstoring a record that compresses to less than the page size, DPM looks first for a pointer page with data
pages that have free space, thenat the header of the pointer page to find the first slot pointing to a page with space.

Now, just a bit more about data pages. Everydata page has a header like this:

 typedef struct dpg {
 struct pag dpg_header;
 SLONG dpg_sequence; /* Sequence number in relation */
 USHORT dpg_relation; /* Relation id */
 USHORT dpg_count; /* Number of record segments on page */
 struct dpg_repeat
 {
 USHORT dpg_offset; /* Offset of record fragment */
 USHORT dpg_length; /* Length of record fragment */
 } dpg_rpt [1];
 } *DPG;

The repeating offset/length is an array of pointers to data on the page. These pointers are called line index entries, at least by me. The actual data starts at the
bottom of the page and works up. Whenthere is no longer enough space for another line index entry and another minimal sized record, plus whatever space is
reserved for future expansion (that's another topic), the page is marked full, both in its header and on the pointer page.

DPM goes through the line index, adding up the space on page. If there's enough for the compressed record, alignment overhead, and a line index entry, it's
got a winner. However, the space may not be contiguous. In that case, DPM shuffles all the data down to the bottom of the page. Obviously, it doesn't
compress the line index entries, though it does correct the offset for data that has moved. Next step is to create a new line index entryand shoot the data onto
the page. Final step is to see if the page's fullness quotient has changed and make appropriate changes if so.

If there is space on page, but not enough for the current compressed record, DPM marches on through the pointer page, checking plausible candidates, then
on through other pointer pages until there are no more allocated data pages.

OK, now it's time to allocate a new data page. First, find a free page in the current PIP, or the next PIPs, or create a new PIP. Next, create the page in a buffer.
Now, starting with the first pointer page that has space to hold a new data page pointer, or create a new pointer page for the table. That's it. At least that's all I
can explainat the moment.

This paper was written by Ann Harrison in November 2000, and is copyright Ms. Harrison and IBPhoenix Inc. You may republish it verbatim, including this notation. You may
update, correct, or expand the material, provided that you include a notation that the original work was produced by Ms. Harrison and IBPhoenix Inc.

695

See also:
Firebird for the database expert: Episode 2 - Page Types

696

Multi-generational architecture (MGA) and record versioning
Database Statistics
Analyzing transactions

Multi-generational architecture (MGA) and record versioning
InterBase introduced multi-generational architecture (MGA) as the term for its implementation of multiversion concurrencycontrol.

Multiversion concurrency control (abbreviated MCC or MVCC) is the method used to prevent two or more users changing a single data set at the same time. It
provides eachuser connected to the database with a "snapshot" of the database for that person to work with. Any changes made will not be seenby other
users of the database until the transaction has beencommitted.

Firebird and InterBase implement this architecture using record versions. For example in dBase when a data set is altered, dBase overwrites the old version
of the data set with the new in the database file. The old versionof the data set is lost for ever. The Firebird server processes the data manipulation differently:
when a data set is updated, Firebird creates a new data set, recording the differences betweenthe original data set in its original state and the new updated
content. And when a data set is deleted, Firebird also creates a new data set (flagged as deleted)! For the simple reason, if a mistake has been made and
the transaction needs to be rolled back, the data set fully recovered.

These record versions are maintained by Firebird - parallel to the original data sets - until a COMMIT or ROLLBACK has been executed or until the server is
restarted (when Firebird restarts it rolls back all active transactions).

But not just the active transactions are stored. For example: User A checks the bank balance ($1,500) makes a bank account withdrawal of $1,000. Just then
the great-looking guy from the office next door rings and asks if she's free for lunch. User A drops everything and rushes out to lunch, forgetting to commit her
transaction, thus leaving it open. In the meantime User B checks the bank balance (still $1,500) and withdraws $800, not forgetting to commit his transaction
before he goes to lunch. User C likes to work through lunch, and whilst User A and B are out, he withdraws (bank balance now $700) respectively, $100, $200
and $300.

Not only is the record version for User A's active transaction stored. The 4 transactions made by Users B and C also have to be stored, because theywere
made after User A's transaction. In fact, all transactions which follow User A's cannot be completed and garbage collected until she has committed or rolled
back her transaction. What if she and the "good-looker" fall so madly in love, theyspontaneouslydecide to elope and never return to the office? It quite simply
means that all record versions from this date on will remainon the database file as record versions, which will obviouslysoon start to slow performance
considerably, unless someone finds her active transaction and rolls it back, or the server is restarted.

Database Statistics
Poor or degrading database performance is practicallyalways to do with poor programming and/or poor transaction handling.

Database Statistics are an invaluable insight to what is actually happening on the server. Firebird statistics should be evaluated regularlyand kept, because
when things do go wrong, it's immenselyhelpful to be able to see what they looked like when thing went right.

The Database Statistics display the following information for all tables in the database, both as a log script and in tabular form: table name, location, pages,
size (bytes), slots, fill (%), DP usage (%) and fill distribution (an optimal page fill is around 80%). For each table the indices statistics include: depth, leaf
buckets, nodes, average data length and fill distribution. Further information regarding these statistics can be found in the IBExpert Services menu item,
Database Statistics.

697

Analyzing transactions
Under the oldest transaction we can see the oldest transaction number that cannot yet be garbage collected. To ensure efficient performance, the difference
betweenthis number and the next transaction number should be kept as small as possible. This depends of course on the number of users and database
activity. For example, if youhave 160 users working on one database, a difference of 3,000-5,000 is probablyperfectly acceptable. However if there are only 2
users working on the database, you should be concerned if the difference betweenthe oldest and next transaction is in the range of 3,000-5,000.

The fault can usually be found in the programming. For example a select query that's never committed or rolled back. One secure way of ensuring active
transactions are rolled back is to temporarily disconnect anyuser, that has not actively used the application for the last half hour. There are great components
on the market for this, e.g. FIBPlus and IBObjects.

Bythe way: the next transaction value maynot exceed 1.4 billion. At the very latest at this stage you will need to do a backup and restore, as the restore sets
all transactions back to zero. However, at an average rate of one transaction per second, it would take 130 years to reach this number, and even if 10
transactions a second are performed, it will take 13 years!

It's important to observe the degradationwhen things slow down. For example, running a select every second, and watching the prepare and execute time can
be a good indicator. When this begins to slow, it's a premptive that something is wrong, and youwill find within a few hours that the database will begin to slow,
unless you find the source of the problem quick.

In daily usage, the oldest active transaction should not stayon a specific value for a long time, when the next transaction is constantly increasing.

If the oldest transaction is lower that the oldest active, use GFIX or anyother tool for that matter, to sweep the database.

698

See also:
Record versions as an undo log
Firebird for the database expert: Episode 2 - Page types
Firebird for the database expert: Episode 4 - OAT, OITand Sweep
IBExpert Database Statistics
Transaction
GFIX

699

Multi-version concurrency control
1. Origins of conflict
2. Firebird case

1. Concept
2. Similarities and differences

3. Conclusion
4. Acknowledgments
5. References
6. About the Author

Multi-version concurrency control
A not-so-very technical discussionof Multi-VersionConcurrency Control

Origins of conflict
In February 2002 Oracle published a "Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance" white paper where they claimed
to have better architecture in Oracle 9i compared to IBM DB2 UDB V7.2. In August 2002 IBM published "A Technical Discussion of Multi-Version Read
Consistency" white paper claiming that Oracle multi-version concurrency is not better than the approach used in IBM DB2, but requires many workarounds to
achieve needed results.

Traditionally, the problem of concurrency is solved using locking. If A needs access to resource N, it locks it; after use the lock is released. If Bwants to access
resource Nwhile A is using it, it must wait. It is clear that such approach maygive verypoor results when the locks are applied at a very high level – consider the
example of two editors editing different chapters in a big MS Word document. MS Word blocks access to the document file at the file system level. While the
first editor is able to modify the document, the second must wait until the first one finishes editing. And this is correct, since the second editor does not know
what changes were made by the first one in general. However, MS Word gives an option to open the document in read-only mode, allowing the second editor
to read the chapter, and plan what to change on the "secondary storage", read "using a pen and a sheet of paper". When the first editor finishes editing, the
second editor re-opens the latest versionof the document in a read-write mode and "applies" the changes noted on the paper.

In its white paper Oracle claims that IBM DB2 UDB V7.2 EEE, which uses locking as in the example above, has poor concurrency, citing the "Oracle to DB2
Porting Guide": "As a result of different concurrency controls in Oracle and DB2 UDB, an application ported directly from Oracle to DB2 UDB mayexperience
deadlocks that it did not have previously. As DB2 UDB acquires a share lock for readers, updaters may be blocked where that was not the case using Oracle.
A deadlock occurs when two or more applications are waiting for eachother but neither can proceed because eachhas locks that are required by others. The
only way to resolve a deadlock is to roll back one of the applications."[1]. In response, IBM claims that Oracle's multi-version architecture does not solve the
problem, since now the database engine has to do much more I/O to access needed record versions and the disk space for record versions is limited, and,
when it is filled completely, transactions are rolled back with a ORA-1555 "Snapshot too old" message. IBM also claims that approach used in Oracle gives
incorrect results under some conditions and additional programming is needed to solve the issue.

Firebird case

InterBase, the predecessor of Firebird, was among the first commercial databases to implement multi-version concurrencycontrol (MVCC)[2]. This makes the
behavior of Firebird close to Oracle, however with a notable difference – Firebird is naturally multi-versioned, while Oracle acquired this feature in Oracle 7.x.
Until than it had an architecture similar to IBM DB2. Firebird simply does not have the negative issues emphasized in the both white papers, while using all
advantages of MVCC.

Concept

So how does it work? The main idea was already presented when we talked about MS Word opening a file in read-only mode, but there are some important
details. As the name implies, eachrecord in the system might have multiple versions visible to different transactions. When a transaction modifies a record, a
new version is written to the database, and a previous version, representing only the difference between the versionof the record that was read by the
transaction and the new value of the record, is written as a back version of that record.

How does the system know whichversion is visible to which transaction? When a transaction starts, it receives a singly incrementing number. This number
uniquely identifies the transaction within the system during the lifespan of the database since the last restore. Everychange that is done in the database is
"signed" by the transaction number. When a record is read on behalf of some transaction, the database system compares the "signature" of the record with a
transaction number. If the "signature" belongs to a transaction that was committed when the current transaction started, that version is returned to the
application. Otherwise, the database engine computes the needed versionusing the current record state and the back versions of that record without regard
to the locks that the writing transaction has.

This is very simplified description of what happens in Firebird, for more technical details please read the Firebird for the Database Expert: Episode 4 -
OAT,OIT& Sweep article. Ann W. Harrisonprovides an excellent description with examples that illustrate the whole complexity of this issue.

Similarities and differences

The description above should be enough to see that Firebird functions similarly to Oracle 9i.

Multi-generational architecture allows different transactions to avoid conflicts between readers and writers. The reading transaction can always see a
consistent view of the database regardless of the write operations that are happening concurrently. IBM DB2 canprovide such level of concurrencyonly
sacrificing the database consistency and using dirty reads.
The mechanism of back versions in Firebird is similar to the rollback segments used in Oracle for the same purposes. Both systems are optimistic, in
other words, they assume that, in most cases, an application will not need previous versions of the records. The optimization is performed to give the
best performance to the most likely case.

But unlike Oracle, Firebird cannot produce anything similar to the ORA-1555 "Snapshot too old". There is no need to estimate the size of the rollback
segments as described in the IBM white paper, since all information needed for rollback operations and computing previous record versions is stored inside
the database itself and the database file grows automatically if more space is needed.

700

However, the approach used in Firebird has its price. What Oracle solves by rolling the rollback segments over, and which finally leads to the ORA-1555
"Snapshot too old" error, Firebird must handle differently.

The first issue is long record versionchains. Oracle drops rollback segments when they get too large. Firebird never drops a back version if it could be seen
by any running transaction. As a result, a long-lived transaction blocks the removal of back versions of all records, causing the database to grow and
performance to deteriorate. The performance cost is due both to the decreased density of valid data and to the cost of checking whether anyback versions of
records can be deleted.

A second issue is the cost of removing back versions. Oracle's back versions are in a separate segment. Firebird's back versions are in the database, so they
must be removed one at a time, as theyare encountered by subsequent transactions.

A third issue is the cost of a rollback. When a transaction inserts, updates, or deletes a record, Firebird changes the database immediately, relying on the
back versions as an undo log. A failed transaction's work remains in the database and must be removed when it is found.

Firebird successfully handles these cases without user intervention. Its behavior is controlled by a few parameters, like "sweep interval". However detailed
discussion is out of the scope of this paper: please see the Firebird documentation for more details.

It is worth mentioning one verynice "consequence" of the fact that there is no recovery log. Firebird has to take additional care to keep the database file in a
consistent state – if a crashhappens, there is no other place where information can be recovered except the database file itself. This is achieved using the
careful write technique – Firebird writes data onto disk in such a manner that, at every single moment, the database file is consistent. The careful writes
feature is something that really makes the life of the end-user easier. In addition to automated database housekeeping, Firebird has also automated crash
recovery – a truly DBA-free database engine.

The next critique of Oracle's versioning mechanism is what IBM calls an ability to see current data. The example on Illustration1 is used to demonstrate the
weakness of Oracle 9i.

Time Transaction 1 Transaction 2
1. Begin transaction.

2. Begin transaction.

3. Select available seats on flight ABC111. See seat 23F
is the last seat available reserve this seat.

4. Select available seats on flight ABC111. Also sees 23F as Oracle will go
to the rollback segment to get the old versionof that block.

5. Commit transaction.

6. Reserve this seat.

7. Commit transaction. Successful but now the flight is oversold.

Illustration 1: Example IBM used to show incorrect logic in Oracle 9i version control.

So, how does it apply to Firebird? It will not work. Firebird reports an error on step 6. The logic is quite simple in this case. At the beginning of the operation,
both transactions saw a record version signed by a transaction, let's say, 120. When transaction 1 committed on step 5, the new record version was signed
with a number of transaction 1, lets say, 125. Now, if transaction 2 tries to update the same record, it will find that the version of the record is no longer 120, but
125, and will report an error to the application. The update operation will not succeed.

Furthermore, the same error will be reported if step 6 happens before step 5, but after step 3. It is also possible to tell transaction 2 to wait until transaction 1
finishes and then decide the outcome of the operation. If transaction 2 is luckyand transaction 1 is rolled back (for example, the customer booking a seat in
transaction 1 changed his mind), it will successfully book the seat for the second customer. In case of IBM DB2, the lock conflict would have happened already
in step 4, since transaction 2 would try to lock a record that had already been modified by transaction 1. The change of mind by the first customer does not
help the second one. The application has to re-read the table and check for a new seat for the booking.

Conclusion
From the above it is clear that multi-version concurrencycontrol, if implemented correctly, provides a superior concurrency in cases when update conflicts are
rare compared to traditional pessimistic locking schemes. It is also clear that there are cases when pessimistic locking will perform better. However, the claim
made by IBM that multi-version concurrencycontrol is not used in most database systems is no longer true since Microsoft has decided to switch to MVCC in
the next version of SQL Server (code name Yukon). Now two of three biggest commercial database vendors use MVCC. In fact, the versioning mechanism
used in Yukon is almost an exact copyof the mechanism used in Firebird. It took almost 20 years for other software vendors to find out that MVCC is great
approach to handle concurrent access to the database.

Acknowledgments
The author is grateful to Ann W. Harrisonand Helen Borrie for their comments and help during the preparation of this paper.

References
A Technical Discussion of Multi VersionRead Consistency, ByIBM Software Group, Toronto Laboratory August 2002, ftp://ftp.software.ibm.com/software/
data/pubs/papers/readconsistency.pdf.

Technical Comparison of Oracle Database vs. IBM DB2 UDB: Focus on Performance, AnOracle White Paper, February 2002.

About the Author
Roman Rokytskyy is one of the Firebird Project members, leader of the JayBird subproject, the JCA/JDBC driver for Firebird.

701

ftp://ftp.software.ibm.com/software/

[1]Oracle to DB2 Porting Guide, page 47, http://www.db2udb.net/guide/program/text/oraclev3.pdf

[2]According to Ann W. Harrison, first was Rdb/ELN released in 1984 by DEC, second was InterBase, both designed by Jim Starkey. Later DEC decided to
pushRdb/VMS, whichhad the same API, but was implemented completely different, so InterBase can be considered the first database using MVCC that
survived to our days.

702

http://www.db2udb.net/guide/program/text/oraclev3.pdf

Using IBExpert and Delphi applications in a
Linux environment accessing Firebird

1. Initial Topics
2. Introduction
3. Download and installation of Wine
4. Download and installation of WineTools
5. Creating and managing the Fake Windows (installations)
6. Preparing the Desktop
7. Acknowledgements

Using IBExpert and Delphi applications in a Linux environment
accessing Firebird
ByLuiz "RedDevil" Stefanski.
(Revisions by IBExpert KG)

Initial Topics
Before writing this article Iperformed tests in a complete installationof the Conectiva Linux version 10 without the 4th CD (the Update CD), so I had no
problems with dependencies, except with WineTools. I therefore installed the packet/libraries "gtk+-devel", X-dialog and glibc. The version of Wines used
for executing IBExpert is 0.9.5. I did not test Delphi applications with this versionof Wine. The Delphi application executed fine with Wine version 20041019,
but when using Wine version 0.9.5 Idetected the application’s screens were not displayed correctly, or maybe it depends on some extra configuration I have
not yet discovered.

Introduction
Linux is being used in homes and enterprise plants all over the world; Linux is gaining space and growing all the time, not only in server installations where it is
sacred, but in desktop installations too. Therefore it is unavoidable that developers will have to have contact with the Penguin at some time.

When this happens a good developer will discover that Linux is not a monster, principallybecause Linux has made a lot of transformations and now it is much
friendlier for the end user.

Talking about Firebird: theyhave a native version for Linux, but we can also manage and develop applications to run in Windows accessing Firebird in Linux.
One example of this management tool is IBExpert, and executing IBExpert in Linux. We can do this with a lot of applications developed in Delphi (Windows).

There is a lot of software emulators for Linux, like DosEMU and WABI, this software make DOS applications and Windows 3.1 applications execute on a Linux
platform. To execute IBExpert we will use one of the best ways to do this: WINE (Wine Is Not an Emulator). The ownname affirms that WINE is not only an
emulator. It maps and converts calls in the Windows API to the Linux API, this way the Windows programs are actually deceived, because they"think" theyare
being executed in Windows, but are actually executing in a virtual Windows called Fake Windows created by WINE to execute in the specified Windows
directory (~/.wine).

Download and installation of Wine
In this article we use the version 0.9.5 of Wine, the last version is the version 1.0 (youcan see this in the WINEHQ (http://www.winehq.org/), the official site of
WINE, the version0.9.5 is however sufficient for us. Maybe the earlyversions of Wine execute the Delphi applications better, but I tested IBExpert with version
0.9.5 of Wine and it works fine. This is also the nearest version to Wine 0.9 – Beta, the preferred version when using WineTools 0.9, and for the front-end we
will install some Microsoft Windows components in our fake windows, - very important in order for the software to work smoothly in Wine.

If you are an advanced Wine user you mayprefer to use the early versions of Wine or install the Wine version for your Linux distribution. If youwant to do this,
use the link for Sourceforge and track the steps beginning the installation from the archive.tar.bz2. You can download this file from a multitude of mirrors
(see table below). This is not of interest for newcomers.

703

http://www.winehq.org/

Important: WhenI wrote this article the latest version of Wine was version 0.9.5. You can however now find newer versions. Wine offers retrocompatibility, and
this can work the same way. Byonly changing the names youcan adapt the scripts to new versions.

After downloading the wine-0.9.5.tar.bz2 archive, we need to compile and install the Wine. So youneed to log in againas root user and move the
downloaded file to directory /root. Opena new shell and type the comands:

 [root@hades root]# tar -jxvf wine-0.9.5.tar.bz2 [Enter]
 .
 . (list of unpacked files)
 .
 [root@hades root]# cd wine-0.9.5 [Enter)]

 [root@hades wine-0.9.5]# ./configure [Enter]

The last comand maybe delayed some moments.

Following completion type in the same shell:

 [root@hades wine-0.9.5]# make depend && make [Enter]

Now, the next instructionwill be delayed... This depends on the CPU used. Isuggest you go drink a coffee, or read a good book until the compilation finishes!
After this we need to install Wine by typing the instruction:

 [root@hades wine-0.9.5]# make install [Enter]

If all works fine, Wine is now installed and readyfor use.

Do not run IBExpert (if you already have it installed) before carrying out the next steps. If youhave done, youmay need to delete .wine.

Download and installation of WineTools
WineTools is the front-end used to manage our fake windows; this tool will install the software and components necessary for Windows programs run inside
Linux.

As Ialready mentioned, we will use the version winetools-0.9, the download canbe done in 2 ways:

If youprefer the installation in a RPM pack, select it
If youprefer to track all steps and use the archive.tar.gz can download it from the link below.

Download winetools-0.9 em RPM
Download winetools-0.9 em .tar.gz

After downloading the file winetools-0.9jo-III.tar.gz, and logging in as root, move the file to the directory /root and opena new shell. Inside the shell, type
these instructions:

 [root@hades root]# tar -xzvf winetools-0.9jo-III.tar.gz [Enter]
 .
 . (list of files beeing unpacked)
 .
 [root@hades root]# cd winetools-0.9jo-III [Enter]

 [root@hades winetools-0.9jo-III]# ./install [Enter)]

Ready! The installation is finished. Looking at the illustration below youcan see some strange messages (this canhappen ;-), like command not found, but this
does not affect the performance of WineTools.

704

mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades

To close the installation, still logged in as root, follow the procedures listed below to download a script to use the WineTools. Open a shell and type the
instructions:

 [root@hades root]# cd /usr/local/bin [Enter]

 [root@hades bin]# wget -vc http://www.reddevil.eti.br/gettext.sh [Enter]
 .
 . (receiving the file)
 .
 [root@hades bin]# chmod 777 gettext.sh [Enter]

 [root@hades bin]# exit [Enter]

Creating and managing the Fake Windows (installations)
Now we will create our Fake Windows (we will call it Fake). This is necessary to run Windows applications inside Linux.

Caution! The root should never be used to work with Wine, so to this end we will use a common user, with rare exceptions, our user needing to belong to a
group firebird (and while Iwait our Firebird is installed and running in Linux). If you have not yet installed a Firebird server, you should do it now (http://
www.firebirdsql.org) before continuing to read this article. Please refer to Download and Install Firebird for installationdetails.

In this article Iwill be using a linux user called reddevil, so when Irefer to the directory ~/.wine, Iwill be referring to the directory /home/reddevil/.wine, OK?

Another important detail we need to determine is that Firebird is running in the localhost, or be situated on the same computer on which we are working, and
running (loaded) in the default directory (/opt/firebird). If someone needs to use a remote Firebird the results will be the same, but it is necessary of course
to make certain alterations correspondingly.

So, let's go! Firstly make sure you are logged in as a common user – that user will execute the windows programs. Opena shell and type the instruction. The
result is presented in the illustrationbelow.

 [reddevil@hades reddevil]$ wine [Enter]

This instructionstarts Wine and creates the Fake, to prepare the environment to run the WineTools.

Now, we will access the WineTools for the first time. If youare using KDE press [Alt] + [F2] or use the fbrun in the Fluxbox, or opena shell and type winetools
(in lowercase). Click the OK button in the 3 initial screens and done, you are in the Main Form of WineTools, and now you have a very intuitive interface, as in
illustration 3.

705

mailto:root@hades
mailto:root@hades
http://www.reddevil.eti.br/gettext.sh
mailto:root@hades
mailto:root@hades
www.firebirdsql.org
mailto:reddevil@hades

So, let´s beginby selecting the option Base setup, the first option in the WineTool's main form, this optionshould be already highlighted by default, if not,
select it! Thenclick the OK button to access the menuBase Setup of WineTools, as in illustration4.

Select the optionCreate a fake Windows drive and confirm, answer YES to the questionRemove existing Wine configuration?. Click the OK button to
confirm the pathof the CD ROM in /etc/fstab (or change it, if this isn’t correct) and to answer the questions What's your username? and What's your
organization? youcan fill in some information, like, user and home (if necessary the information can be changed in the file /~wine/system.reg). Wait for the
confirmationFake Windows drive created in ~/.wine. Click in the OK button againand wait for the Base Setup menu of WineTools.

The last procedure has created our Fake, with certain changes created when Wine is started. These changes may be altered using WineCfg and regedit.
Some changes may be, for example, certain file entries in ~/.wine/*.reg and some files in the directory ~/.wine/drive_c/windows/system32. Our Fake is (or
should be!) prepared to be a Windows 98, the best to run our applications.

706

Now we will install some programs for the Fake to work without any problems.

The first step is to install DCOM98. In the WineToolsBase Setup menu, select the optionDCOM98 and click the OK button. You should see the message
Downloading.

When the download is completed, proceed answer YES to the question: OK to install DCOM98 for Windows 98?, YES to the licensing terms (only if you agree of
course!) and wait for the installationto finish.

In the next step we will install the Microsoft foundation Classes 4.x. In the same menu (Base Setup), select the optionMicrosoft Foundation Classes 4.x,
confirm, and wait for the download to finish. Two DLL files will be installed and then youshould return to the Base Setup menu.

To continue we now need to perform a more complex installation, namely the Internet Explorer. In the Base Setup menu, select the option Internet Explorer 6.0
SP1 English and click the OK button. You will see the information displayed in Illustration5. Click OK to begin downloading the installer. During the installation
process the download screen maybe displayed too.

The download of the installer is fast, and when finished the installationstarts automaticallyand begins to download the components. This process may take a
long time, depending uponthe power of your internet link (as much as 30 minutes or more). The following will be downloaded: Internet Explorer, Outlook
Express, Windows Media Player, Macromedia FlashPlayer and the codecs, support for images files and VB Scripts. During the installationprocess of the
Internet Explorer messages, such as the one displayed in illustration 6, mayoccur. If this happens simplyclick the OK button to continue.

The downloaded components are subsequently installed automatically. When finished, the installation displays a message informing youthat WineTools has
copied some scripts into the directorybin. Click the OK button, and answer NO to the next question: Do you want to save the downloaded files for later?

Following this youare returned to the Base Setup menu.

We have now finished the installation in the Base Setup menu. So return to the Main Menu, the principal WineTools menu, and select the option Install
Windows system software to access the menuSystem Software, displayed in Illustration 7:

707

Note: You need some previous know-how regarding the installation process of WineTools. When youare in the System Software menu, select the following
options and follow the instructions displayed adjacently:

Windows Installer: Click the OK button, and thenYES in the ***WARNING***message displayed and continue. When the message confirming completion of
the installationprocess appears, click the OK button and wait for the WineTools System Software menuto be displayed.

Visual Basic 6 Runtime: Click the OK button, wait for the download and when the message Would you like to install the Visual Basic 6.0 run time files?
appears, confirm (YES) and wait for the installation process to complete and then return to the System Software menu.

Visual C++ run-time English: Click the OK button, wait for the download to complete, accept the license terms and confirm YES to the question: Do you
want to restart your computer now?. Wait for Wine to reboot, and the System Software menuto be displayed.

MDAC 2.8 and Jet 4.0 SP8 English: Click OK for the Hint exposed before the installation of MDAC 2.8, and wait for the download to complete. When the
installationstarts accept the license and proceed through the installation, selecting Next, Next and Finish. After the installationof Jet 4.0 SP8, follow the same
steps for the installationof the MDAC 2.8.

Now let’s install the Microsoft TrueType core fonts. Go to the WineTools Base Setup menu, select the optionTrue Type Font Arial, click OK, wait for the
download to complete, accept the license terms and finish the installationof this font family. After this, select the option Install Microsoft TrueType core fonts,
the third option in the WineTools Main Menu, and proceed with the installationof all available fonts in the same way.

Ready! The installation is complete!

Preparing the Desktop
Now we will prepare our Desktop, "casting" IBExpert and the programs in our Fake, and the Firebird´s Client DLLs too, preparing our database in the Linux
environment. You must have a disk partition with Windows and IBExpert installed, as well as the Firebird client on the same computer.

Before proceeding further we still have a detail to solve, namely the Wine date format used for programs. When Ifirst began to "play" with Wine Ifound it hard
to understand, because Wine manages date fields with the format d/m/aaaa. To use the date format dd/mm/aaaa we need to make some changes; this
information was kindly provided by myfriend Hamacker.

Logged in as a common user (this detail is very important) – the user youwere logged-in as during the installation, open a shell and type the command:

 [reddevil@hades reddevil]$ wine regedit [Enter]

This opens the Windows Register Editor. Search for the contents in the HKEY_CURRENT_USER\Control Panel\International key, and change the value of
sShortDate from d/M/yyyy to dd/MM/yyyy.

Our fake windows (~/.wine) could be copied at this stage to another computer,
where, after the permissions have beenchanged, another user could use it, without having to reinstall all the software.

Note: The next steps need be done by a user with root rights. Iprefer the KDE environment, because of the copyand paste facility for the instructions in
Konsole with [Shift] + [Insert].

708

mailto:reddevil@hades

For the next example, Ihave Windows 98 installed in a FAT32 partition in the same hard drive on the same computer and I will mount this partition in the
Windows flavor in the /winhd directory. This way Ican show how to proceed with copying the necessary files from that Windows partition to the Linux partition
where we are preparing the Wine Desktop. Opena shell and type the instructions (if necessary, change the instructions to adapt to your Windows):

 [reddevil@hades reddevil]$ su [Enter]
 Password: [root´s password] [Enter]

 [root@hades reddevil]# mount /dev/hda1 /winhd [Enter]

 [root@hades reddevil]# mkdir /home/reddevil/.wine/drive_c/programs [Enter]

 [root@hades reddevil]# mkdir /home/dados [Enter]

Now we will copythe necessary files to Linux. To make the Firebird connection we need a library to connect. If youare not sure about the software or
component necessary, use only the fbclient.dll and copythis file. If you are still not sure, copygds32.dll too to Wine's system32 directory. Be careful with
lower-case: all names and extensions must be lower-case. Hamacker says Wine does not accept any mismatches.

The list 1 (below) displays the sequence of instructions used for copying the files and creating the rights:

 [reddevil@hades reddevil]$ su [Enter]
 Password: [root´s password] [Enter]

 [root@hades reddevil]# mount /dev/hda1 /winhd [Enter]

 [root@hades reddevil]# mkdir /home/reddevil/.wine/drive_c/programs [Enter]

 [root@hades reddevil]# mkdir /home/dados [Enter]

 [root@hades reddevil]# cp -r /winhd/Arquivos\ de\ programas/HK-Software/IBExpert/
/home/reddevil/.wine/drive_c/ [Enter]

 [root@hades reddevil]# cp /winhd/Arquivos\ de\ programas/Firebird/Firebird_1_5/bin/fbclient.dll /home/reddevil/.wine/drive_c/windows
/system/fbclient.dll [Enter]

 [root@hades reddevil]# cp /winhd/Arquivos\ de\ programas/Firebird/Firebird_1_5/bin/fbclient.dll /home/reddevil/.wine/drive_c/windows
/system/gds32.dll [Enter]

 [root@hades reddevil]# cp -ax /winhd/myhome/dragonegg.fbk /home/dados/ [Enter]

 [root@hades reddevil]# cp -ax /winhd/myhome/*.exe /home/reddevil/.wine/drive_c/programs/ [Enter]

 [root@hades reddevil]# cd /home/ [Enter]

 [root@hades home]# chown -R firebird.firebird dados/ [Enter]

 [root@hades home]# cd /home/reddevil/.wine/drive_c/ [Enter]

 [root@hades drive_c]# chown -R reddevil.firebird IBExpert/ [Enter]

 [root@hades drive_c]# chown -R reddevil.firebird programs/ [Enter]

 [root@hades drive_c]# chown reddevil.firebird windows/system/fbclient.dll [Enter]

 [root@hades drive_c]# chown reddevil.firebird windows/system/gds32.dll [Enter]

 [root@hades drive_c]# umount /winhd/ [Enter]

 [root@hades drive_c]# exit [Enter]

List 1: Instructions for copying and granting permissions (rights)

The exit command (above) closes our root Access and turn us into a common user in the group firebird. And this user will restore the back up of a database
from the Windows partition in Linux. In the example, the database name is dragonegg.fdb:

[reddevil@hades reddevil]$ cd /opt/firebird/bin/ [Enter]

 [reddevil@hades bin]$./gbak -user sysdba -password senha_do_sysdba -C -V -Z -R -P
4096 /home/dados/dragonegg.fbk /home/dados/dragonegg.fdb [Enter]
 .
 .[instructions for restore]
 .
 gbak: finishing, closing, and going home
 [reddevil@hades bin]$ exit [Enter]

If you haven't installed IBExpert yet, then run it now.

Now let´s configure IBExpert to run in Wine, principallyusing the Multiple Document Interface (MDI):

So proceed with the following steps used to run WineTools and call the Winecfg, or, in the KDE environment, press [Alt] + [F2], or use the fbrun in the fluxbox,
or opena shell and type winecfg (in lowercase).

In the Wine Configuration, as seen in Illustration8, on the Application page, select the option Add application, and in then in the form which opens, Select a
Windows executable file, select the path of wine's virtualized windows environment until youreach the IBExpert folder, select ibexpert.exe and click Open.
Then go to the Graphics page and uncheck the optionAllowthe windows manager to control the windows, check the optionEmulate a virtual desktop, specify
the Desktop size: 795 x 550, as seen in Illustration9, and confirm with Apply and OK.

709

mailto:reddevil@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:reddevil@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:root@hades
mailto:reddevil@hadesreddevil
mailto:reddevil@hades
mailto:reddevil@hades

Alternatively type:

 $ env WINEPREFIX="/home/reddevil/.win" wine "C:\Program Files\HK-Software\IBExpert\ibexpert.exe"

710

The same procedure canalso be used for applications developed in Delphi.

With screens with resolutions of 800x600 Igot a good result for IBExpert
with Desktop in 795x550. Try different configurations with your screen width.

Now open a shell and type:

[reddevil@hades reddevil]$ wine ~/.wine/drive_c/IBExpert/ibexpert.exe [Enter]

This command runs IBExpert in the virtualized Windows. The use of IBExpert will not be reported in this article. It is extremely easyand intuitive. However Wine
implements an "exception" case: database access must always be made using TCP/IP. So it is important to use the TCP/IP protocol and localhost to identify
the database. Anexample of IBExpert running in Linux KDE is displayed in Illustration10.

711

mailto:reddevil@hadesreddevil

In the case of Delphi applications, IBObjects users have an advantage, because theysimply need to configure the component TIB_Connection and then
compile the applications to run in Fake. Applications using dbExpress must have the DLLs exported for Wine.

Using IBObjects, I configure TIB_Connection changing the properties CharSet, DatabaseName (including the IP and pathof the database, for example:
192.168.35.12:/home/dados/dragonegg.fdb), Username and Password.

Whenwe install the WineTools MDAC 2.8 and Jet 4.0, there are other components installed in Fake, such as ADO, support for MSSQL Server, etc. So if you
use something other than IBObjects to access Firebird youneed to configure it in Wine.

And yet another problem has been detected. Some applications developed in Delphi display problems with the position of Buttons and Panels (position and
sizes), as canbe seen in 192.168.35.12:/home/dados/dragonegg.fdb), Username and Password.

[reddevil@hades reddevil]$ wine ~/.wine/drive_c/programs/ohades.exe [Enter]

After a lot of hard work, in a moment of insanity (I live constantly on the borders of insanity and geniality :-)), I discovered the font used in the forms is MS Sans
Serif (default for Delphi programs), and by changing the font to Arial the problem was solved, as displayed in Illustration12. There is a program called
ohades.exe, whichyou can not see in the illustration:

712

mailto:reddevil@hadesreddevil

As youcan see, we can call the application from the command line in a shell. Idid it because someone asked about the compatibility with Linux, and still using
the Fluxbox like the Windows Manager, it uses only 700KB of RAM and not the 280MB used by KDE and Gnome. As it is normal to call applications from the
Graphic Interface of a Windows Manager, it is necessary to create a link for the application in the KDE or call the application from an icon in the Fluxbox, after
installing iDesk. The instructionto be used in the shortcut is displayed below, but be sure the hades.exe program is in the folder ~/.wine/drive_c/programs of
the Fake. There are 3 ways to call applications:

wine /home/reddevil/.wine/drive_c/programs/hades.exe (UNIX mode)
wine C:\\programs\\hades.exe (Wine mode)
wine "C:\programs\hades.exe" ("DOS" mode)

Note: when using the last mode, the path of the program must be specified with quotationmarks (double quotations).

Acknowledgements
Author ’s acknowledgements: I would like to give special thanks to Hamacker, who helped me too much and always gave me support I needed to enable me to finish this job.

We would like to thank the author, Luiz Paulo de O. Santos, for providing us with the English translation of this article, which was originally published in Linux World.

See also:
Installing on Linux

713

Bidirectional replication for InterBase and Firebird
1. What is replication?
2. Fundamentals
3. Transaction Log
4. Blob data
5. Replicating the transaction log

Bidirectional replication for InterBase and Firebird
The opensource database server, Firebird, and its commercial partner, Borland InterBase, have long been established as a proven and stable platform for all
sorts of database applications. Because of the common ancestry in the form of the InterBase 6 source code, many solutions can be implemented on both
platforms without any problems. However Version 2 of the Firebird Server has recentlyset new standards, introducing many helpful functions that are
unfortunately missing in InterBase 7.5. However a replication facility is not included in either platform. This article illustrates how a replication canbe created
with the aid of IBExpert.

What is replication?
The German-language Wikipedia offers a concise definition: "Replication is a duplication of data. The data base of the replicated data is, as a rule, identical
with the original."

We need to distinguish betweensynchronous replication and asynchronous replication. Whilst the synchronous replication ensures that in the case of a fault or
error, the database server can be immediatelyreplaced by the replicated backup server and users can continue work without anydisruption, an asynchronous
replication makes sense when the databases and their servers are not always in the same network. An asynchronous replication is typicallyused for field staff
and their laptops, or when branches of a companyare not always connected to the main server by a dedicated line.

There are many further applications for replicated data, for example, a cluster can be constructed, by which multiple database servers can be interconnected to
distribute the burden. Although there are various commercial suppliers offering replication solutions in the Firebird and InterBase world, a customized
implementation has the advantage that it is possible to fulfil considerablymore individual needs and wishes, at the same time saving license fees.

Fundamentals
The basis for a replicable database should always be a consequentlyconstructed data model. The author's preferred solution is based on a primary keyID
field, datatype BIGINT in every table and a consequent naming convention of foreignkey fields in the form: TABELLE_ID. All primary keys are always created
from a single generator.

This may initially appear somewhat unusual, but it does offer distinct advantages for replication and for anyother subsequent extensions. Should existing
databases need to be made replicable, existing tables canoptionally be supplemented by a replication ID field or parallel tables filled using triggers. The
mechanisms presented here are based on the preferred ID model with a common generator. All SQL commands are accommodated on the freely available
Firebird Server. Necessary alterations for deployment on the InterBase server are explicitlymentioned.

In order to construct a replication, it is initially vital that absolutely all data alterations in the database are logged securely. Whilst other, supposedly
transaction-safe database systems clearlyproduced gaps when rolling back, the Firebird and InterBase server are always transaction safe even in the case
of trigger operations. Therefore corresponding triggers are created for existing tables, which log all insert, update and delete operations on eachtable.

The log is written in the following table:

 CREATE TABLE IBE$LOG (
 ID BIGINT NOT NULL PRIMARY KEY,
 USR VARCHAR(30) default current_user,
 TS TIMESTAMP default current_timestamp,
 SQL VARCHAR(32000),
 IDX BIGINT,
 DAT BLOB SUB_TYPE 0 SEGMENT SIZE 16384
);

Although it is not always recommendable to use very large VARCHAR fields, this simplifies the model presented here. Anautoincrement trigger can be created
using IBExpert for the ID field, the value of whichshould be fetched from a generator, called ID. USR and TS are automatically filled in with the user name and
timestamp. The complete SQL source code is stored in the SQL field, whichwill execute the identical insert, update and delete operations. This will be later
exchanged betweenthe databases concerned as part of the replication, and executed on the replicated system. The IDX field is designed to be an auxiliary
field for the associated primary key. This can later be used to easily ascertain the history of a data set with the ID 123. Altered blob data is stored by means of
special triggers for the replication in the DAT field.

To avoid global conflict of allocated primary keys, all ID generators are set at different start values on all servers concerned; Server A starts at 1 billion, Server
B at 2 billion etc. As generators return a 64 Bit value, 16 billion participating replication servers could each generate 1 billion globally unique IDs without any
conflict. Alternatively the offset between the IDs on each server can of course be increased accordinglyby reducing the number of replication servers involved.
The author considers the popular alternative method based on GUIDs disadvantageous, because the ID method can also be used for other solutions, for
example, that data mayonly be altered on the server where it was created.

Transaction Log
It is wise to automate trigger creation, so as to be armed for later data model alterations. Due to the commands available in Firebird, it is possible to do this
withina stored procedure. The absence of the EXECUTE STATEMENT command in InterBase means that the source code needs to be executed using IBExpert's
IBEBlock technology, as this method enables the InterBase server to handle such language elements.

The INITLOG procedure initially begins with a loop, extracting all table names from the system table, RDB$RELATIONS, whichdo not contain the dollar sign:

714

 select f_rtrim(rdb$relation_name) from rdb$relations
 where rdb$relation_name not containing '$'
 INTO :V$RELATION_NAME

Then the source code for the first AFTER INSERT trigger for the first table found begins in the following statement:

 sql='RECREATE TRIGGER IBE$'||V$RELATION_NAME||'_AI FOR '||V$RELATION_NAME||' '||f_crlf()||
 'ACTIVE AFTER INSERT POSITION 32000 '||f_crlf()||
 'AS '||f_crlf()||
 'declare variable sql varchar(32000); '||f_crlf()||
 'begin '||f_crlf()||
 ' SQL=''INSERT INTO '||V$RELATION_NAME||'(';

Using the f_crlf UDF, from the FreeAdhocUDF library, a line feed is inserted into the trigger source code, without which the trigger would function, but
nevertheless be extremely confusing.

In the following loop all fields in the current table are selected from the RDB$RELATION_FIELDS and RDB$FIELDS tables, whose type does not equal 261. Type
261 is for blob fields, whichneed to be treated separately later on.

 komma='';
 for select f_rtrim(rdb$relation_fields.rdb$field_name)
 from rdb$relation_fields
 join rdb$fields on rdb$relation_fields.rdb$field_source=rdb$fields.rdb$field_name and

 rdb$fields.rdb$field_type<>261
 where rdb$relation_name=:v$relation_name
 into :v$field_name
 do
 begin
 sql=sql||komma||v$field_name;
 komma=',';
 end
 sql=sql||') values (';
 komma='';

A comma-separated list of all field names is generated due to the previously empty variable and the comma variable defined in the loop, as required for an
INSERT command. Thenanother sweep is made through the field list, in which the instance variable NEW. is prepared with the appropriate exclamationmarks
for the second part of the trigger source code. This part, due to lack of space here, canbe found in the sample script.

This is now followed by the command to write the SQL command out of the trigger into the table IBE$LOG. With the subsequent request using the command,
EXECUTE STATEMENT :SQL, the trigger source code is executed from the procedure, so creating the trigger.

 sql=sql||')'';'||f_crlf()||
 ' insert into ibe$log(sql,idx) values (:sql,new.id);'||f_crlf()||
 'end;';
 execute statement :sql;

Blob data
In the subsequent parts of the script, the update and delete triggers are constructed and generated in a similar way. Finally extra triggers are thencreated for
each blob field, because only data should be logged whichhas actually been altered. For this purpose all field and table names with the type 261 are selected.

The transaction log can now be activated in the database by executing the Firebird procedure INITLOG or in InterBase using the appropriate IBEBlock
command. If data model alterations are to be made, it is wise to first deactivate this transaction log, as this way all references to the tables used will be
deleted again. To this effect, the DROPLOG procedure is implemented in the sample script.

Replicating the transaction log
The actual replication, i.e. the data exchange from the transaction log in the correct order, now begins with an IBEBlock. AnIBEBlock is a special extension
within the IBExpert product family, whichenables additional commands for the handling of scripts. An IBEBlock also offers commands for InterBase, which are
not otherwise possible withina procedure, for example, the EXECUTE STATEMENT command. Furthermore it is possible to make a connection to multiple
databases in an IBEBlock script. Replicationcan also optionally be carried out with all ODBC databases using the integrated ODBC port. SuchIBEBlock
commands may also be fully incorporated into your ownapplications using the DLL or EXE distribution licenses.

715

IBEBlock first makes the connections to the databases involved:

 execute ibeblock
 as
 begin
 create connection src dbname 'localhost:c:\src.fdb'
 password 'repl' user 'REPL'
 clientlib 'fbclient.dll';

 create connection dest dbname 'localhost:c:\dest.fdb'
 password 'repl' user 'REPL'
 clientlib 'fbclient.dll';

After the connections have been made it is possible to switchbackwards and forwards between anyof the databases, using the USE command. The following
loop now selects all entries in the IBE$LOG table in the source or reference database and inserts them into the IBE$LOG table in the target database. In order to
avoid re-replicating data that has already been transferred, a table, in this example IBE$TRANS, is referenced, in which the ID from IBE$LOG is entered following
successful data transmission. The user REPL was used for the replication, because this way it is possible to recognize whichdata have come via the
replication and therefore do not need to be replicated back again.

 use src;
 for select id, usr, ts, sql, idx, dat
 from ibe$log where usr<>'REPL'
 and not exists (select ibe$trans.id from ibe$trans where ibe$trans.id=ibe$log.id)
 into :id, :usr, :ts, :sql, :idx, :dat
 do
 begin
 use dest;
 insert into ibe$log(id, ts, sql, idx, dat)
 values (:id, :ts, :sql, :idx, :dat);
 if (sql not starting with 'BLOB ') then execute statement :sql;
 commit;
 use src;
 insert into ibe$trans(id) values (:id);
 commit;
 end

The approach to be takenwhen replicating blob data can be found in the sample script. This also demonstrates the procedure for bidirectional replication.
Using this technology little effort is needed to supplement a system, which is capable of exchanging data for asynchronous replication using packed blob data
and is sufficient for large data quantities, evenwhen low band widths are used. It is also possible on a quick backbone to construct an extremely rapid and
reliable database cluster using the InterBase/Firebird Event Alerter technology.

The customizable scripts canbe implemented for partial replication, by using any number and combination of rules. This way it is possible to distribute data
quantities to various servers according to logical criteria. For example, the customer base can be distributed to all servers, whilst the order data is only copied
to country-specific databases or servers. Or the inverse direction canbe used to combine and consolidate data from multiple databases.

716

Database corruption
1. How to corrupt a database

1. Modifying metadata tables
2. Disabling forced writes
3. Disabling Forced Writes on a Linux server
4. Restoring a backup to a running database
5. Allowing users to log in during a restore

2. Recovering corrupt databases
1. Main causes of database corruption

a. Power supply failure
b. Forced writes - cuts both ways
c. Corruption of the hard disk
d. Database design mistakes

2. Precautions and methods of repair
a. Regular backups
b. Using GFIX
c. Repairing a corrupt database
d. Extract data from a corrupt database
e. Restoring hopeless databases

Database corruption
The following articles provide important information regarding the causes leading to database corruption, as well as ways to recover a corrupt database. We
would like to thank the authors for allowing us to publish their articles here.

How to corrupt a database
Although Firebird is extremely stable and secure, there are a few things that youshould NOT do, as these could result in corrupting the database!

The following tips have been takenfrom the Firebird Quick Start Guide, © IBPhoenix Publications 2002, 2003. Many thanks to Paul Beach(http://
www.ibphoenix.com)!

Modifying metadata tables

Firebird stores and maintains all of the metadata for its ownand your user-defined objects in a Firebird database! More precisely, it stores them in relations
(tables) right in the database itself. The identifiers for the system tables, their columns and several other types of system objects beginwith the characters 'RDB
$'.

Because these are ordinary database objects, they canbe queried and manipulated just like your user-defined objects. However, just because you can does
not say youshould. The Firebird engine implements a high-level subset of SQL (DDL - please refer to Data Definition Language for further information) for the
purpose of defining and operating on metadata objects, typically through CREATE, ALTER and DROP statements.

It cannot be recommended too strongly that youuse DDL - not direct SQL operations on the system tables - whenever you need to alter or remove metadata.
Defer the 'hot fix' stuff until your skills in SQL and your knowledge of the Firebird engine become veryadvanced. A wrecked database is neither pretty to
behold nor cheap to repair.

Disabling forced writes

Firebird is installed with forced writes (synchronous writes) enabled by default. Changed and new data are written to disk immediately uponposting.

It is possible to configure a database to use asynchronous data writes - wherebymodified or new data are held in the memory cache for periodic flushing to
disk by the operating system's I/O subsystem. The common term for this configuration is forced writes off (or disabled). It is sometimes resorted to in order to
improve performance during large batch operations.

The big warning here is - do not disable forced writes on a Windows server. It has been observed that the Windows server platforms do not flush the write
cache until the Firebird service is shut down. Apart from power interruptions, there is just too much that can go wrong on a Windows server. If it should hang,
the I/O system goes out of reach and your users' work will be lost in the process of rebooting.

Windows 9x and ME do not support deferred data writes.

Disabling Forced Writes on a Linux server

Linux servers are safer for running an operation with forced writes disabled temporarily. Do not leave it disabled once your large batch task is completed,
unless youhave a veryrobust fall-back power system.

Restoring a backup to a running database

One of the restore options in the GBAK utility (gbak -r[estore]) allows youto restore a gbak file over the top of an existing database. It is possible for this style
of restore to proceed without warning while users are logged in to the database. Database corruption is almost certain to be the result.

Be aware that youwill need to design your Admin tools and procedures to prevent anypossibility for any user (including SYSDBA) to restore to your active
database if any users are logged in. If is practicable to do so, it is recommended to restore to spare disk space using the gbak -c[reate] optionand test the
restored database using isql [or IBExpert]. If the restored database is good, shut down the server. Make a file system copy of the old database and thencopy
the restored database file (or files) over their existing counterparts.

Allowing users to log in during a restore

If you do not block access to users while performing a restore using gbak -r[estore] thenusers may be able to log in and attempt to do operations on data.
Corrupted structures will result.

717

www.ibphoenix.com

Recovering corrupt databases
The following is an excerpt from the successful Russian book, "The InterBase World" first published in September 2002, with a second edition following in
April 2003. The authors of the book are Alexey Kovyazin, developer of IBSurgeon(http://www.ibsurgeon.com) and well-knownRussian InterBase specialist,
and Serg Vostrikov, CEO of the Devrace company(http://www.devrace.com).

Here the authors would like to offer youa draft copyof one chapter of this book devoted to recovery of InterBase/Firebird databases.

Theywould like to pass on their thanks to all who helped create this guide: Craig Stuntz, Alexander Nevsky, KonstantinSipachev, Tatjana Sipacheva and all
the other kind and knowledgeable members of the InterBase and Firebird community.

Main causes of database corruption

Unfortunately there is always a probability that any information stored will be corrupted and some of this information will be lost. Databases are not an
exception to this rule. In this chapter we will consider the principal causes that lead to InterBase/Firebird database corruption, some methods of repairing
databases and extracting information from them. We will also make recommendations and offer precautions that will minimize the probability of information
loss.

First of all, if we speak about database repair we should perhaps first define "database corruption". A database is usually described as damaged if, when
trying to extract or modify some information, errors appear and/or the information to be extracted turns out to be lost, incomplete or incorrect. There are cases
when database corruption is hidden and canonly be found by testing with special facilities. However there are also real database corruptions, when it is
impossible to connect to the database, when adjusted programs send strange errors to the clients (without anydata manipulation having occurred), or when it
is impossible to restore the database from a backup copy.

Principal causes of database corruptionare:

1. Abnormal termination of the server computer, especially an electrical power interruption. For the IT-industry it can be a real blow and that is why we
hope there is no need to remind youonce againabout the necessity of having a source of uninterrupted power supplyon your server.

2. Defects and faults on the server computer, especially the HDD (hard disk drive), disk controllers, the computer's main memory and the cache memory
of Raid controllers.

3. An incorrect connection string to a multi-client database with one or more users (in versions prior to 6.x). Whenconnecting via TCP/IP, the path to the
database must be pointed to a server name: drive:/path/databasename/
For servers on UNIX platforms: servername: /path/databasename/
Using a NetBEUI protocol: servernamedrive:pathdatabasename.
Evenwhen connecting to a database from the computer, on which the database is located and where the server is running, the same specification
should be used, renaming the servername as localhost. It is not possible to use mapped drives in the connectionspecification. If youbreak one of
these rules, the server thinks that it is working with different databases and database corruption is guaranteed.

4. File copyor other file access to the database when the server is running. The execution of the command shutdown, or disconnecting the users in the
usual way is not a guarantee that the server is doing nothing with the database. If the sweep interval is not set to 0, garbage collection maybe being
executed. Generally the garbage collection is executed immediately after the last user disconnects from the database. Usually it takes several
seconds, but if many DELETE or UPDATE operations were committed before it, the process may take longer.

5. Using unstable InterBase server versions 5.1-5.5. The Borland Company officially admitted that there were several errors in these servers and these
were removed in the stable upgrade 5.6 only after the release of certified InterBase 6 was in free-running mode for all clients of servers 5.1-5.5 on its
site.

6. Exceeding size restriction of a database file. At the time of writing this, for most existing UNIX platform servers the limit is 2 GB, for Windows NT/2000 -
4 GB, but it is recommended to assume 2 GB. When the database size is approaching its limit, an additional file must be created.

7. Exhaustion of free disk space when working with the database.
8. For Borland InterBase servers using versions under 6.0.1.6 - exceeding the restrictionof the maximum number of generators, according to Borland

InterBase R & D defined as follows (please refer to table 1 below).

For all Borland InterBase servers - exceeding the permissible number of transactions without executing a backup/restore. The number of transactions that
have been made in the database since the last backup and restore can be determined by invoking the utilityGSTAT with the key -h parameter NEXT
TRANSACTION ID.

According to Ann W. Harrison, the critical number of transactions depends on the page size, and has the following values (please refer to table 2 below):

The constraints of Borland InterBase servers enumerated above are not applicable to Firebird servers except for the earliest versions 0.x, the existence of
whichhas already become history. If youuse the final version Firebird 1.0 or above, or InterBase 6.5-7.x, youshould not worry about points 5, 6, 8 and 9 and
should instead concentrate your efforts on other causes. Now we will consider the most frequent of these in detail.

Power supply failure

718

http://www.ibsurgeon.com
http://www.devrace.com

When shutting off the power on the server, all data processing activities are interrupted in the most unexpected and (according to Murphy's law) dangerous
places. As a result the information in the database maybe distorted or lost. The simplest case is when all uncommitted the data from a client’s applications
are lost as a result of an emergency server shutdown. After a power-cut restart the server. This analyzes data, makes a note of incomplete transactions related
to none of the clients, and cancels all modifications made within the bounds of these «dead» transactions. Actuallysuch behavior is normal and assumed from
the start by InterBase developers.

However power supply interruption is not always followed just by such insignificant losses. If the server was executing a database extension at the moment of
power supply interruption, there is a large probability of orphanpages present in the database file (pages that are physically allocated and registered on the
page inventory page (PIP), uponwhich it is however impossible to write data).

Only GFIX, the repair and modification tool (we will consider it further on), is able to combat orphanpages in the database file. Actually orphanpages lead to
unnecessary use of disk space and, as such, are not the cause of data loss or corruption. Power loss leads to more serious damages. For example, after
shutting off the power and restarting, a great amount of data, including committed data, maybe lost (after adding or modification of which the command
«commit transaction» was executed). This happens because confirmed data is not written immediately to the database file on disk. The file cache of the
operating system (OS) is used for this purpose. The server process gives the data write command to the OS. Thenthe OS assures the server that all the data
has been saved to disk although in reality the data is initially stored in the file cache. The OS doesn't hurry to save this data to disk, because it assumes that
there is a lot of mainmemory left, and therefore delays the slow operation of writing to disk until the mainmemory is full. Please refer to the next subject -
Forced Writes - cuts bothways - for further information.

Forced writes - cuts both ways

In order to influence this situation, tuning of the data write mode is provided in InterBase 6 and Firebird. This parameter is called FORCED WRITES (FW) and has
2 modes - ON (synchronous) and OFF (asynchronous). FW modes define how InterBase/Firebird communicates with the disk. If FW is turned on, the setting of
synchronous writes to disk is switched on, and confirmed data is written to disk immediately following the COMMIT command, the server waits for writing
completion and only then continues processing. If FW is switched off InterBase doesn't hurry to write data to disk after a transaction is committed, and
delegates this task to a parallel thread, while the main thread continues data processing, not waiting until all writes are written to disk.

Synchronous writes mode is one of the most careful options and it minimizes any possible data loss. However it maycause some loss of performance.
Asynchronous writes mode increases the probability of loss of a great quantityof data. In order to achieve maximum performance FW OFF mode is usually set.
But as a result of power interruption a much higher quantityof data is lost using the asynchronous writes mode than when using the synchronous mode. When
setting the write mode you should decide whether a few percentage points of performance are more significant than a few hours of work should power be
interrupted unexpectedly.

Very often users are careless with InterBase. Small organizations save on any trifle, oftenon the computer server, where the DBMS server and different server
programs (not only server) are installed and running as well. If they hang-up people don't think for long, and simplypress RESET (it happens several times a
day). AlthoughInterBase is verystable with regard to such activities compared with other DBMS, and allows work with the database to start immediatelyafter
an emergency reboot, such a procedure is not recommended. The number of orphan pages increases and data lose connections among themselves as a
result of faulty reboots. It maystill function and continue for a long time, but sooner or later it will come to an end. When damaged pages appear among PIP or
generator pages, or if the database header page is corrupted, the database maynever openagain and become a big chunk of separate data from which it is
impossible to extract a single byte of useful information.

Corruption of the hard disk

Hard disk corruptions lead to the loss of important database system pages and/or the corruption of links among the remaining pages. Such corruptions are
one of the most difficult cases, because theyalmost always require low-level interference to restore the database.

Database design mistakes

It is necessary to learnof some mistakes made by database developers that can lead to an impossible database recovery from a backup copy(*.gbk files
created by the GBAK program). First of all a careless use of constraints at database level. A typical example is the constraint NOT NULL. Let’s suppose that we
have a table filled with a number of records. Now using the ALTER TABLE command we’ll add one more columnto this table and specify that it mustn’t contain
the non-defined value NULL. Something like this:

 ALTER TABLE sometable Field/INTEGER NOT NULL

In this case there will be no server error as should be expected. This metadata modification will be committed and we won't receive any error or warning
message, whichcreates an illusion of normality.

However, if we backup the database and try to restore it from the backup copy, we'll receive an error message at the phase of restoring (because NULLs are
inserted into the columnthat has NOT NULL constraint, and the process of restoring will be interrupted. (An important note provided by Craig Stuntz: with
version InterBase 7.1 constraints are ignored by default during a restore (this can be controlled by a command-line switch) and nearly any non-corrupt backup
can be restored. It's always a good idea to do a test restore after performing a backup, but this problem should prettymuch disappear in version7.1.). This
backup copycan't be restored. If the restore was directed to a file having the same name as the existing database (during restorationof the existing database
the working file was being rewritten), we'll lose all information.

It has to do with the fact that NOT NULL constraints are implemented by system Triggers which check only incoming data. During restoration, data from the
backup copy is inserted into the empty, newly created tables - here we canfind inadmissible NULLs in the column with the constraint NOT NULL.

Some developers consider such InterBase behavior to be incorrect, but others will be unable to add a field with NOT NULL restriction to the database table.

The question about required value by default and filling with this value at the moment of creation was widelydiscussed by Firebird architects, but it wasn't
accepted because of the fact that the programmer is obviouslygoing to fill it according to an algorithm, which is rather complicated and maybe iterative. But
there is no guarantee, whether he'll be able to distinguish the records ignored by previous iteration from unfilled records or not.

A similar problem can be caused by a garbage collection fault, caused by the specificationof an incorrect path to the database (the cause of corruption 3) at
the time of connection, and file access to database files when the server is working with it (the cause of corruption4), and records wholly filled with NULLs can
appear in some tables. It's verydifficult to detect these records, because theydon't correspond to integrity control restrictions, and operator SELECT just doesn't
see them, although theyget into the backup copy. If it is impossible to restore for this reason, the GFIX utility should be used (see below), to find and delete
these records using non-indexed fields as search conditions. After this try to make a backup copyagain and restore the database from it. In conclusion we can

719

saythat there are a great number of causes of database corruptionand you should always be prepared for the worst - that your database could become
damaged for one reasonor another. You should therefore be prepared at all times to restore and rescue valuable information.

Precautions and methods of repair

And now we shall consider precautions that guarantee Firebird/InterBase database security, as well as methods of repairing damaged databases.

Regular backups

In order to prevent database corruption, backup copies should be created regularly (if you want to know more about backup thenplease refer to Backup and
Restore for further information). It's the most trusted method to prevent and combat database corruption. Only a backup gives 100% guarantee of database
security. As described above, it is possible get a useless copyas the result of restoring a backup file (i.e. a copy that can't be restored); that's why restoring a
base from the copy should not be performed by writing over the script, and a backup must be carried out according to definite rules. Firstly, a backup should
be executed as often as possible, secondly it must be serial and thirdly, backup copies must be checked for their restoring capability.

Usually, a backup means that it's necessary to make a backup copyrather often, for example, once every twenty-four hours. The shorter the period is between
database backups, the less data will be lost as a result of a fault. The sequence of backups means that the number of backups should increase and should be
stored for at least a week. If possible, backups should be written to special devices such as a streamer, but if this is not possible - copythem to another
computer. The history of backup copies will help to discover hidden corruptions and cope with an error that perhaps arose some time ago but has only just
showed up unexpectedly. It is necessary to check whether it is possible to restore the saved backup without errors or not. This can be checked in only one way
- through the test restore process. It should be mentioned that the restore process takes 3 times longer than the backup, and it's difficult to execute restore
validation every day for large databases, because it may interrupt the users' work for a few hours (a night break may not be enough).

It would be better if big organizations didn't save at the wrong end and assigned one computer just for these purposes.

In this case, if the server must work with a serious load 24 hours 7 days a week, we can use the SHADOWmechanism for taking snapshots of the database, and
performing further backup operations from the immediate copy. Whencreating a backup copyand then restoring the database from this backup, all data in
the database is recreated. This process (backup/restore or b/r) contributes to the correctionof most non-fatal errors in the database connected with hard disk
corruptions, detecting problems with integrity in the database, cleaning the database of garbage (old versions and fragments of records, incomplete
transactions) which decreases the database size considerably.

Regular backup/restore is a guarantee of Firebird/InterBase database security. If the database is working, then it is recommended to execute backup/restore
on a weekly basis. To tell the truth, there are some examples of Firebird/InterBase databases that are intensively used for some years without a single backup/
restore.

Nevertheless, to be on the safe side it's desirable to perform this procedure regularly, especiallyas it canbe easilyautomated (please refer to Backup and
Restore).

If it's impossible to perform a regular backup/restore for certain reasons, then the GFIX tool can be used for checking and restoring the database. GFIX allows
youto check and remove many errors without performing a backup/restore.

Using GFIX

The command-line utilityGFIX is used for checking and restoring databases. Furthermore GFIX can also execute various database control activities: changing
the database dialect, setting and canceling the mode "read-only", setting cache size for a specific database and also some important functions.

GFIX is committed in command-line mode and has the following syntax:

 Gfix [options] db_name

Options is a set of options for executing GFIX, db_name is the name of the database for which the operations are to be performed, defined by a set of options.
The following table displays the GFIX options related to database repair:

720

Here are some typical GFIX examples:

 gfix -w sync -user SYSDBA -pass masterkey firstbase.gdb

In this example we set for our test database, firstbase.gdb, the synchronous writes mode (FW ON). (Of course, this is more useful before corruptionoccurs).
And below is the first command that youshould use to check the database after corruptionhas occurred:

 gfix -v -full -user SYSDBA -pass masterkey firstbase.gdb

In this example we start checking our test database (option-v) and specify that fragments of records must be checked as well (option -full). Of course, it is
more convenient to set various options for the checking and restoring process using IBExpert or another GUI interface, but we’ll review the functions of
database recovery using command-line tools. These tools are included in InterBase and Firebird and you canbe sure that their behavior will be the same on
all OS running InterBase. It is vital that theyalways be close to the server. Besides the existing tools, allowing youto execute database administration from a
client's computer, youcan use the Services API, which isn't supported by the InterBase server Classic architecture. That means youneed to use a third party
product (such as IBExpert or other administration tool) with the SuperServer architecture.

Repairing a corrupt database

Let's assume there are some errors in our database. Firstly, we have to check the existence of these errors; secondly, we have to try to correct these errors.
We recommend the following procedure:

You should stop the InterBase server if it's still working and make a copyof the file or the database files. All the restore activities should only be performed with
a database copy, because it may lead to an unsatisfactory result, and you'll have to restart the restore procedure (from a starting point). After creating a copy
we'll perform the complete database validation (checking fragments of records).

We should execute the following command for this (or use the IBExpert Services menu item Database Validation):

 gfix -v -full corruptbase.gdb -user SYSDBA -password

In this case corruptbase.gdb - is a copyof the damaged database. This command will check the database for anystructural corruptionand produce a list of
unsolved problems. If such errors are detected, we'll have to delete the damaged data and get readyfor a backup/restore using the following command (or
using the IBExpert Services menu item Backup Database):

 gfix -mend -user SYSDBA -password your_masterkey corruptbase.gdb

After committing this command you should check if there are anyerrors left in the database. Run GFIX using the options -v -full, and when the process is
over, perform a database backup:

 gbak -b -v -ig -user SYSDBA -password corruptbase.gdb corruptbase.gbk

This command performs a database backup (option-b) and we'll get detailed information about the backup process execution (option -v). Errors with regard
to checksums will be ignored (option-ig).

Please refer to GBAK and Backup Database for further information.

If some errors are found during the backup, you should start it in another configuration:

721

 gbak -b -v -ig -g -user SYSDBA -password
 corruptbase.gdb corruptbase.gbk

Where option-g will switchoff garbage collectionduring the backup. This oftenhelps to solve backup problems.

Also it maybe possible to make a backup of a database if it is set in the read-only mode beforehand. This mode prevents writing any modifications to the
database and sometimes helps to complete the backup of a damaged database. For setting a database to read-only mode, you should use the following
command (or the IBExpert Services menu item Database Properties):

 gfix -m read_only -user SYSDBA -password masterkey
 Disk:Pathfile.gdb

Following this, youshould try to perform the database backup againusing the parameters given above (or the IBExpert Services menu item Backup
Database).

If the backup was completed successfully, you should restore the database from the backup copy, using the following command (or the IBExpert Services
menu item Restore Database):

 gbak -c -user SYSDBA -password masterkey Disk:Pathbackup.gbk
 Disk:Pathnewbase.gdb

Whenyou are restoring the database, youmay come across some problems, especiallywhen creating the indices.

In this case the -inactive and -one_at_a_time options should be added to the restore command. These options deactivate indices when creating from the
database backup and commit data confirmation for eachtable. Alternatively use the IBExpert Services menu item Restore Database.

Extract data from a corrupt database

It is unfortunately possible that even the operations previously mentioned in this sectiondo not lead to a successful database recovery.

It means that the database is seriously damaged or it cannot be restored as a single entity, or a huge effort must be made to recover it. For example, it is
possible to execute a modification of system metadata, use non-documented functions and so on. It is veryhard, time-consuming and ungrateful work with
doubtful chances of success. If at all possible, try to evade it and use other methods. If a damaged database opens and allows you to perform reading and
modificationoperations with some data, you should take advantage of this possibility and save the data by copying it to a new database, and saygood-bye to
the old one for good.

So, before transferring the data from the old database, it's necessary to create a new destination database. If the database hasn't been altered for a long time,
youcan use the old backup, from which metadata can be extracted for creating the new database. Based on these metadata it is necessary to create a data
destination and start copying the data. The main task is to extract the data from the damaged database. Then we'll have to allocate the data in a new base, but
that's not very difficult, even if we have to restore the database structure from memory.

Whenextracting data from tables, youshould use the following algorithm of operations:

1. At first you should try to execute SELECT * from table N. If it ran normally youcould save the data you've got in the external source. It's better to store
data in a script (using the IBExpert Tools menu item Extract Metadata for example), as long as the table doesn't contain blob fields. If there are blob
fields in the table, then this data should be saved to another database by a client program that will play the role of mediator.

2. If you failed to retrieve all data, youshould delete all the indices and try again. In fact, indices can be deleted from all the tables from the beginning of
the restore, because theywon't be needed anymore.

3. Of course, if youdon't have a metadata structure which is the same as that of the corrupted database, it's necessary to input a protocol of all operations
that you are doing with the damaged database source.

If youcannot read all the data from the table after deleting the indices, try to execute a range queryby primary key, i.e. select a definite range of data.
For example:

SELECT * FROM table N WHERE field_PK >=0 and field_PK <=10000

Field_PK here is a primary key.

InterBase has page data organization and that's why a range queryof values may be rather effective.

Nevertheless it works because we can expel data from the query from damaged pages and fortunately read the other ones. You may recall our thesis that
there is no defined order of storing records in SQL.

Really, nobody canguarantee that an unordered querywill, during restarts, return the records in the same order, but nevertheless the physical records are
stored within the database in a defined internal order. It's obvious that the server will not mix the records purely to abide to SQL standards. Try to use this
internal order when extracting data from a damaged database. Vitaliy Barmin, an experienced Russian InterBase developer reported that in this way he
managed to restore up to 98% of information from an unrecoverable database (there were a great number of damaged pages). Thus, data from a damaged
database must be moved to a new database or into external sources such SQL scripts. When youcopy the data, pay attention to [Generator | generator]]
values in the damaged database (theymust be saved for restarting proper work in the new database. If you don't have a complete copy of the metadata, you
should extract the texts of stored procedures, triggers, constraints and the definition of indices.

Restoring hopeless databases

In general, restoring a database can be very troublesome and difficult and that's why it's better to make a backup copyof the database and then restore the
damaged data and whatever has happened, you shouldn't despair because a solutioncan be found even in the most difficult situations. And now we'll consider
two cases.

The first case (a classic problem): A backup that can't be restored because of having NULL values in a column with NOT NULL constraints (the restore process
was run over the working file). The working file was erased and the restore process was interrupted because of an error. And as a result of thoughtless actions

722

the result was a great amount of useless data (that can't be restored) instead of a backup copy. But a solution was found. The programmer managed to
recollect which table and which columncontained the constraint NOT NULL. The backup file was loaded to a hexadecimal editor. And a combinationof bytes,
corresponding to the definitionof this column, was found by searching. After innumerous experiments it turned out that the constraint NOT NULL adds 1
somewhere near the column name. In the HEX-editor this 1was corrected to 0 and the backup copywas restored. Following this, the programmer memorized
once and for all how to execute the backup process and restore successfully!

The second case: The situation was catastrophic. The database corrupted on the extension phase because of lack of disk space. When increasing the
database size, the server creates a series of critically important pages (for example, Transaction Inventory Page and Page Inventory Page, additional pages
for RDB$Pages relations) and writes them down at the end of database.

As a result, the database could not be opened, neither by administration facilities nor using the utilityGBAK. And when we tried to connect to the database, an
error message (Unexpected end of file) appeared.

When we ran the utilityGFIX strange things happened: The program was working in an endless cycle. When GFIX was working, the server was writing errors to
log (file InterBase log) at high speed (around 100 Kb per second). As a result, the log file filled all the free disk space veryquickly. We evenhad to write a
program that erased this log by timer. This process lasted for a long time - GFIX was working for more than16 hours without anyresults.

The log was full of the following errors: Page XXX doubly allocated. When starting InterBase sources (in file val.c) there is a short description of this error. It
says that this error appears when the same data page is used twice. It's obvious that this error is a result of corruptionof critically important pages.

As a result, after several days of unsuccessful experiments, all attempts to restore the data in the standard way were abandoned. Which is why we had to use
a low-level analysis of the data stored in the damaged database.

Alexander Kozelskiy, head of Information Technologies at East View Publications Inc, had the idea of how to extract information from similar unrecoverable
databases. The method of restoring, arrived at as a result of our research, was based on the fact that a database has page organization and data from every
table is collected by data pages. Each data page contains an identifier of the table for which it stores data. It was especially important to restore data from
several critical tables. There was data from similar tables, received from an old backup copythat worked perfectlyand could be used as a model. This
database sample was loaded into an editor of hexadecimal sources and thenwe searched for the patterns of the data that interested us. This data was copied
into a buffer in hexadecimal format and thenthe remains of the damaged database were loaded into the editor. A sequence of bytes corresponding to the
sample was found in the damaged database, and the page was analyzed (on which this sequence was found).

At first we needed to define the start page, whichwasn't difficult because the size of the database file is divisible by the data page size. The number of current
bytes divided by page size - 8192 bytes, approximates the result to integer (and we obtained the number of the current page). Then the number of current
page was multiplied by page size and we got the number of bytes corresponding to the beginning of the current page. Having analyzed the header, we
defined the type of page (for pages with data the type is 5 - please refer to the file ods.h from the set of InterBase sources as well as the identifier of the
necessary table.

Then a program was written, that analyzed the whole database, collected all the pages for the necessary table into one single piece and moved it to file. Thus,
once we had the data we initially needed, we begananalyzing the contents of the selected pages.

InterBase uses data compression widely in order to save space. For example, a string such as VARCHAR containing an ABC string, stores a sequence of
following values: string length (2 bytes), in our case it is 0003, and then the symbols themselves followed by a checksum. We had to write an analyzer of the
string as well as other database types that converted data from hexadecimal format into an ordinary view. We managed to extract up to 80% of the information
from several critical tables using a "manual" method of analyzing the database contents. Later, on the basis of this experience, Oleg Kulkov and Alexey
Kovyazin, one of the authors of this book, developed the utility InterBase Surgeon whichperforms direct access to the database, bypassing the InterBase
engine and enables you to read directly and interpret the data within the InterBase database in a proper way.

Using InterBase Surgeon, we have managed to detect the causes of corruptionand restore up to 90% of absolutely unrecoverable databases, which can't be
opened by InterBase and restored by standard methods. This program can be downloaded from the official site http://www.ib-aid.com.

See Also:
Database Validation
GFIX
GBAK and GSPLIT
Backup Database
Restore Database
System Objects
Forced Writes
Database Properties
Firebird for the database expert: Episode 3 - On Disk Consistency
Preventing data loss
Alternative database repair methods

723

http://www.ib-aid.com

Firebird for the database expert : Episode 1 - Indexes
1. Index types
2. Record location
3. Index access strategy
4. Index optimization
5. Long duplicate chains
6. Indexes in lieu of data
7. Index key length
8. Index key representation
9. Index key compression

Firebird for the database expert: Episode 1 - Indexes
ByAnn Harrison

Firebird differs in significant ways from other relational database management systems. Understanding the differences will allow you to create better-
performing Firebird applications.

Audience: Experienced database application developers.

Moving to Firebird can be disconcerting for developers who have worked with other relational database management systems. In theory, relational databases
separate the logical design of an application from the physical storage of the data, allowing developers to focus on what data theywant their applications to
access, rather how the data should be retrieved. In practice, the mechanics of eachdatabase management system make some styles of access much faster
thanothers.

Developers learn to use methods that work with the database management systems theyknow. Developers who are familiar with Oracle or Microsoft SQL
Server find that Firebird indexes, concurrencymodel, and failure recoverybehave differently from the databases theyknow. Understanding and working with
those differences will make your move to Firebird less stressful and more successful. This paper focuses on the unusual characteristics of Firebird indexes.

Index types
Firebird supports only one index type: a b-tree variant. Indexes can be unique or allow duplicates; they canbe single keyor compound key, ascending or
descending.

Record location
Many databases cluster records on the primary key index, either directlystoring the data in the index or using the keyto group records. In a well-balanced
system clustering on primary keys makes primary key lookup veryefficient. If the full record is stored in the index, the data level becomes very wide, making
the whole index deep and more expensive to traverse thana shallower, denser index. Record clustering can result in sparse storage or overflows depending
on the design specifications and data distribution.

Firebird stores records on data pages, using the most accessible page with sufficient space. Indexes are stored on index pages and contain a record locater
in the leaf node. Access costs of primary and secondary indexes. Whendata is clustered on the primary key, access by primary key is very quick. Access
through secondary indexes is slower, especially when the secondary key index uses the primary key as the record locater. Thena secondary index lookup
turns into two index lookups. In Firebird, the cost of primary and secondary index lookups is identical.

Index access strategy
Most database systems read an index node, retrieve the data - this technique also leads to bouncing between index pages and data, whichcan be resolved
by proper placement control, assuming that the DBA has the time and skill to do so. For non-clustered indexes this technique also results in rereading data
pages.

Firebird harvests the record locaters for qualifying records from the index, builds a bitmap of record locaters, and thenreads the records in physical storage
order.

Index optimization
Because their access strategy binds index access and record access tightly, most database optimizers must choose one index per table as the path to data.
Firebird can use several indexes on a table by 'AND'ing and 'OR'ing the bitmaps it creates from the index before accessing anydata.

If youhave a table where several different fields are used to restrict the data retrieved from a query, most databases require that youdefine a single index that
includes all the fields. For example, if youare looking for a movie that was released in 1964, directed by Stanley Kubrick, and distributed by Columbia you
would need an index on Year, Director, and Distributor. If you ever wanted to find all pictures distributed by Stanley Kubrick, you would also need an index
on Director alone etc. With Firebird, youwould define one index on Director, one on Distributor, and one on ReleaseDate and theywould be used in
various combinations.

Long duplicate chains
Some databases (Firebird 2 for one) are better thanothers (Firebird 1.x for one) at removing data from long (>10000) duplicate chains in indexes. If youneed
an index on a field with low selectivity for a Firebird 1.x database, create a compound key with the field youwant to index first and a more selective field
second. For example, if you have an index on DatePaid in the table Bills, and every record is stored with that value null when the bill is sent, thenmodified
when the bill is paid, you should create a two-part index on DatePaid, AccountNumber, instead of a single key index on DatePaid.

Indexes in lieu of data

724

Non-versioning databases resolve some queries (counts for example) by reading the index without actually reading the record data. Indexes in Firebird (like
Postgres and other natively versioning databases) containentries that are not yet visible to other transactions and entries that are no longer relevant to some
active transactions. The only way to know whether an index entryrepresents data visible to a particular transaction is to read the record itself.

The topic of record versions deserves a long discussion. Briefly, when Firebird stores a new record, it tags the record with the identifier of the transaction that
created it. When it modifies a record, it creates a new version of the record, tagged with the identifier of the transaction that made the modification. That record
points back to the previous version. Until the transaction that created the new version commits, all other transactions will continue to read the old version of the
record.

In the previous example, when a transaction modifies the indexed field DatePaid, Firebird creates a new version of the record containing the new data and the
identifier of the transaction that made the change. The index on that field then has two entries for that record, one for the original NULL value and one for the
newDatePaid.

The index does not have enough information to determine whichentryshould be counted in responding to a query like "select count (*) from Bills where
DatePaid is not null".

Index key length
In Firebird Version1.x, the total length of an index key must be less than 252 bytes. Compound key indexes and indexes with non-binary collation sequences
are more restrictive for reasons described in the section on keycompression. Firebird 2 allows keys up to 1/4 of the page size, or a maximum of 4Kb.

Index key representation
Firebird converts all index keys into a format that can be compared byte-wise. With the exception of 64bit integer fields, all numeric and date fields are stored
as double precision integer keys, and the double precisionnumber is manipulated to compare byte by byte. Whenperforming an indexed lookup, Firebird
converts the input value to the same format as the stored key. What this means to the developer is that there is no inherent speed difference between indexes
on strings, numbers, and dates. All keys are compared byte-wise, regardless of the rules for their original datatype.

Index key compression
Firebird index keys are always stored with prefixand suffix compression. Suffixcompression removes trailing blanks from string fields and trailing zeros from
numeric fields. Remember that most numeric values are stored as double precisionand so trailing zeros are not significant. Suffixcompression is done for
each keyfield in a compound keywithout losing key field boundaries. After removing the trailing blanks or zeros, the index compressioncode pads field to a
multiple of four bytes, and inserts marker bytes every four bytes to indicate the position of the field in the key.

Consider the case of a three field key with these sets of values:

 "abc","def","ghi"
 "abcdefghi","",""

Simply eliminating trailing blanks would make the two sets of values equal. Instead, Firebird turns the first set of key values into “abc 1def 2ghi 3” and the
second into “abcd1efgh1i 1 2 3”.

Firebird version 1.x compresses the prefix of index keys as theyare stored on pages in the index. It stores the first keyon a page without prefix compression.
Subsequent keys are stored after replacing the leading bytes that match the leading bytes of the previous key with a single byte that contains the number of
bytes that were skipped. The two keys above would be stored like this:

 "0abc 1def 2ghi 3" "3d1efgh1i 1 2 3"

An index entry that exactly matches the previous entry is stored as a single byte that contains its length. Firebird 2 also performs prefixcompression, but uses
more dense representation. The combination of compression techniques eliminates some of the rules about constructing keys. Suffixcompression occurs on
all segments of a key, so long varchar fields should be placed in their logical spot in a compound key, not forced to the end. Onthe other hand, if part of a
compound key has a large number of duplicate values, it should be at the front of a compound key to take advantage of prefixcompression.

This paper was written by Ann Harrison in June 2005, and is copyright Ms. Harrison and IBPhoenix.

See also:
Index/Indices
Indexed reads/non-indexed reads
Indices
Recompute selectivity of all indices
Recreating Indices 1
Recreating Indices 2

725

Firebird for the database expert : Episode 2 - Page Types
1. Database file
2. Multi-file database
3. Header page (HDR)
4. Page Inventory Page (PIP)
5. Transaction Inventory Page (TIP)
6. Pointer page (PTR)
7. Data page (DPG)
8. Index Root page (IRT)
9. B-tree page (BTR)

10. Blob page (BLP)
11. Generator page (GEN)

Firebird for the database expert: Episode 2 - Page Types
ByAnn Harrison

Database file
A Firebird database is a sequence of fixed length pages normally all contained in a single file.

Different pages have different functions - in this case the yellow page is the database header, followed by a PIP, the unused WAL, a pointer page, a data
page, then alternating index root and pointer pages. The white page indicates that the diagram skips several hundred pages thencontinues with data pages.

Multi-file database
A multi-file database breaks the sequence into multiple files, each with a header page. Aside from the extra header pages, there is no difference betweena
multi-file database and a single file database.

726

Generic page header
Each page has a header that indicates what type of page it is, and provides other information that applies to all pages. Most page types have addition header
information that follows the standard header. In the standard header, the first byte is the page type.

The next byte contains flags that are specific to individual page types. Currently, only blob pages and b-tree (index) pages use the page flags. Other page
types - the header for one - also have a separate area for flags.

The next two bytes were a checksum, but now always contain the value 12345.

The next four bytes are the page generation incremented each time the page is written.

The next eight bytes are reserved for the sequence and offset of the page's entry in a log. The logging project has been abandoned and those bytes are
waiting for a good use.

Header page (HDR)
Page Type 1 is a header page. Each database file has one header page, which is page 0 in the file.

The first header page in a database describes the database: the page size, next transaction id, various settings, etc.

The header pages of subsequent files in the database containonly the length of the current file and the name of the next file.

Please also refer to Structure of a header page.

727

Page Inventory Page (PIP)
Page Type 2 is a page inventory page (PIP). PIPs map allocated and free pages. The header of a PIP includes the offset on this page of the bit that indicates
the first available page on the PIP.

The bodyof a PIP contains an array of single bits that reflect the state of pages in the database. If the bit is one, thenthe corresponding page is not in use. If
the bit is zero, thenthe page is in use.

PIPs occur at regular intervals through the database, starting at page 1. The last page allocated on each PIP is the next PIP.

Transaction Inventory Page (TIP)
Page Type 3 is a transaction information page (TIP). The TIP header includes the address of the next TIP.

The bodyof a TIP is an arrayof pairs of bits that reflect the state of transactions. If bothbits are 0, the transaction is active or has not started. If both bits are 1,
the transaction is committed. If the first bit is 1 and the second bit is 0, the transaction . If the first bit is 0 and the second is 1, the transaction is in limbo.

Limbo is the state of a two phase transaction that has completed the first phase, but not the second.

Pointer page (PTR)
Page Type 4 is a pointer page. Each pointer page belongs to a particular table and has a specific sequence within the table.

728

The additional header information on a pointer page includes its sequence in the pointer pages for this table, the page number of the next pointer page for the
table, the next free slot on the page, the number of used slots on the page, the relation id of the table, the offset of the first slot on the page that indicates a
page that is not full, and the offset of the last slot on the page that indicates a data page that is not full.

Pointer pages contain arrays of 32-bit integers that contain the page numbers of pages in a table. At the bottom of the pointer page, an array of bits indicates
the fill level of eachpage.

Data page (DPG)
Page Type 5 is a data page. Each data page belongs to a specific table.

The additional header information in a data page is the position of this page in the list of data pages for the table, the relation id of the table, and the number of
entries on this page.

The body of a data pages starts with an arrayof pairs of 16 bit words. The first part of the pair is the offset on the page of a piece of data - a record, blob, or
record fragment. The second part of the pair is the length of the data. As more data is stored on the page, the index grows downward.

The data - records, blobs, and fragments - start at the end of the page and go upward.

Further information can be found in the chapters, Structure of a data page and Where do data pages come from.

Index Root page (IRT)
Page Type 6 is an index root page. Each table has a single index root page that describes the indexes for the table. This page describes the IRT in Firebird
1.5 and earlier.

729

The additional header information for an index root page is the identifier of the relation to which the page belongs, and a count of the number of indexes for
that table.

The bodyof an index root page contains an arrayof index descriptors coming down from the top of the page and an array of index segment descriptors
coming up from the bottom.

Each index descriptor starts with the selectivity if the index has already beencreated, or a transaction id if the index is being created. The next 32 bits are the
page number of the top of the actual index. Next is the 32-bit offset of the field descriptors for the index at the bottom of the page. The next byte is the number
of keyfields, then a flag byte.

The arrayof segment descriptors contains two bytes per segment, one for the field id and one for the field type.

B-tree page (BTR)
Page Type 7 is an index or b-tree page.

All indexes in Firebird are a b-tree variant, starting with a single page at the top - confusingly called the root - confusing both because the root is at the top and
because the root of an index is different from the table's index root page.

The additional header data in a b-tree page includes the number of the page with the next higher values for this level of the index, the address of the page with
the next lower values for this level, the total amount of space which is saved on this page by the use of prefixcompression, the relation id of the table this index
describes, the amount of space used on this page, the identifier of the index in which this page participates, and the level of this page in the index.

The rest of the page is filled with index entries.

730

Blob page (BLP)
Page Type 8 is a blob page. Small blobs are stored on data pages. Blobs larger than a page are stored on a sequence of blob pages.

The type-specific header information for a blob page includes the page number of the first page of this blob, the position (sequence) of this page in the list of
pages that contain the blob, the amount of data stored on the page, and a pad word to allow the blob data to start on a long word boundary.

The remainder of the page contains blob data for a single blob.

Generator page (GEN)
Page Type 9 is a generator page.

There is no extra information in the header of a generator page, but there are several wasted words. Originally generator pages were a subset of pointer
pages and did not have their owntype. When generators were extended from 32 to 64 bits, having a separate page type became important, but changing the
header would have invalidated old databases. Sometime we ought to fix that and add a sequence number to the generator page header.

A generator page contains an array of 64-bit integers. Each element of the array contains the current value of a generator.

This paper was written by Ann Harrison in June 2005, and is copyright Ms. Harrison and IBPhoenix.

731

Firebird for the database expert: Episode 3 - On Disk Consistency
ByAnn Harrison

Unlike most databases, Firebird has no external journal file or log for recovery from transaction or system crashes. The database is its own log. After a system
crash, productive work begins as soonas the server restarts. Changes made by transactions that failed are removed automatically and transparently (see
Record versions as an undo log). One necessary precondition for instant recovery is that the disk image of the database must always be consistent. Firebird
achieves that consistency by tracking relationships betweendatabase pages and writing pages in an order that mainatains those dependencies. The
ordering is called careful write.

On disk consistency
Reduced to its essence, the careful write means that the database on disk will always be internally consistent. More pragmatically, when the system writes a
page that references another page, that other page must have been writtenpreviously in a state that supports the reference. Before writing a page that has a
pointer from a record to its back version on another page, the system must have written that other page. Before writing out a new data page, the system must
write out a version of a page inventory page (PIP) that shows the page is in use. The new data page has to be on disk, formatted and happy, before the table's
pointer page that references the new page can be written.

Inter-page relationships are handled in the code through a dependency graph in the cache manager. Before a page is written, the cache manager checks the
graphand writes out all pages that page depends on. If a change will create a loop in the graph, the cache manager immediately writes as many pages as
necessary to avoid the loop.

The tricky bits are identifying dependencies and avoiding the impossible situation - well, those and keeping the system fast. Identifying dependencies just
requires meticulous coding. If youhave to put a record back version on a different page from the mainversion, the page with the pointer has a dependencyon
the page with the back version. If you allocate a new data page, that data page has a dependencyon the PIP that records whether the page is in use, and the
pointer page that ties the data page into the table has a dependency on the data page. For more information on page allocation see Where do data pages
come from?

The impossible situation is one where pages point to eachother in a way that can't be separated. Two pages canpoint to each other - you canhave a primary
record version on page 214 with its back version on page 215 and a different record with its primary version on page 215 and a back versionon 214. The
chances that the cache manager will find a cycle in the dependency graph are high, and one page may need to be written twice in the process of flushing the
pages out, but it works because the two relationships are separable.

If, on the other hand, youneed a double-linked chain of pages - index pages come to mind, there is no separable relationship. Each page depends on the
other and neither canbe written first. In fact, Firebird index pages are double-linked, but the reverse link (high to low in a descending index) is handled as
unreliable. It's used in recombining index pages from which values have beenremoved, but not for backward data scans. The architecture group is currently
discussing ways to make the reverse link reliable enough for retrieving data, but we haven't agreed on a solution.

For those who haven't spent an embarrassing part of their adult lives worrying about on disk consistency and double-linked lists, let me try to explain.

Assume that each index page can hold only four values - instead of the hundreds that it actually holds. Consider the leaf level of an an index that consists of
pages 124, 125, and 126 in that order. The next level in the index is represented as page 213. Each index page has a pointer to its left and right neighbor.
The neighbors of page 213 are omitted as boring. Page 124 holds A, B, D; page 125 holds F, H, J, L and page 126 holds N, P, R. Now youwant to add a
new entry to the index. It has to be put on page 125, but page 125 is full, so youneed to add a new page between 125 and 126. The color keyfor diagrams
canbe found at the end of this article.

You want to store K.

The way the index code handles this sort of problem is:

1. Read the current PIP (page information page) to find a free page - lets say it's 234.
2. Change the PIP to reflect that page 234 is not available.
3. Set up a dependency so that PIP will be writtenbefore the new index page.
4. Format a buffer to look like an index page with the page number 234.

732

5. Copy half the index entries - entries J, K, and L - from the page that overflowed onto page 234.
6. Copy the pointer to the next index page from the page that overflowed (125) onto the new page (234).
7. Make the new page (234) point backward to the page that overflowed (125).
8. Mark page 234 to be written. Now page 234 can be written if it is needed by another transaction, as long as the PIP is written first.

At this point, page 125 still points forward to 126, whichpoints backward to 125. There are two copies of the index entries for J & K, but that doesn't matter
because there's no way to get to page 234 - it's not in the upper index level yet and will be skipped by a scan, regardless of direction.

9. Fix the upper levels so they include the first value of the new page. That change may cause an upper level page to overflow, resulting in the same
series of steps at that level, and so on up to the top. If the very top page splits, the index gets a new level.

Now, the upper level contains an entry for J points to 234 rather than 125. Scans still work because anything that starts lower than J will skip node 246 and
anything higher thanJ will skip 125.

10. Remove the copied index entries from the page that overflowed and change its back pointer to point to the new page.
11. Write that page.

733

A forward scanstill works, but a backward scanthat starts with N or higher will never see the values J and L. The code that handles recombinations does a lot
of sanity checking and quits when it sees a problem. That strategy doesn't work for record retrievals.

12. Fix the back pointer on the page after the new page to point to the new page.

Now the structure works again.

There are a couple of unavoidable awkward situations that occur during page allocation and release, and result in orphanpages and orphanback versions.
Orphans are wasted space but do not affect the integrityof the database.

At the page level, GFIX will sometimes report orphan pages after a crash. If the system crashes after a page has been allocated and the PIP written, but
before the pointer page that makes the data page part of the table has been written, that data page becomes an orphan. Note that the data on that page is
uncommitted because the change that commits a transaction - writing the transaction inventory page with the transaction marked committed - does not
happen until all page that were created by the transaction have beenwritten.

If the system crashes after a pointer page has beenwritten, removing an empty data page from a table, but before the PIP has been written to reflect that the
page is free.

If the system crashes in the middle of dropping an index or table, GFIX may find lots of orphan pages - a single write releases all the pages that were part of
the table or index, and that write must happen before anyof the PIPs can be changed.

Back versions must be written before the record that points to them and can not be removed until after the pointer to them has been cleared. A crashbetween
those steps makes the back version an orphan- it occupies space but is not connected to a record.

Key to diagram colors

This paper was written by Ann Harrison in June 2005, and is copyright Ms. Harrison and IBPhoenix.

See also:
Database Corruption
Preventing data loss
Alternative database repair methods

734

Firebird for the database expert: Episode 4 - OAT, OIT and Sweep
1. Transaction States
2. Garbage
3. Garbage Collection
4. Oldest Interesting Transaction (OIT)
5. Oldest Active Transaction (OAT)
6. Sweeping
7. Aside on limbo transactions
8. Some examples

1. Case 1
2. Case 2
3. Case 3
4. Case 4
5. Summary

Firebird for the database expert: Episode 4 - OAT, OIT and Sweep
ByAnn Harrison

This is an ancient message from an InterBase self-help list, responding to a question about slow inserts. It deals with questions of sweeping, oldest active
transaction, oldest interesting transaction, etc. I’ve cleaned up the spelling and added a few side notes.

From: Ann Harrison

Subject: Re: Interbase - what is it doing?

Let me also take a crack at this, since I maybe the only personwith more experience trying to explain it thanJim (Starkey- my previous & current boss/mentor/
(he says "sayhusband") etc.). The problem maybe a sweep.

First, for Novice InterBasians (and fresh-hatched Firebirdies) - when Isaytransaction, Imean a set of actions against the database, ending with a Commit,
Rollback, Prepare/Commit (two-phase commit), or abrupt disconnection from the database. A single action, like inserting, updating, or deleting a record is a
statement. Many tools provide automatic transaction support, so you maynot be aware of the number of transactions created on your behalf. Any tool that
performs a commit per statement is not your friend if you're loading a database.

Here's the hard-core stuff.

Explanations of sweeping tend to be unsatisfactory because the subject is complicated, and depends on understanding several other complicated ideas.

Disclaimer: This description applies to the state of the world in V3.x, with extrapolation to V4.x specifically noted. Ihave no current connection with InterBase
or Borland. (See note 1 in the Summary).

Lets beginby defining transaction states, garbage, garbage collection, and Oldest Interesting Transaction (OIT), Oldest Active Transaction, and sweeping...

Transaction States
Transactions have four states: active, committed, limbo, and rolled back.

Taking these cases in order from the least complexto the most:

Limbo: A transaction that started a two-phase commit by calling the PREPARE routine. The transaction maybe alive or not. At anypoint, the transaction
may re-appear and ask to COMMIT or ROLLBACK. Changes it made can neither be trusted nor ignored, and certainly cannot be removed from the
database.
Committed: A transaction is whichcompleted its activity successfully. Either A) it called COMMIT and the commit completed successfully, or B) it called
ROLLBACK but made no changes to the database, or C) it called ROLLBACK and its changes were subsequentlyundone and its state changed to
committed. This transaction is finished and will never be heard from again, and its remaining changes are now officially part of the database.
Rolled back: A transaction which either: A) called ROLLBACK and requested that its changes be removed from the database, or B) never called COMMIT
so was marked as ACTIVE, but discovered to be dead by another transaction which marked it as rolled back. In either case, changes made by this
transaction must be ignored and should be removed from the database.
Active: A transaction which: A) hasn't started. B) has started and hasn't finished. C) started and ended without calling anytermination routine. (e.g.
crashed, lost communication, etc.)

How do transactions know about each others state?

The state of every transaction is kept on a Transaction Inventory Page (TIP). The single change made to the database when a transaction commits is to
change the state of the transaction from ACTIVE to COMMITTED. When a transaction calls the rollback routine, it checks its Update flag - if the flag is not set,
meaning that no updates have been made, it calls COMMIT instead. So, rolling back read-only transactions doesn't mess up the database.

How can a transaction go back from Active to Rolled Back if it exists abnormally?

This canhappen in one of two ways:

1. When a transaction starts, it takes out a lock on its owntransaction id. If a transaction (B) attempts to update or delete a record and finds that the most
recent version of the record was created by a transaction (A) whose TIP state is ACTIVE, transaction B tries to get a conflicting lock on A's transaction
id. A live transaction maintains an exclusive lock on its own id, and the lock manager can probe a lock to see if the owner is still alive. If the lock is
granted, then B knows that A died and changes A's TIP state from ACTIVE to ROLLED BACK.

2. When a transaction starts, it checks to see if it can get an exclusive lock on the database - if it can no other transactions are active. Every active
transaction has a shared lock on the database. If it gets an exclusive lock, it converts all Active TIP entries to ROLLED BACK.

735

To reiterate, a transaction is ACTIVE (meaning that it appears to be alive), LIMBO (meaning that its outcome can not be determined), COMMITTED (meaning that it
completed successfully) or ROLLED BACK (meaning it acknowledged its faults and left the field in disgrace).

Garbage
InterBase is a multi-generational database. Whena record is updated, a copy of the new values is placed in the database, but the old values remain(usually
as a bytewise difference from the new value). The old value is called a "Back Version". The back version is the rollback log - if the transaction that updated the
record rolls back, the old version is right there, ready to resume its old place. The back version is also the shadow that provides repeatable reads for long
running transactions. The versionnumbers define which record versions particular tranasctions can see.

Whenthe transaction that updated the record commits and all concurrent transactions finish, the back version is unnecessary. In a database in which records
are updated significantly and regularly, unnecessary back versions could eventually take up enough disk space that theywould reduce the performance of the
database. Thus theyare GARBAGE, and should be cleaned out.

Garbage Collection
Garbage collection prevents an update-intensive database from filling up with unnecessary back versions of records. It also removes record versions created
by transactions that rolled back. Every transaction participates in garbage collection - every transaction, including read-only transactions.

Whena client applicaition reads a record from a Firebird database, it gets a record that looks like any record from anydatabase. Two levels lower,
somewhere in the server, InterBase/Firebird pulls a string of record versions off the disk. Each version is tagged with the transaction id of the transaction that
created it. The first one is the most recently stored. At this point, the server has two goals: 1) produce an appropriate version of the record for the current
transaction 2) remove any versions that are garbage - either because theywere created by a transaction that rolled back or because theyare so old that
nobody will ever want to see them again.

Extra Credit Aside: There is a third kind of garbage collection which happens at the same time. InterBase also uses a "multi-generational" delete. When
transaction deletes a record, does the record go away right then? No, of course not. The deletion could be rolled back. So instead of removing the record,
InterBase sticks in a new record version containing only a DELETEmarker, and keeps the old version. Sooner or later the deletion commits and matures. Then
the whole thing, deletion marker and all record versions are garbage and get ... (right you are!) garbage collected.

Garbage Collection – resumes:

Garbage collection is co-operative, meaning that all transactions participate in it, rather than a dedicated garbage team. Old versions, deleted records, and
rolled back updates are removed when a transaction attempts to read the record. In a database where all records are continually active, or where exhaustive
retrievals (i.e. non-indexed access) are done regularlyon all tables, co-operative garbage collection works well, as long as the transaction mask stays current.

For databases in whichall access is indexed, old records are seldom - or never - revisited and so theyseldom - or never - get garbage collected. Running a
periodic backup with gbak has the secondary effect of forcing garbage collectionsince gbak performs exhaustive retrievals on all tables.

See also:
Backup Database / Garbage Collection
Garbage Collectors

Oldest Interesting Transaction (OIT)
To recognize which record versions cangarbage collected, and whichupdates are rolled back and can be ignored, every transaction includes a transaction
mask whichrecords the states of all interesting transactions. A transaction is interesting to another transaction if it is concurrent - meaning that its updates are
not committed, or if it rolled back - meaning that its updates should be discarded, or if it's in limbo.

The transaction mask is a snapshot of the states of all transactions from the oldest interesting, to the current. The snapshot is made when the transaction
starts and is never updated. The snapshot depends on the number of transactions that have started since the oldest interesting transaction.

Oldest Active Transaction (OAT)
This one sounds easy- but it's not. The oldest active transaction is not the oldest transaction currently running. Nor is it the oldest transaction marked ACTIVE in
the TIP. (Alas). It is the oldest transaction that was active when the oldest transaction currently active started. The bookkeeping on this is hairyand Ifrankly
don't remember how it was done - now Ido -, but that's the rule, and it does work.

Any record version behind a committed version created by a transaction older than the oldest transaction active when the oldest transaction currently active
started is garbage and will never be needed ever again.

That's pretty dense. Lets ignore the commit/rollback question briefly.

Simple case: I'm transaction 20 and I'm the only transaction running. I find a record created and committed by transaction 15. I modify it and commit. You are
transaction 25, and when youstart, youare also the only transaction active. You read the same record, recognize that all active transactions can use the
versionof the record created by me, so yougarbage collect the original version. In this case, your threshold for garbage collection (aka Oldest Active) is
yourself.

Harder case: You continue puttering around, modifying this and that. Another transaction, say27 starts. You are its oldest active. It too can modify this and
that, as long as it doesn't modify anything you modified. It commits. Istart a transaction 30. You are also my oldest active transaction, and Ican't garbage
collect any record version unless the newer version is older thanyou. I run into a record originally created by transaction 15, modified by transaction 20, then
modified againby 27. All three of those transactions are committed, but I cangarbage collect only the original version, created by transaction 15. Although the
versioncreated by transaction 27 is old enough for me, it is not old enough for you, and being cooperative, Ihave to consider your needs too.

736

Hardest case: I'm transaction 87, and when I started, all transactions before 75 had committed, and everybody from 75 on was active. Transaction 77
modifies a record, created originally by transaction 56. Icontinue to read the 56 version. All is well. Transaction 77 commits. You are transaction 95. When you
start, I, number 87, am the oldest active. You read the record created by 56 and modified by 77. You can't garbage collect anything in that record because I
can't read records created by anytransaction newer than74.

Maybe you know now why descriptions of the oldest active tend to be a little peculiar.

Sweeping
Sweeping is NOT just organized garbage collection. What sweeping seeks to do is to move the Oldest Interesting Transaction up, and reduce the size of
transaction masks. It does so by changing rolled back transactions to committed transactions.

"What!!!", you say. "The woman is nuts."

But that's what a sweep does. It removes all the changes made by a rolled back transaction thenchanges it state to committed. (Remember we agreed earlier
that a read-only transaction that rolled back could be considered committed for all the harm it did. Remove the damage, and its safe to consider the
transaction committed.)

At the same time, sweep garbage collects like any other transaction.

Prior to version 4.2, the unlucky transaction that triggered the sweep gets to do the work. Other concurrent transactions continue, largely unaffected. In version
4.2 and later, a new thread is started and sweeps the database while everybody else goes about life as normal. Well, more or less normal, where the less is
the amount of CPU and I/O bandwidth used by the sweep.

See also:
Database sweep / sweep interval
Database repair and sweeping using GFIX

Aside on limbo transactions
A transaction in limbo cannot be resolved by a sweep, will continue to trigger sweeps, and will block attempts to update or delete record versions it created.
However, InterBase gives good diagnostics when it encounters a record in that state, and no tool is likely to generate incomplete two-phase commits on a
random basis.

Some examples
The unfortunate case that started this message was an attempt to insert 1,000,000 records, one transaction, and one commit per record. The process slowed
to a crawl, whichwas blamed on sweeps. Sweeping maybe the problem, but Idoubt it.

Case 1

Single stream of non-concurrent transactions. Transaction 1 inserts record 1, and commits. Transaction 2 starts and is both oldest active and oldest
interesting. It inserts record 2 and commits. Transaction 3 starts, is oldest active and oldest interesting, inserts its record and commits. Eventually, transaction
1,000,000 starts and it too is both oldest interesting and oldest active. No sweeps.

Case 2

Lurker in the background. Transaction 1 starts, looks around, and goes off for a smoke. Transaction 2 starts, notices that 1 is oldest interesting and oldest
active, inserts record 1 and commits. Transaction 3 starts, notices that 1 is still OI and OA, inserts record 2 and commits. Eventually transaction 1,000,001
starts, notices that 1 is still OIand OA so the difference between the two is still 0, stores, and commits. No sweeps again.

Case 3

Suicidal lurker. Transaction 1 starts, does something, goes out for a smoke. Transaction 2 starts, notices that 1 is oldest interesting and oldest active, inserts
record 1 and commits. Transaction 3 starts, notices that 1 is still OIand OA, inserts record 2 and commits. Eventually transaction 1 succumbs to smoke
inhalation and dies quietly in his corner. Transaction 15,034 (by luck) starts, gets an exclusive lock on the database, and sets Transaction 1's state to Rolled
Back. Now the oldest interesting is still 1, but the oldest active is 15,034. The difference is 15,033, so no sweep yet. 4,967 transactions later the sweep
occurs. Depending on the version of InterBase, transaction 20,001 mayactually be charged with the time spent sweeping. Versions since 4.1 start a new
thread. Once the sweep is done, the OI and OA march up together, hand in hand, and there is no more sweeping unless another transaction goes into an
interesting and non-active state.

Case 4

Suicidal Twin. If for every record stored, the tool started one transaction which stored the record thenrolled back, followed by a second transaction which
stored the record and committed, then the difference between the OA and the OI would go up one for each record successfully stored. (Transaction 1
becomes OI when it rolls back. Transaction 2 is OA when it starts and the difference is 1. Transaction 3 rolls back, but is not OI because Transaction 1 is still
older. Transaction 4 is OA and sees a difference of 3 between it and Transaction 1, and so on until transaction 20,001 which sweeps, and brings the OA and
OI together at 20,001. Unfortunately its only storing record 10,001 since half the attempts to store are failing. In this EXTREMELY UNLIKELY case, storing
1,000,000 records would cause 100 sweeps. However, it would require an UNUSUALLY bad programmer to create anything that AMAZINGLY inefficient.
Grounds for a career change.

Summary

737

Beats me why the load was so slow, althoughthe commit per insert does a lot more writing than just inserting. That and forced write might explain a lot. Maybe
a really fragmented disk?

Note 1: This message was written sometime last century, before Igot involved with InterBase and then Firebird. I now know a lot more about InterBase 4.x, 5.x,
6.x and Firebird 1.0x, 1.5x, 2.0x, and Vulcan. That knowledge will show up passim.

See also:
Multi-generational architecture (MGA) and record versioning

738

Firebird for the database expert: Episode 5 - Locking and Record Versions
1. Locking

1. Write locks prevent dirty writes
2. Read locks
3. Consistent read
4. Serializability
5. Lock table size
6. Contention and deadlocks

2. Multi-version concurrency control
1. Write locks - dirty writes
2. Read locks - dirty reads
3. Repeatable read
4. Serializability

a. Exchanges
b. Insert anomalies

Firebird for the database expert: Episode 5 - Locking and Record
Versions
ByAnn Harrison

Concurrency control is the mechanism that allows simultaneous users to read and write data as if eachuser had complete control of the database. This state
of bliss is called "serializability". The state of the database after a group of concurrent transactions complete is the same as if each transaction ran alone in
some unspecified order. Few, if any, database systems offer serializable transactions as their default mode.

Until recently, the most common concurrencycontrol mechanism was locking. Of course, since transactions are imaginaryelectronic things, theydon't actually
put brass padlocks on the bits on a disk. Instead, the database system imposes a discipline on access to records, so eachtransaction's record use is
recorded in memory and no transaction can conflict with another's noted level of use. Transactions acquire locks as theyaccess records but never release any
lock until theycommit or rollback. The strategyof incrementally locking records and releasing all locks simultaneously at the end of the transaction is called
two-phase locking.

Locking

Write locks prevent dirty writes

In a system that relies on locks for concurrencycontrol, when a transaction modifies, inserts, updates, or deletes a record it gets a write lock on that record.
Write locks are exclusive only one transaction can hold a write lock at anyone time. That lock alone is sufficient to keep two transactions from changing the
same record at the same time and satisfies the lowest generally recognized level of concurrency - no "dirty" writes. A dirty write could happen like this:

Transaction A: reads an employee record and increases the salary.
Transaction B: reads the same employee record and gives the employee a promotion.

If the two updates run at the same time, the result without write locks could easily be that the employee gets either the salary raise or the promotion, but not
both.

Read locks

When a transaction in a locking database reads a record, it gets a read lock on that record. Read locks are compatible with other read locks, but not
compatible with write locks. Read locks prevent dirty reads.

A dirty read allows a transaction to see the results of an uncommitted concurrent transaction.

Transaction A: reads an employee record and increases the salary.
Transaction B: reads the same record and adds the salary to the departments budget report.
Transaction A: rolls back. Transaction B has the wrong total for the department budget.

Consistent read

Transactions running alone in a database always see the same state of data, plus anychanges theymake themselves. That state is called "consistent read" if
a transaction reads the same record twice, it sees the same data unless it changed the data itself. If a transaction running alone in a database reads all the
records in a table once, it will see exactly the same number of records with the same contents the next time it reads the table, give or take changes it makes
itself. Write and read locks alone do not produce consistent reads. Consider this case:

Transaction A: counts the number of employees in department Z, locking every employee record for read.

Either

Transaction B: stores a record for a new employee in department Z, with a write lock on the record. Or
Transaction B: updates an existing employee record changing the department to Z.
Transaction B: commits and releases all its locks.
Transaction A: counts the number of employees and gets a different total.

To insure that its reads are repeatable, Transaction A has to lock something more than the existing records, something more abstract. Those abstract locks
are called predicate or existence locks, locks that keep something new from being added to a result set, either by inserting a new record or modifying an
existing record so it meets the criteria for the result set.

Predicate locks can be implemented as locks on the access paths to records.

739

If the department is an indexed field, Transaction A would acquire a read lock on that part of the index that points to records for department Z. Then when
Transaction B tried to create a new index entry for its record, it would find a conflicting lock and wait for A to complete and release its lock.

If the department field is not indexed, Transaction A acquires a read lock on the entire employee table including the ability to add new records to the table. No
employee records can be inserted, updated, or deleted until Transaction A completes.

Serializability

Holding two-phase write, read, and predicate locks produces serializable transactions. However, it also produces large lock tables, contention, and
deadlocks.

Lock table size

Eventhough locks are small temporary things, reading a few million records builds up a lot of locks. For that reason, most systems that use read locks employ
strategies called lock demotion and promotion.

Contention and deadlocks

A major reporting transaction that hold two-phase read locks on records and access paths can easily block all writers from the database. In turn, those writers
canhold locks that block reports, causing deadlocks. The end result is that performance is often worse when transactions run concurrently using two-phase
serializable locking thanwould be if the transactions were actually run one at a time.

Multi-version concurrency control
Firebird uses record versions in place of write locks, read locks, predicate locks, and transaction logs. Using record versions for transaction recovery is
described under Record versions as an undo log.

Write locks - dirty writes

Everyrecord version is tagged with the versionof the transaction that created it. Every transaction knows what transactions are currently active. No transaction
canupdate or delete a record whose most recent version is not committed. Dirty writes are impossible.

Read locks - dirty reads

Because records are tagged with their version and every transaction knows what transactions are currently active, no transaction canread a record version
created by an active transaction. Dirty reads are impossible.

Repeatable read

Here the issue of transaction modes raises its ugly head. Firebird supports three orthogonal modes

consistency/concurrency/read committed,
wait/no wait,
snapshot/no snapshot.

This paper describes the one true Firebird transaction: concurrency, wait, snapshot. Consistency transactions lock tables and are too boring to talk about.
Read committed mode does not provide repeatable read because newlycommitted data becomes available to a running transaction. No wait transactions err
as soonas thenencounter any type of conflict. No snapshot transactions read only the most recentlycommitted record, and are useful only with read
committed mode.

A concurrency, wait, snapshot transaction always provides repeatable read. Whenthe transaction starts, it creates a list of all transactions that were
committed when it started, and when it encounters a record, it walks backward through the version until it finds a version whose transaction marker is on the
committed list. Changes made by concurrent transactions are ignored.

Serializability

Unlike locking systems, a multi-generational concurrency control system can provide repeatable reads without being completely serializable. Here are two
anomalies that affect Firebird.

Exchanges

Anexchange occurs when two transactions use data from different records and apply change in inverse order. Anexample might help.

The problem is to be sure that all employees in the same job class have the same salary, regardless of gender. One solution is to read the records for men in
eachclass and update the records for women with the salary from the men's records. Another, cost saving solution is to read the records for womenand
update the men's records to the salary from the women's records.

Transaction A: reads men, updates women
Transaction B: reads women, updates men

The result is that the salary gap is inverted, but still exists. That result could not occur if the two transactions ran separately. The transactions do not conflict
because each record is modified only once. Changes made by the other transaction are not visible because when either transaction attempts to read a record
that has been modified, it automatically reads the previous committed version. The solution is to be aware of the possibility of this error and choose a specific
order when copying data from one record to another.

Insert anomalies

740

Insert anomalies are another problem than can occur during concurrent data modifications.

Consider this case.

 Create table foo (f1 integer);
 Commit;
 Transaction A: insert into foo (f1) select count (*) from foo;
 Transaction B: insert into foo (f1) select count (*) from foo;
 Transaction A: insert into foo (f1) select count (*) from foo;
 Transaction B: insert into foo (f1) select count (*) from foo;
 Transaction A: insert into foo (f1) select count (*) from foo;
 Transaction B: insert into foo (f1) select count (*) from foo;
 Transaction A: commit;
 Transaction B: commit;
 Transaction A1: select f1 from foo order by f1;
 0
 0
 1
 1
 2
 2

Each transaction saw only its ownchanges, so each count ignored records stored by the other transaction. If the transactions were run serially, the results
would have been:

 0
 1
 2
 3
 4
 5

The solution is to put a unique index on anydata that might be stored containing the count (or max) of values in the table. Unique indexes are correctlyenforced
evenwhen the transactions involved can not see eachother's records.

741

Firebird for the Database Expert - Episode 6: Why can't I shrink my
databases
ByAnn Harrison

New Firebird users oftenask "Why doesn't the database get smaller when I delete records?" or "Where's the PACK function".

The usual answer is that releasing and reallocating space is more expensive thanreusing it internally. That’s true, but it’s not the whole answer. The real issue
is the relationships between pages, and to understand that, it helps to have some understanding of the structure of a Firebird database. There’s a more
complete description in Episode 2, but, briefly, a Firebird database is a single file. The file contains data for all tables, indexes, and structural information that
allows Firebird to allocate and release pages, locate tables and indexes, maintaingenerators, etc.

The database file is made up of pages. Pages are fixed length blocks within the file. Each page has a specific function. The most commonare data pages,
eachholds records for a single table. Whenyou store a record in a table, Firebird first tries to store it on a data page for that file that are already in the page
cache. Then, it looks for other pages belonging to the table that have space. If there is no data page for that table in the file with space for the new record, then
Firebird looks for free pages - pages that have been allocated to the file that are not currently used. Finally, if all those searches fail to find a place for the
record, Firebird extends the file and allocates a page in the new space.

This diagram represents a section at the end of a database file. The red pages are data pages. Brownpages are index pages. The purple page is a page
inventory page. The two white pages represent former data pages that are now empty. The first page cannot be released because file systems do not allow
space to be removed from the middle of a file. In theory, the last page in the database could be released, by truncating the file slightly. However, the effect
would be minimal unless a large number of the deleted records were on the last pages allocated. That situation is rare.

One common case of mass deletes is an application step in which records must be stored in a temporary table for processing before being inserted into their
final location. In that case, pages allocated for the temporary table would precede the pages allocated for the permanent table, making truncation impossible.
Another case is a rolling archive: an active table holds records for a period of time, after which theyare archived to a different table or database. In that case,
the deleted records would be stored before the most recent records, again preventing significant truncation. In fact, it is difficult to think of an application that
stores a large number of records, and thendeletes them without storing or modifying other data, aside from test databases.

742

One might imagine that the database with empty pages could be compacted by sliding the pages together. That thought gravely underestimates the internal
linkages in a Firebird database. Pointer pages, index root pages, transaction inventory pages, and generator pages are located through a table called RDB$
PAGES whichwould have to be updated with their new location. Pointer pages are arrays of page numbers, all of which would need to be updated to reflect the
new locations of pages containing data for the tables. And those are the easy cases.

Page inventory pages - the purple page in the diagrams - occur at fixed intervals and cannot be moved. A page inventory page is an arrayof bits that indicate
whether the corresponding page is in use. Since the correspondence is by page number, page inventories would have to be updated to reflect the new
location of the pages. Withina data page, records identify their back versions and fragments by page number. Because here is no pointer back from the
fragment or back version, if a page containing a fragment is moved, the system would need to search the whole table to find the record that owns the fragment
and fix its pointer.

Indexes pages point to their left and right neighbors by page number, and upper levels reference lower levels by pages number. At the bottom level, the index
indicates the location of records by page number. Moving data or index pages would invalidate the whole index.

To summarize, there is no simple way to release all free space in a database to the operating system because free pages do not typicallycongregate at the
end of the database file. The internal structure of the database file is so complexthat anyeffort to compact the file would require taking the database off line for
longer than a backup and restore, with less satisfactory results.

743

Structure of a header page
1. Header Page Clumpets
2. Standard Page Header
3. Header Page Flags

Structure of a header page
ByAnn Harrison

A Firebird database has one header page per file, but the first one is by far the most important. WhenFirebird opens a database, it reads the first 1024 bytes
of the file to determine whether the file is actually a database, whether its format (i.e. On Disk Structure or ODS) is one that the current engine understands, the
size of a database page, whether the database is read/only, whether forced writes are required, and many other important bits of information. Subsequent
header pages containonly the page number of the header of the next file, the sequence number of this file in the database, and the name of the next file.

The individual fields on the primary header page are:

Field type Size in
bytes Function

hdr_header 16 This structure is defined on every page and includes the information below.

hdr_page_size 2 Length of a database page in bytes.

hdr_ods_version 2 Major and minor On Disk Structure version number.

hdr_PAGES 4
The page number of the first pointer page for the RDB$PAGES table. The format format of the RDB$PAGES table
is fixed for anyODS. The first pointer page allows the system to read the RDB$PAGES table and find all other
parts of the metadata.

hdr_next_page 4 Page number of the header page of the next file in the database.
hdr_oldest_
transaction 4 Oldest uncommitted transaction, whether rolled back, limbo, or active.

hdr_oldest_active 4 Oldest transaction active when anyactive transaction started.
hdr_next_
transaction 4 Transaction id to be assigned to the next transaction when it starts.

hdr_sequence 2 Sequence number of this file in the database.

hdr_flags 4 Flag settings, see below.

hdr_creation_date 8 Timestamp of database creation.

hdr_attachment_id 4 Identifier to assign to the next connection.

hdr_shadow_count 4 Event count for shadow synchronization.
hdr_
implementation 2 Implementation number of the database engine whichcreated the database.

hdr_ods_minor 2 Current minor on disk structure version number.
hdr_ods_minor_
original 2 Minor on disk structure version at the time of database creation.

hdr_end 2 Offset of the last entry in the variable length portionof the header.

hdr_page_buffers 4 Maximum number of pages in the database cache.
hdr_bumped_
transaction 4 Unused, part of the abandoned write-ahead log.

hdr_oldest_
snapshot 4 Confusing and redundant variant of oldest active.

hdr_backup_pages 4 Number of pages in files locked for backup (NBAK?).

hdr_misc 12 Stuff to be named later, present for alignment, I think.

hdr_data[1] 1 Clumplet data.

Header Page Clumpets
Clumplets are optional extensions of the header information and start at the end of the fixed portionof the header. Clumplet data items have the format:

 <type_byte> <length_byte> <data...>

New clumplet types can be added without invalidating the on disk structure because the engine skips unrecognized clumplets.

Clumplet name Value Meaning
HDR_end 0 Last clumplet in the header.

HDR_root_file_name 1 Original name of root file.
HDR_journal_server 2 Name of journal server.

HDR_file 3 Secondary file.
HDR_last_page 4 Last logical page number of file.

HDR_unlicensed 5 Count of unlicensed activity.
HDR_sweep_interval 6 Transactions betweensweeps.

HDR_log_name 7 Replay log name.

744

HDR_journal_file 8 Intermediate journal file.
HDR_password_file_key 9 Key to compare to password db.

HDR_backup_info 10 WAL backup information.
HDR_cache_file 11 Shared cache file – unused.

HDR_max 11 Maximum HDR_clump value.

Standard Page Header
Every page in the database starts with the standard page header, containing the following fields. The values present in the standard header for the first
header page of a database are listed.

Field type Size in bytes Function
page type 1 Value 1meaning header page.

page flags 1 Not used for header pages.

page checksum 2 The value 12345.

page generation 4 A value incremented each time the page is written.

page sequence number 4 Reserved for future use.

page offset 4 Reserved for future use.

Header Page Flags
Possible settings for the flag field in the database header:

Flag name Hex value Decimal value Meaning
hdr_active_shadow 0x1 1 File is an active shadow file.
hdr_force_write 0x2 2 Forced writes are enabled if this flag is set.

hdr_short_journal 0x4 4 Short-term journaling. Part of an abandoned journaling subsystem.
hdr_long_journal 0x8 8 Long-term journaling. Part of an abandoned journaling subsystem.

hdr_no_checksums 0x10 16 Don't calculate checksums. Checksums are no longer calculated.
hdr_no_reserve 0x20 32 Don't reserve space on eachpage for record versions created by updates and deletes.

hdr_disable_cache 0x40 64 Disable shared cache file. Another abandoned project.
hdr_shutdown 0x80 128 Database is shutdown.

hdr_SQL_dialect_3 0x100 256 Database SQL dialect 3.
hdr_read_only 0x200 512 Database in ReadOnly. If not set, DB is RW.

See also:
Structure of a data page
Firebird for the database expert: Episode 2 - Page Types

745

Structure of a data page
ByPaul Beach
(With thanks to Dave Schnepper and Deej Bredenberg)

A database is considered to be a collection of pages, each page has a pre-defined size, this size is determined when the database is created by a database
parameter that is passed in the isc_database_create call (gds_dpb_page_size). Pages are identifed by a page number (4 byte unsigned integer), stating at 0
and increasing sequentially from the beginning of the first database file to the end of the last database file.

Page 0 of a database is always the database header page, whichcontains the information that is needed when you attach to a database. Page 1 is the first
PIP page (Page InventoryPage) and the first WAL page is always page 2. Byconvention, page 3 is the first pointer page for the RDB$PAGES relation, but that
location is described on the header page so it could (in theory) change.

Except for the header page there is no specific relationship beetweena page number and the type of data that could be stored on it.

The types of pages are defined in ods.h and are as follows:

 #define pag_header 1 /* Database header page */
 #define pag_pages 2 /* Page inventory page */
 #define pag_transactions 3 /* Transaction inventory page */
 #define pag_pointer 4 /* Pointer page */
 #define pag_data 5 /* Data page */
 #define pag_root 6 /* Index root page */
 #define pag_index 7 /* Index (B-tree) page */
 #define pag_blob 8 /* Blob data page */
 #define pag_ids 9 /* Gen-ids */
 #define pag_log 10 /* Write ahead log information */

Pages are located in the database by seeking within the database file to position page_number*bytes_per_page. The structure of a data page, as defined in
ods.h is as follows:

All pages have a page header, the page header consists of,

 typedef struct pag {
 SCHAR pag_type;
 SCHAR pag_flags;
 USHORT pag_checksum;
 ULONG pag_generation;
 ULONG pag_seqno; /* WAL seqno of last update */
 ULONG pag_offset; /* WAL offset of last update */
 } *PAG

1 2 Length,
bytes Description

pag_type Page Type 1 =pag_data

pag_flags Page Flags 1 e.g. Data page is orphaned (it doesn't appear on any pointer page), page is full, or a
blob or an arrayexist on the page.

pag_checksum Page Checksum 2 Always 12345 for knownversions.
pag_
generation Page Generation 4 how many times has the page beenupdated.

pag_seqno Page Sequence
Number 4 WAL sequence number of last update, unused.

pag_offset Page Offset 4 WAL offset of last update, unused.

The remainder of the page (less the 16 bytes above) is used to store page-specific data.

A data page holds the actual data for a table, and a data page can only be used by a single table, i.e. it is not possible for data from two different tables to
appear on the same data page. Each data page holds what is basicallyan arrayof records (complete or fragmented). Below the header is 8 bytes of:

Page Sequence (dpg_sequence 4 bytes) sequence number of the data page in a table, used for integrity checking.
Page's Table/Relation id (dpg_relation 2 bytes) this id is also used for integrity checking.
Number of Records or record fragments that exist on the data page (dpg_count 2 bytes).

This is then followed by an array of descriptors eachof the format: offset of record or fragment, length of record or fragment. This descriptor describes the size
and locationof records or fragments stored on a page. For each record or fragment that is stored on the page there is an equivalent record descriptor at the
top of the page. As records get stored the array grows down the page, whilst the records or fragments are inserted backwards from the end of the page. The
page is full when theymeet in the middle.

 typedef struct dpg {
 struct pag dpg_header;
 SLONG dpg_sequence; /* Sequence number in relation */
 USHORT dpg_relation; /* Relation id */
 USHORT dpg_count; /* Number of record segments on page */
 struct dpg_repeat
 {
 USHORT dpg_offset; /* Offset of record fragment */
 USHORT dpg_length; /* Length of record fragment */
 } dpg_rpt [1];
 } *DPG;

746

Obviously data records canvary in size, so the number of records that mayfit on a page can vary. Equally records mayget deleted, leaving gaps on a page.

The page free space calculationworks by looking at the size of all of the records that exist on a page. If space canbe created on the page for a new record,
then the records will get compressed i.e. shifted downwards to fill the gaps that would get created during normal insert, update and deletion of data. Whenthe
free space is less than the size of the smallest possible fragment - thenthe page is full.

A record maybe uniquely identified by its record number (rdb$db_key).

The record header structure is,

1 Length,
bytes Description

rhd_
transaction 4 Record header transaction. The transaction id that wrote the record.

rhd_b_page 4 Record header back pointer. Page number of the back version of the record.

rhd_b_line 2 Record header back line. Line number of the back version of the record.
rhd_flags 2 Record header flags. Possible flags are:

 • rhd_deleted - the record has been logically deleted, but hasn't yet been garbage collected.

 • rhd_chain - this record is an old version, a later version points backwards to this one.

 • rhd_fragment - the record is a fragment of a record.

 • rhd_incomplete - the initial part of the record is stored here, but the rest of it may be stored in one or multiple
fragments.

 • rhd_blob - the record stores data from a blob.

 • rhd_stream_blob - the record stores data from a stream blob.

 • rhd_delta - the prior version of this record must be obtained by applying the differences to the data stored in
this array.

 • rhd_large - this is a large record object such as a blob or an array.

 • rhd_damaged - the record is known to be corrupt.

 • rhd_gc_active - the record is being garbage collected as an unrequired record version.

rhd_format 1
Record header format. The metadata version of the stored record. When a record is stored or updated, it is
marked with the current format number for that table. A format is a description of the number and physical order
of fields in a table and the datatype of eachfield.

When a field is added or dropped, or the datatype of a field is changed, a new format is generated for that table. A historyof all of the formats for a table is
stored in RDB$FORMATS. This allows the database to reconstruct records that were stored at any time based on the format that existed for the table at that time.
Metadata changes, such as the above do not directly affect the records when the metadata change itself takes place, only when the records are actually next
visited.

Record header data (hd_data size n as needed) is the actual record data and is compressed by RLE (Run Length Encoding). When a run takes place the
compression algorithm will use 1 extra byte per 128 bytes, to represent the run length followed by one or more bytes of data. A positive run length indicates
that the next sequence of bytes should be read literally, whilst a negative run length indicates that the following byte is to be repeated ABS(n) times.

 typedef struct rhd {
 SLONG rhd_transaction; /* transaction id */
 SLONG rhd_b_page; /* back pointer */
 USHORT rhd_b_line; /* back line */
 USHORT rhd_flags; /* flags, etc */
 UCHAR rhd_format; /* format version */
 UCHAR rhd_data [1];
 } *RHD;

This paper was written by Paul Beach in September 2001, and is copyright Paul Beach and IBPhoenix Inc.

See also:
Structure of a header page
Firebird for the database expert: Episode 2 - Page Types

747

Garbage Collectors
ByAnn Harrison

It is no longer true that "every" transaction participates in garbage collection. In the oldendays, before InterBase 5, all garbage collection was cooperative.
Each transaction looked at each record it read, and if it found unnecessary back versions, stopped whatever it was doing and removed them.

That behavior had the "unfair" effect of charging a transaction that did not change the database with lots of I/O spent cleaning up after transactions that did
make changes. In V6, InterBase introduce a "garbage collect thread" for SuperServer only.

Whenthe garbage collect thread is enabled, transactions identify unneeded back versions and put them on a list to be removed. When the system is idle, a
special thread starts, reads the list, and starts cleaning up. The theory was that garbage collection would happen during slow times and not affect performance.
Like many theories, this one has a flaw. Garbage collection is cheap if the back version to be removed is on the same page with the version of the record that
is staying. There's only one page to change, and there are no tricky interactions with careful write. Normally, back versions are stored on the same page with
the most recent record version. If that page fills up, thenback versions need to go elsewhere, and the cost of storing and removing them increases enormously.

So, in a busy system, the garbage collect thread doesn't run often enough, back versions accumulate, and performance degrades markedly.

Vulcan disabled the garbage collect thread and performance is more even. Firebird 2 implements a hybrid mode for SuperServer in which threads remove
back versions themselves if the back version is on the same page with the primary record version. If not, the record goes on a list for the garbage collector. At
some point, we'll test the various methods and pick the one that works best under load.

See also:
Garbage collection
Garbage collection in IBExpert

Record versions as an undo log
ByAnn Harrison

Firebird has no undo log or before-image journal. Instead, it uses old record versions to back out changes of transactions that fail.

Whena record is changed or deleted, the system creates a back version of the record that contains enough information to transform the newer version into the
previous version. The newest record version contains a link to the next older version, which maycontain a link to the next older version, and so on. However,
there is, at most, one uncommitted version of each record.

Whena transaction rolls back, the next older version of each record it changed is the undo log for that record. A transaction that rolls back under program
control undoes its ownactions. If the transaction cannot undo its ownactions, its changes are undone through cooperative garbage collection. When a
transaction encounters a record version created by a transaction that failed, the active transaction removes that record version and replaces it with the
previouslycommitted version of the record.

See also:
OAT (Oldest Active Transaction) OIT(Oldest Interesting Transaction)

748

Where do data pages come from?
ByAnn Harrison

A Firebird database is an array of fixed-length pages in no particular order. How does the engine determine where a record should be stored?

Records are stored on data pages. When the engine prepares to store a record, it first compresses the record, then looks for a data page with available
space.

1. Often, when a table is active, there is a suitable page in cache, already allocated to the right table for the record, with space for the new record, and
nothing special must be done.

2. If not, the system first checks the current pointer page for the table, checks the array at the bottom to find the first page that isn't full, reads that page,
and puts the record there.

3. If the current pointer page doesn’t have a page with free space, the system checks subsequent pointer pages for data pages that can hold the new
record.

4. If a new page must be allocated,
a. The engine finds the current page inventory page (PIP), looks on its header to find the first free page,

i. If there are no free pages on the PIP, check the next PIP, until one has space, or the last one is found.
ii. If there is only one free page on the last PIP, use it to allocate another PIP.

b. The system changes the state of the next bit on the PIP that represents a free page page.
c. marks the PIP has having beenchanged.
d. and formats a buffer to look like a data page.

Once a page with sufficient space has been found, the engine locates a block of space for the record and an empty page index, if one is available, or creates
a new page index. It then puts the lenght of the compressed record and its offset on the data page into the page index.

See also:
Structure of a data page

749

Optimize database cache utilization to improve database
performance
ByHolger Klemt

Did you ever think about possibilities to improve your database performance? Sure, a database system such as InterBase or Firebird is able to speed up
typical operations internallybut, in a lot of cases, there are veryeasy but powerful methods to improve performance.

Here is a first example:

Whenthe first user connects to a database, the database cache is empty and all database and index pages must be read from the hard disk. The
Superserver architecture will use the cache for all connected users for this database, but when the users are disconnected again, the cache is cleared and
everything starts over again.

This is not only important for typical Delphi/C++/.net/Java client applications, but also for web server applications using PHP or ASP.

How to improve the database open performance?

1. Use available memory as cache. The cache setting for a specific database can be changed in the IBExpert menu item Tools / Database Properties /
Buffers / Pages. Maximum values depend on the used InterBase/Firebird server version, but Firebird 2.0 supports up to 128k (131072) pages here.

2. Use a large page size. Firebird 2.0 can be used with a 16k page size, so 131072 pages cache means about 2 GB ram is used as cache. When using
an 8k page size, the maximum ram is 1 GB etc. To change the page size, just perform a backup and thenrestore with the changed page size.

3. Important: Do not set this combination higher than the free available physical memory on your database server. It should also not be much higher than
the database file size.

4. How to fill the cache? When daily work starts, for example at 8:00am, it might be helpful to have the cache already filled before the employees start their
work. For this reason, we create a simple stored procedure:

CREATE PROCEDURE FILLCACHE AS declare variable SQL VARCHAR(200); declare variable cnt integer; BEGIN
 /* Fillcache Procedure (c) IBExpert Team*/
 FOR
 select rdb$relation_name sql from rdb$relations
 INTO :SQL
 DO
 BEGIN
 sql='select count(*) from '||sql;
 execute statement sql into cnt;
 END

END

This procedure is compatible with firebird >=1.5, but it can be also altered to be implemented with InterBase or older Firebird versions. Since it counts all data
in all tables, all data pages are copied from the hard disk to the cache. When there is enough free memory, all cache pages remain in the memory until the last
connectiondisconnects.

This script should be executed, for example, the first time every morning at 7:30 am. Write a batch file and create a job in the Windows Task Manager or Linux
cron:

 connect 'localhost:C:\db1.fdb' user 'sysdba' password 'masterkey';
 execute procedure fillcache;
 commit;
 shell sleep 3600000
 execute procedure fillcache;
 commit;
 shell sleep 3600000
 execute procedure fillcache;
 commit;
 shell sleep 3600000

 exit;

This script connects to the database, executes the fillcache procedure, commits the transaction and sleeps for one hour before it runs again. The operation
is repeated as often as desired and the connections remainactive until the command exit is executed. For example when executed hourly 12 times, it fills the
cache for twelve hours and stops after that time. On the next day, the script starts again automatically.

5. Additional advantages: this script also starts the garbage collector when it finds outdated records in the database, but this will only happen as long as
there is no older active transaction (OAT) blocking the garbage collector.

6. Resume

Feel free to implement these operations in your database server to improve the performance. We have a number of customers who have used this and
reported verysatisfactory improvements.

750

Selecting the right datatype to improve database performance
ByHolger Klemt

Here is a further example of just one more method to improve your database performance: use the right datatype!

We were set the challenge to find out how much influence the changes between GUID and Int32 or Int64 primary keys have in the database design regarding
performance. So we created 3 different databases on a Windows machine, each with two simple tables (m for master, d for detail).

Here is the database structure for Int32 IDs:

 CREATE TABLE M (
 ID INTEGER NOT NULL PRIMARY KEY,
 TXT VARCHAR(30));

 CREATE TABLE D (
 ID INTEGER NOT NULL PRIMARY KEY,
 M_ID INTEGER REFERENCES M(ID),
 TXT VARCHAR(30));

Here is the database structure for Int64 IDs:

 CREATE TABLE M (
 ID BIGINT NOT NULL PRIMARY KEY,
 TXT VARCHAR(30));

 CREATE TABLE D (
 ID BIGINT NOT NULL PRIMARY KEY,
 M_ID BIGINT REFERENCES M(ID),
 TXT VARCHAR(30));

Here is the database structure for GUIDs:

 CREATE TABLE M (
 ID CHAR(32) NOT NULL PRIMARY KEY,
 TXT VARCHAR(30));

 CREATE TABLE D (
 ID CHAR(32) NOT NULL PRIMARY KEY,
 M_ID CHAR(32) REFERENCES M(ID),
 TXT VARCHAR(30));

To create the database for the GUID, we used a UDF from http://www.ibexpert.com/download/udf/uuidlibv12.zip.

 DECLARE EXTERNAL FUNCTION GUID_CREATE
 CSTRING(36) CHARACTER SET NONE
 RETURNS PARAMETER 1
 ENTRY_POINT 'fn_guid_create' MODULE_NAME 'uuidlib';

Next we created a stored procedure to generate the data in the GUID database.

 CREATE PROCEDURE INITDATA (ANZ INTEGER)
 AS
 declare variable m varchar(40);
 declare variable d varchar(40);
 declare variable dx integer;
 begin
 while (anz>0) do
 begin
 m=guid_create();
 m=strreplace(m,'-','');
 insert into m(id,txt) values (:m,current_timestamp);
 dx=10;
 while (dx>0) do
 begin
 select guid_create() from rdatabase$database into :d;
 d=strreplace(d,'-','');
 insert into d(id,txt,m_id) values (:d,current_timestamp,:m);
 dx=dx-1;
 end
 anz=anz-1;
 end
 end

The procedure to create the Integer ID data is much easier using a generator.

After we created all 3 databases with the parameter 500000 (i.e. 500,000 master and 5,000,000 detail records were created), we disconnected and
reconnected again to the database to ensure that anycache influence did not alter the results.

To perform a typical SQL operation, we started a SELECT that joins all records from all tables:

 select count(*) from m join d on d.m_id=m.id

Here are the results:

?

751

http://www.ibexpert.com/download/udf/uuidlibv12.zip

 Operation/Info Int32 Int64 GUID
 Database Size 505 MB 550 MB 1030 MB
 INITDATA(500000) 271s 275s 420s
 Backup 49s 54s 90s
 Restore 124s 127s 144s
 Select 22s 22s 49s

Resume

The changes between Int64 and Int32 are negligible, but the changes to a GUID is a problematic design. The integer datatypes will give youbetter
performance.

To discover more hints and tips about where you can improve the performance of your database, just open the IBExpert menu item Tools / Stored Procedure/
Trigger/View Analyzer and press [F9]. This analyzes all objects and displays all parts that do not use an index in a red color. To modify these objects, simply
double click the line. A well-designed database should have no red line at all!

This feature is not available in the IBExpert Personal Edition, but is part of the IBExpert Trial Edition, which allows you to test all IBExpert on your database for
45 daysfunctionalities - free of charge, and which youcan download from http://ibexpert.net/ibe/pmwiki.php?n=Main.DownloadTrial (scroll down to download
the setup_trial.exe file).

The IBExpert Full Versiongives you unlimited access to these performance-tuning tools and is available for just EUR 179.00 at http://ibexpert.net/ibe/
pmwiki.php?n=Main.OnlineShop.

752

http://ibexpert.net/ibe/pmwiki.php?n=Main.DownloadTrial
http://ibexpert.net/ibe/

SQL Language Reference
Here is some basic information regarding DDL, DML and stored procedure and trigger language. Refer to the InterBase SQL
Language Reference handbook for detailed information concerning InterBase syntax, and we recommend Helen Borrie's book,
the Firebird Book - a Reference for Database Developers, for detailed information concerning Firebird 1.5. A complete SQL
Reference is currently being prepared for Firebird 2.0 - the current preview can be found here at this documentation site: Firebird 2
SQL Reference Guide.

Please also refer to the IBExpert Tools menu: Script Executive / Script Language Extensions for IBExpert's own invaluable extensions, and the IBEBlock
documentation. IBEBlock is a set of DDL, DML and other statements which include some specific constructions applicable only in IBExpert or IBEScript.

Structured Query Language
SQL Dialect
Query
Symbols and brackets used in code syntax
Comparison Operators
Firebird SQL
Data retrieval
DML - Data ManipulationLanguage
DDL - Data Definition Language
Data Transaction
DCL - Data Control Language
JOIN
Stored Procedure and Trigger Language

753

Structured Query Language
1. DSQL - Dynamic SQL
2. ESQL - Embedded SQL
3. isql - Interactive SQL
4. PSQL - Stored Procedure and Trigger Language

Structured Query Language
SQL is the abbreviation for Structured Query Language. It is used to communicate with a relational database. According to ANSI (American National
Standards Institute), it is the standard language for relational database management systems. It serves to define, manipulate, find and fetch data in a
database.

InterBase and Firebird conform closely to the international industrial standards SQL '92. There were a number of features introduced in Firebird 1.5 which
comply to the more recent SQL-99 standard.

Furthermore InterBase and Firebird offer a series of additional SQL enhancements, such as generators, triggers and stored procedures, allowing a more
extensive modeling and manipulationof data. These enhancements are either based on the ANSI SQL2 Standard or already complywith the outline of the
ANSI/ISO SQL3 standards.

DSQL - Dynamic SQL

DSQL is the subset in most common use today. It allows a program to create statements at run time. It canbe used from conventional languages through the
InterBase API. More often, it is used from modern development environments such as Delphi, which hide the mechanics of the API. A completed DSQL
statement is verymuch like the "embedded" language, without the EXEC SQL and without the terminating semicolon.

ESQL - Embedded SQL
The embedded form of SQL is used in programs written in traditional languages such as C and Pascal, started by the EXEC SQL statement. A preprocessor
turns SQL statements into host language data structures and calls to the InterBase server. The embedded language is written into the program; its statements
cannot be generated dynamically. Statements in embedded SQL are terminated with a semicolon.

ESQL is invalid in stored procedures and triggers (just as procedure language (PSQL) ist not valid in ESQL); it can however execute stored procedures.

For further information, please refer to the Borland InterBase 6.x Embedded SQL Guide.

isql - Interactive SQL

ISQL is a command-line utilityprogram whichcan be used to run SQL queries on the database. ISQL supports data definitions and data manipulation
commands as well as SQL scripts with multiple SQL commands withinone script. It can be used to create and modify the database's metadata, insertion,
alterationand deletion of data, data queries and the display of results (all this can be done in the IBExpert SQL Editor), adding and removal of user database
rights (see IBExpert User Manager and Grant Manager) and execution of other database administrative functions. It is verysimilar to DSQL, with some
omissions, such as cursors, and a few additions, for example, SET and SHOW.

ISQL commands end with ;. Each command must be explicitly committed using the commit statement.

PSQL - Stored Procedure and Trigger Language
Please refer to the stored procedure and trigger language section for further information.

754

SQL Dialect
Structured Query Language is a language for [IBExpert Database menu| relational databases]], whichserves to define, manipulate, find and fetchdata in a
database.

There are currently two SQL dialects used with InterBase and Firebird:

Dialect 1= database performance is fully compatible to InterBase 5.6 and earlier (e.g. numeric up to 15 digits). Dialect 3= all new functions in InterBase 6
and upwards with SQL 92 features are available (e.g. numeric up to 18 digits).

For those that work with the BDE, this can only work with dialect 1 up to and including Delphi 6 (i.e. dialect 3 from Delphi 7 onwards).

Differences betweendialects 1 and 3 include:

The numeric (15 or 18) size.
Large exact numerics: DECIMAL and NUMERIC data types with precisiongreater than 9 are stored as INT64 instead of DOUBLE PRECISION.
The double quote (") has changed from a synonym for the single quote (') to the delimiter for an object name.
date and TIME data types have altered:

Dialect 1= Date includes the date and time
Dialect 3= Date = date, time = time, timestamp = date and time.

For new projects it is recommended that dialect 3 be specified.

Occasionally the question arises "What about SQL Dialect 2?". Dialect 2 is similar to dialect 1, generates however warnings for all objects that are
incompatible to Dialect 3 (i.e. only suitable for the client end); therefore, in principle, not really of importance.

The SQL dialect to be used in a database is specified when creating the database (IBExpert menu: Database / Create Database). It can subsequently be
altered using the IBExpert menuServices / Database Properties (althoughwatch out for possible dialect incongruencies, for example, the different date and
time types).

See also:
Structured Query Language
SET SQL DIALECT

Query
A query is a qualified search for information held in the data sets stored in the database. The qualificationcan determine which tables should be searched,
which range of values for specified columns should be included, etc.

For an overview of the conditions that are available in SQL, please refer to Comparison Operators.

SUM (total), MIN (minimum), MAX (maximum), AVG (average), and COUNT are aggregates that can also be used, for example, when the sales department needs to
know how many orders are still open or the minimum/maximum or average order value in the past year.

A queryon one or more tables produces a set of rows that is itself a table, subject to all the rules for tables in a relational database. This is knownas Closure.
InterBase/Firebird fully supports closure.

Regularly performed queries, such as a list of all unpaid invoices, or a list of all deliverynotes that have gone out in the last week, can be stored as procedures.

Queries are optimized by InterBase/Firebird. The optimizer chooses which indices should be used, in order to perform the queryas quickly and simply as
possible.

Symbols and brackets used in code syntax
For those users new to SQL: in the notation used in this section (and generally in all Firebird and InterBase literature), the following symbols, punctuationand
brackets have the following meaning:

() round brackets Elements of the syntax.
, comma Elements of the syntax.
{} curly braces/brackets Not part of the syntax; indicate mandatoryphrases.
[] square brackets Not part of the syntax; indicate optional phrases.
| pipe symbol Not part of the syntax; indicates mutuallyexclusive options.

755

Comparison Operators
Comparison operators for use in conditional clauses:

Conditional Test Description
value = value Equal to
value < value Less than

value > value Greater than
value <= value Less thanor equal to

value >= value Greater than or equal to
value !< value Not less than

value !> value Not greater than
value <> value Not equal to

value != value Not equal to

value LIKE value Wildcard search, use '%' for 0 or more characters and '_' for one
character only

value BETWEEN value AND
value Withinan inclusive range

value IN (value, ...
value) One of the elements in a list

value IS NULL One of the elements in a list
value IS NOT NULL One of the elements in a list

value CONTAINING value Includes
value STARTING WITH value Begins with

See also:
Conditional Test Operator

756

Firebird SQL
1. Division of an integer by an integer

1. String delimiter symbol
2. Apostrophes in strings
3. Concatenation of strings
4. Double-quoted identifiers

2. Expressions involving NULL
1. The DISTINCT keyword comes to the rescue!

Firebird SQL
Every database management systemhas its own idiosyncrasies in the ways it implements SQL. Firebird adheres to the SQL standard more rigorously than
any other RDBMS except possibly its 'cousin', InterBase®. Developers migrating from products that are less standards-compliant often wrongly suppose that
Firebird is quirky, which is really not true at all.

The following excerpts have beentaken from the Firebird 2 Quick Start Guide, ©IBPhoenixPublications 2008.

Division of an integer by an integer
Firebird accords with the SQL standard by truncating the result (quotient) of an integer/integer calculation to the next lower integer. This can have bizarre
results unless you are aware of it. For example, this calculation is correct in SQL:

 1 / 3 = 0

If you are upgrading from an RDBMS which resolves integer/integer division to a float quotient, youwill need to alter anyaffected expressions to use a float or
scaled numeric type for either dividend, divisor, or both. For example, the calculationabove could be modified thus in order to produce a non-zero result:

 1.000 / 3 = 0.333

Things to know about strings

String delimiter symbol

Strings in Firebird are delimited by a pair of single quote (apostrophe) symbols: 'I am a string' (ASCII code 39, not 96). If you used earlier versions of
Firebird's relative, InterBase®, youmight recall that double and single quotes were interchangeable as string delimiters. Double quotes cannot be used as
string delimiters in Firebird SQL statements.

Apostrophes in strings

If you need to use an apostrophe inside a Firebird string, youcan "escape" the apostrophe character by preceding it with another apostrophe. For example,
this string will give an error:

 'Joe ś Emporium'

because the parser encounters the apostrophe and interprets the string as 'Joe' followed by some unknown keywords. To make it a legal string, double the
apostrophe character:

 'Joes´´ Emporium'

Notice that this is TWO single quotes, not one double-quote.

Concatenation of strings

The concatenation symbol in SQL is two "pipe" symbols (ASCII 124, in a pair with no space between). In SQL, the "+" symbol is an arithmetic operator and it
will cause an error if you attempt to use it for concatenating strings. The following expression prefixes a character column value with the string "Reported by:
":

 'Reported by: ' || LastName

Firebird will raise an error if the result of a string concatenation exceeds the maximum (var)char size of 32 Kb.

If only the potential result – based on variable or field size – is too long you'll get a warning, but the operation will be completed successfully. (In pre-2.0
Firebird, this too would cause an error and halt execution.)

See also the section below, Expressions involving NULL, about concatenating in expressions involving NULL.

Double-quoted identifiers

Before the SQL-92 standard, it was not legal to have object names (identifiers) in a database that duplicated keywords in the language, were case-sensitive
or contained spaces. SQL-92 introduced a single new standard to make any of them legal, provided that the identifiers were defined within pairs of double-
quote symbols (ASCII 34) and were always referred to using double-quote delimiters.

The purpose of this "gift" was to make it easier to migrate metadata from non-standard RDBMSes to standards-compliant ones. The down-side is that, if you
choose to define an identifier in double quotes, its case-sensitivity and the enforced double-quoting will remainmandatory.

Firebird does permit a slight relaxation under a very limited set of conditions. If the identifier which was defined in double-quotes:

757

1. was defined as all upper-case,
2. is not a keyword, and
3. does not contain any spaces,

...then it canbe used in SQL unquoted and case-insensitively. (But as soon as you put double-quotes around it, youmust match the case again!)

Warning: Don't get too smart with this! For instance, if you have tables "TESTTABLE" and "TestTable", bothdefined withindouble-quotes, and you issue the
command:

 SQL>select * from TestTable;

...youwill get the records from "TESTTABLE", not "TestTable"!

Unless youhave a compelling reasonto define quoted identifiers, it is usually recommended that you avoid them. Firebird happilyaccepts a mixof quoted and
unquoted identifiers – so there is no problem including that keyword whichyou inherited from a legacy database, if youneed to.

Warning: Some database admin tools enforce double-quoting of all identifiers by default. Try to choose a tool which makes double-quoting optional.

Expressions involving NULL
In SQL, NULL is not a value. It is a condition, or state, of a data item, in which its value is unknown. Because it is unknown, NULL cannot behave like a value.
Whenyou try to perform arithmetic on NULL, or involve it with values in other expressions, the result of the operation will almost always be NULL. It is not zero or
blank or an "empty string" and it does not behave like any of these values.

Below are some examples of the types of surprises you will get if you try to perform calculations and comparisons with NULL.

The following expressions all returnNULL:

1 + 2 + 3 + NULL
not (NULL)
'Home ' || 'sweet ' || NULL

You might have expected 6 from the first expression and "Home sweet " from the third, but as we just said, NULL is not like the number 0 or an empty string –
it's far more destructive!

The following expression:

FirstName || ' ' || LastName

will returnNULL if either FirstName or LastName is NULL. Otherwise it will nicelyconcatenate the two names with a space in between– even if any one of the
variables is an empty string.

Tip: Think of NULL as UNKNOWN and these strange results suddenly start to make sense! If the value of Number is unknown, the outcome of '1 + 2 + 3 +
Number' is also unknown (and therefore NULL). If the content of MyString is unknown, thenso is 'MyString || YourString' (even if YourString is non-NULL).
Etcetera.

Now let's examine some PSQL (Procedural SQL) examples with if-constructs:

if (a = b) then

 MyVariable = 'Equal';
 else
 MyVariable = 'Not equal';

After executing this code, MyVariable will be 'Not equal' if both a and b are NULL. The reason is that 'a = b' yields NULL if at least one of them is NULL. If the
test expression of an "if" statement is NULL, it behaves like false: the 'then' block is skipped, and the 'else' block executed.

Warning: Although the expression maybehave like false in this case, it's still NULL. If you try to invert it using not(), what you get is another NULL – not "true".

if (a <> b) then

 MyVariable = 'Not equal';
 else
 MyVariable = 'Equal';

Here, MyVariable will be 'Equal' if a is NULL and b isn't, or vice versa. The explanation is analogous to that of the previous example.

The DISTINCT keyword comes to the rescue!

Firebird 2 implements a new use of the DISTINCT keyword allowing you to perform (in)equality tests that take NULL into account. The semantics are as follows:

Two expressions are DISTINCT if theyhave different values or if one is NULL and the other isn't;
Theyare NOT DISTINCT if theyhave the same value or if both are NULL.

Notice that if neither operand is NULL, DISTINCT works exactly like the "<>" operator, and NOT DISTINCT like the "=" operator.

DISTINCT and NOT DISTINCT always return true or false, never NULL.

Using DISTINCT, youcan rewrite the first PSQL example as follows:

758

 if (a is not distinct from b) then
 MyVariable = 'Equal';
 else
 MyVariable = 'Not equal';

And the second as:

 if (a is distinct from b) then
 MyVariable = 'Not equal';
 else
 MyVariable = 'Equal';

These versions will give you the results that a normal human being (untouched by SQL standards) would expect, whether there are NULLs involved or not.

See also:
Firebird 2 SQL Reference Guide

759

Data Retrieval
1. SELECT

1. Syntax
a. InterBase 7.1
b. Firebird up to 1.5
c. Firebird 2.0

2. FIRST (m) SKIP (n)
3. DISTINCT
4. ALL
5. FROM
6. WHERE
7. GROUP BY
8. COLLATE
9. HAVING

10. UNION
11. PLAN
12. ORDER BY
13. ROWS
14. FOR UPDATE
15. RETURNING

Data Retrieval
The most frequently used operation in transactional databases is the data retrieval operation.

SELECT is used to retrieve zero or more rows from one or more tables in a database. In most applications, SELECT is the most commonlyused DML command.
In specifying a SELECT query, the user specifies a description of the desired result set, but they do not specifywhat physical operations must be executed to
produce that result set. Translating the query into an optimal queryplan is left to the database system, more specifically to the query optimizer.

SELECT
The SELECT statement has the following syntax:

Syntax InterBase 7.1

 SELECT [TRANSACTION transaction]
 [DISTINCT | ALL]
 {* | val [, val ...]}
 [INTO :var [, :var ...]]
 FROM tableref [, tableref ...]
 [WHERE search_condition]
 [GROUP BY col [COLLATE collation] [, col [COLLATE collation] ...]
 [HAVING search_condition]
 [UNION [ALL] select_expr]
 [PLAN plan_expr]
 [ORDER BY order_list]
 [ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]]
 [FOR UPDATE [OF col [, col ...]]];

Description

SELECT retrieves data from tables, views, or stored procedures. Variations of the SELECT statement make it possible to:

Retrieve a single row, or part of a row, from a table. This operation is referred to as a singleton select. In embedded applications, all SELECT statements
that occur outside the context of a cursor must be singleton selects.
Retrieve multiple rows, or parts of rows, from a table. In embedded applications, multiple row retrieval is accomplished by embedding a SELECTwithin a
DECLARE CURSOR statement. In isql, SELECT can be used directly to retrieve multiple rows.
Retrieve related rows, or parts of rows, from a join of two or more tables.
Retrieve all rows, or parts of rows, from union of two or more tables.
Returnportions or sequential portions of a larger result set; useful for Web developers, among others.
All SELECT statements consist of two required clauses (SELECT, FROM), and possibly others INTO, WHERE, GROUP BY, HAVING, UNION, PLAN, ORDER BY, ROWS).

Notes on SELECT syntax

Whendeclaring arrays, youmust include the outermost brackets, shown below in bold. For example, the following statement creates a 5 by 5 two-
dimensional array of strings, eachof which is 6 characters long:

my_array = varchar(6)[5,5]

Use the colon (:) to specifyan arraywith a starting point other than 1. The following example creates an arrayof integers that begins at 10 and ends at
20: my_array = integer[20:30]
In SQL and isql, youcannot use val as a parameter placeholder (like "?").
In DSQL and isql, val cannot be a variable.
You cannot specifya COLLATE clause for Blob columns.

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++, and in isql, the semicolon is a
terminating symbol for the statement, so it must be included.

Source: InterBase 7.1 Language Reference Guide

The Firebird syntax deviates slightly from InterBase:

760

Syntax Firebird up to 1.5

Source: The Firebird Book by Helen Borrie

Syntax Firebird 2.0

 <select statement> ::=
 <select expression> [FOR UPDATE] [WITH LOCK]

 <select expression> ::=
 <query specification> [UNION [{ALL | DISTINCT}] <query specification>]

 <query specification> ::=
 SELECT [FIRST <value>] [SKIP <value>] <select list>
 FROM <table expression list>
 WHERE <search condition>
 GROUP BY <group value list>
 HAVING <group condition>
 PLAN <plan item list>
 ORDER BY <sort value list>
 ROWS <value> [TO <value>]

 <table expression> ::=
 <table name> | <joined table> | <derived table>

 <joined table> ::=
 {<cross join> | <qualified join>}

 <cross join> ::=
 <table expression> CROSS JOIN <table expression>

 <qualified join> ::=
 <table expression> [{INNER | {LEFT | RIGHT | FULL} [OUTER]}] JOIN <table expression>
 ON <join condition>

 <derived table> ::=
 '(' <select expression> ')'

Conclusions

FOR UPDATE mode and row locking canonly be performed for a final dataset, theycannot be applied to a subquery.
Unions are allowed inside any subquery.
Clauses FIRST, SKIP, PLAN, ORDER BY, ROWS are allowed for any subquery.

Notes:
Either FIRST/SKIP or ROWS is allowed, but a syntaxerror is thrown if you try to mix the syntaxes.
An INSERT statement accepts a select expression to define a set to be inserted into a table. Its SELECT part supports all the features defined for select
statments/expressions.
UPDATE and DELETE statements are always based on an implicit cursor iterating through its target table and limited with the WHERE clause. You mayalso
specify the final parts of the select expression syntaxto limit the number of affected rows or optimize the statement.

Also new to Firebird 2.0: EXECUTE BLOCK statement - The SQL language extension EXECUTE BLOCK makes "dynamic PSQL" available to SELECT specifications.
It has the effect of allowing a self-contained block of PSQL code to be executed in dynamic SQL as if it were a stored procedure. For further information,
please refer to EXECUTE BLOCK statement.

Clauses allowed at the end of UPDATE/DELETE statements are PLAN, ORDER BY and ROWS.

Source: Firebird 2.0.4 Release Notes

FIRST (m) SKIP (n)

<FIRST (m) and SKIP (n) are optional keywords, which can be used together or individually. Theyallow selection and/or the omission of the first m/n rows from
the resulting data sets of an ordered set. m and n are integers or simple integer arguments (bothwithout the brackets) or expressions (within brackets)
resolving to integers. Logically it should only be used with an ordered set (specified by ORDER BY). If used, these should precede all other specifications.

DISTINCT

761

This suppresses all duplicate rows in the output or resulting sets, thus preventing duplicate values from being returned.

ALL

This retrieves every value which meets the specified conditions. It is also the default for the return sets, and so therefore does not need to be explicitly
specified.

FROM

The FROM clause specifies a list of tables, views, and stored procedures (with output arguments) from which to retrieve data. if the query involves joining one
that one structure, FROM specifies the leftmost structure. The list then needs to be completed using joins (joins caneven be nested). Please refer to [@JOIN@]
statement for further information.

New to Firebird 2.0: support for derived tables in DSQL (subqueries in FROM clause) as defined by SQL200X. A derived table is a set, derived from a
dynamic SELECT statement. Derived tables can be nested, if required, to build complexqueries and they canbe involved in joins as though they were normal
tables or views.

Syntax

 SELECT
 <select list>
 FROM
 <table reference list>

 <table reference list> ::= <table reference> [{<comma> <table reference>}...]

 <table reference> ::=
 <table primary>
 | <joined table>

 <table primary> ::=
 <table> [[AS] <correlation name>]
 | <derived table>

 <derived table> ::=
 <query expression> [[AS] <correlation name>]
 [<left paren> <derived column list> <right paren>]

 <derived column list> ::= <column name> [{<comma> <column name>}...]

Examples can be found here.

Points to Note

Everycolumn in the derived table must have a name. Unnamed expressions like constants should be added with an alias or the column list should be
used.
The number of columns in the columnlist should be the same as the number of columns from the queryexpression.
The optimizer can handle a derived table veryefficiently. However, if the derived table is involved in an inner joinand contains a subquery, thenno join
order can be made.

WHERE

The WHERE clause is a filter specification, used to define or limit the rows for the returnsets or which rows should be forwarded for further processing such as
ORDER BY or GROUP BY.

A WHERE clause can also contain its ownSELECT statement, referred to as a subquery.

 <search_conditions> include the following:

 <search_condition> = val operator {val | (select_one)}
 | val [NOT] BETWEEN val AND val
 | val [NOT] LIKE val [ESCAPE val]
 | val [NOT] IN (val [, val ...] | select_list)
 | val IS [NOT] NULL
 | val {>= | <=} val
 | val [NOT] {= | < | >} val
 | {ALL | SOME | ANY} (select_list)
 | EXISTS (select_expr)
 | SINGULAR (select_expr)
 | val [NOT] CONTAINING val
 | val [NOT] STARTING [WITH] val
 | (search_condition)
 | NOT search_condition
 | search_condition OR search_condition
 | search_condition AND search_condition

Please refer to Comparison Operators for a full list of valid operators.

GROUP BY

GROUP BY is an optional clause, allowing the resulting sets to be grouped and summarized by common columnvalues into one or more groups, thus
aggregating or summarizing the returned data sets. these groupings often include aggregate functions. It is used in conjunction with HAVING.

762

The group is formed by aggregating (collecting together) all rows where a columnnamed in both the columnlist and the GROUP BY clause share a common
value. The columnand/or field specified must of course be groupable, otherwise the querywill be rejected. Any NULL values contained in rows in the targeted
column are ignored for the aggregation. So if, for example, youwish to calculate averages, you must first consider whether NULL fields should be left out of the
calculation, or treated as zero (which entails a little work on the developer side with a BEFORE INSERT trigger).

Firebird 2.0 introduced some useful improvements to SQL sorting operations - please refer to Improvements in sorting in the Firebird 2.0.4. Release Notes for
details.

COLLATE

Specifies the collation order for the data retrieved by the query.

Collation order in a GROUP BY clause: when CHAR or VARCHAR columns are grouped in a SELECT statement, it can be necessary to specify a collation order for the
grouping, especially if columns used for grouping use different collation orders.

To specify the collation order to use for grouping columns in the GROUP BY clause, include a COLLATE clause after the columnname.

Please note that it is not possible to specify a COLLATE order for Blob columns.

HAVING

The HAVING condition is optional and maybe used together with GROUP BY to specify a condition that limits the grouped rows returned - similar to the WHERE
clause. In fact, the HAVING clause can oftenreplace the WHERE clause in a grouping query. Perhaps the simplest way to discern the correct use of these two
clauses is to use a WHERE clause to limit rows and a HAVING clause to limit groups. The HAVING clause is applied to the groups after the set has been partitioned.
A WHERE filter may still be necessary for the incoming set. To maximize perfomance it is important to use WHERE conditions to pre-filter groups and thenuse
HAVING for filtering on the basis of the results returned (after the grouping has been done) by aggregating functions.

The HAVING clause can use the same arguments as the WHERE clause:

 <search_conditions> include the following:

 <search_condition> = val operator {val | (select_one)}
 | val [NOT] BETWEEN val AND val
 | val [NOT] LIKE val [ESCAPE val]
 | val [NOT] IN (val [, val ...] | select_list)
 | val IS [NOT] NULL
 | val {>= | <=} val
 | val [NOT] {= | < | >} val
 | {ALL | SOME | ANY} (select_list)
 | EXISTS (select_expr)
 | SINGULAR (select_expr)
 | val [NOT] CONTAINING val
 | val [NOT] STARTING [WITH] val
 | (search_condition)
 | NOT search_condition
 | search_condition OR search_condition
 | search_condition AND search_condition

Please refer to Comparison Operators for a full list of valid operators.

UNION

Combines the results of two or more SELECT statements, which mayinvolve rows from multiple tables or multiple sets from the same table, to produce a single
result set (read-only), i.e. one dynamic table without duplicate rows. The unified columns in each separate output specification must match by degree (number
and order of columns), type (data type) and size - what is known as union compatability. Whichmeans theymust each output the same number of columns in
the same left-to-right order. Each columnmust also be consistent throughout in data type and size. Bydefault UNION suppresses all duplicates in the final
resulting sets. The ALL optionkeeps identical rows separate.

New to Firebird 2.0: Please refer to Enhancements to UNION handling for improvements of the rules for UNION queries.

PLAN

Specifies the queryplan, optionally included in the querystatement, which should be used by the queryoptimizer instead of one it would normally choose.

 <query_specification>
 PLAN <plan_expr>

 <plan_expr> =
 [JOIN | [SORT] [MERGE]] ({plan_item | plan_expr}
 [, {plan_item | plan_expr} ...])

 <plan_item> = {table | alias}
 {NATURAL | INDEX (index [, index ...])| ORDER index}

where plan_item specifies a table and index method for a plan.

It tells the optimizer which , join order and access methods should be used for the query. Although the optimizer creates its ownplan, and as a rule, usually
selects the best method, there are situations where performance can be increased by specifying the plan yourself.

The IBExpert SQL Editor's Plan Analyzer and Performance Analysis allow the user to analyze and compare the optimizer's plan with their own.

763

Firebird 2.0's improvements to the PLAN clause can be referred to in the Firebird 2.0.4 Release Notes, Improvements in handling user-specified query plans.

ORDER BY

The ORDER BY clause is used to sort a query's returnsets, and can be used for any SELECT statement which is capable of retrieving multiple rows for output. It is
placed after all other clauses (except a FOR UPDATE clause, if used, or a stored procedure's INTO clause).

The InterBase 7.1 syntax is as follows:

 order by <order_list>

 where

 <order_list> =
 {col | int} [COLLATE collation]
 [ASC[ENDING] | DESC[ENDING]]
 [, order_list ...]

It specifies columns to order, either by column name or ordinal number in the query. Sorting items are usually columns. Ideal are indexed columns, as theyare
sorted much faster. A compound index may speed up performance considerable when sorting more thanone column. N.B. Both columns and compound
index need to be in an unbroken left-to-right sequence.

The comma-separated order_list specifies the order of the rows, complemented by ASCENDING (which is the default value, therefore it need not be explicitly
specified) or DESCENDING or DESC.

If there is more thanone sorting item, please note that the sorting precedence is from left to right.

The Firebird 1.5 syntax is slightly different:

 ORDER BY <order_list>
 <list_item> = <column> | <expression> | <degree number>
 ASC | DESC
 [NULL LAST | NULLS FIRST]

Since Firebird 1.5 valid expressions are also allowed as sort items, even if the expression is not ouput as a runtime column. Sets can be sorted on internal or
external functionexpressions or correlated subqueried scalars.

Firebird 1.5 supports the placement of NULLs, if and when present. The default value is NULLS LAST (sorts all nulls to the end of the returnsets. NULLS FIRST
needs to be explicitly specified, if null values are to be placed first.

New to Firebird 2.0: ORDER BY <ordinal-number>now causes SELECT * expansion - Whencolumns are referred to by the ordinal number (degree) in an
ORDER BY clause, when the output list uses SELECT * FROM ... syntax, the columnlist will be expanded and taken into account when determining which column
the number refers to. This means that, now, SELECT T1.*, T2.COL FROM T1, T2 ORDER BY 2 sorts on the second column of table T1, while the previous versions
sorted on T2.COL.

Tip: This change makes it possible to specify queries like SELECT * FROM TAB ORDER BY 5.

Firebird 2.0 also introduced some useful improvements to SQL sorting operations - please refer to Improvements in sorting in the Firebird 2.0.4. Release
Notes for details.

ROWS
 ROWS value
 [TO upper_value]
 [BY step_value]
 [PERCENT][WITH TIES]

value is the total number of rows to return if used by itself.
value is the starting row number to return if used with TO.
value is the percent if used with PERCENT.
upper_value is the last row or highest percent to return.
If step_value = n, returns every nth row, or n percent rows.
PERCENT causes all previous ROWS values to be interpreted as percents.
WITH TIES returns additional duplicate rows when the last value in the ordered sequence is the same as values in subsequent rows of the result set;
must be used in conjunction with ORDER BY.

Please also refer to ROWS syntax for Firebird 2.0 syntax, description and examples.

FOR UPDATE
 [FOR UPDATE [OF col [, col ...]]

Onlyrelevant when specifying columns listed after the SELECT clause of a DECLARE CURSOR statement that can be updated using a WHERE CURRENT OF clause.

Since Firebird 1.5 an optional WITH LOCK extension can be used with or without the FOR UPDATE syntax. Recommended however only for advanced developers
as this supports a restricted level of explicit, row-level pessimistic locking.

764

RETURNING

The RETURNING clause syntaxwas implemented in Firebird 2.0 for the INSERT statement, enabling the return of a result set from the INSERT statement. The set
contains the column values actually stored. Most common usage would be for retrieving the value of the primary key generated inside a BEFORE-trigger.

Available in DSQL and PSQL.

Syntax Pattern

 INSERT INTO ... VALUES (...) [RETURNING <column_list> [INTO <variable_list>]]

Example(s)

1.

 INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 RETURNING F1, F2 INTO :V1, :V2;

2.

 INSERT INTO T2 (F1, F2)
 VALUES (1, 2)
 RETURNING ID INTO :PK;

Note:
1. The INTO part (i.e. the variable list) is allowed in PSQL only (to assign local variables) and rejected in DSQL.
2. In DSQL, values are being returned within the same protocol roundtrip as the INSERT itself is executed.
3. If the RETURNING clause is present, thenthe statement is described as isc_info_sql_stmt_exec_procedure by the API (instead of isc_info_sql_

stmt_insert), so the existing connectivitydrivers should support this feature automatically.
4. Any explicit record change (update or delete) performed by AFTER-triggers is ignored by the RETURNING clause.
5. Cursor based inserts (INSERT INTO ... SELECT ... RETURNING ...) are not supported.
6. This clause can return table column values or arbitrary expressions.

See also:
Firebird 2.0.4 Release Notes: RETURNING clause for insert statements
INSERT INTO ... DEFAULT VALUES
SELECT
RETURNING
UPDATE OR INSERT
DCL - DataControlLanguage
DDL - Data Definition Language
DML -Data ManipulationLanguage
SQL basics

765

DML - Data Manipulation Language
1. SIUD

1. SELECT
2. INSERT
3. UPDATE
4. DELETE

2. MERGE

DML - Data Manipulation Language
DML is the abbreviation for Data ManipulationLanguage. DML is a collection of SQL commands that can be used to manipulate a database's data.

DML is part of the SQL language commands, whichexecute queries with database objects and changes to their contents. The various DML commands can
be used to create, edit, evaluate and delete data in a database. DML commands are a subarea of SQL; the range of the SQL language is composed of DML
and DDL together.

SIUD
SIUD is the abbreviation for SELECT, INSERT, UPATE, DELETE, whichare the four DML commands used for data manipulation.

See also:
Create SIUD Procedures
INSERTEX

SELECT

Please refer to SQL Language Reference / Data Retrieval / SELECT for details.

INSERT

Adds one or more new rows to a specified table. Available in gpre, DSQL, and isql.

Syntax

 INSERT [TRANSACTION transaction] INTO object [(col [, col …])]
 {VALUES (val [, val …]) | select_expr};

 <object> = tablename | viewname

 <val> = {:variable | constant | expr
 | function | udf ([val [, val …]])
 | NULL | USER | RDB$DB_KEY | ?} [COLLATE collation]

 <constant> = num | 'string' | charsetname 'string'

 <function> = CAST (val AS datatype)
 | UPPER (val)
 | GEN_ID (generator, val)

Argument Description
expr A valid SQL expression that results in a single column value.

select_
expr

A SELECT that returns zero or more rows and where the number of columns in eachrow
is the same as the number of items to be inserted.

Notes on the INSERT statement

In SQL and isql, you cannot use val as a parameter placeholder (like "?").
In DSQL and isql, val cannot be a variable.
You cannot specifya COLLATE clause for Blob columns.

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++, and in isql, the semicolon is
a terminating symbol for the statement, so it must be included.

Argument Description
TRANSACTION
transaction Name of the transaction that controls the execution of the INSERT.

INTO object Name of an existing table or view into which to insert data.

col Name of an existing columnin a table or view into which to insert values.

VALUES (val [, val
…])

Lists values to insert into the table or view; values must be listed in the same
order as the target columns.

select_expr Query that returns row values to insert into target columns.

Description

INSERT stores one or more new rows of data in an existing table or view. INSERT is one of the database privileges controlled by the GRANT and REVOKE
statements. Values are inserted into a row in column order unless an optional list of target columns is provided. If the target list of columns is a subset of

766

available columns, default or NULL values are automatically stored in all unlisted columns. If the optional list of target columns is omitted, the VALUES clause
must provide values to insert into all columns in the table.

To insert a single row of data, the VALUES clause should include a specific list of values to insert.

To insert multiple rows of data, specify a select_expr that retrieves existing data from another table to insert into this one. The selected columns must
correspond to the columns listed for insert.

Important: It is legal to select from the same table into which insertions are made, but this practice is not advised because it mayresult in infinite row
insertions.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which transaction controls the INSERT operation. The TRANSACTION
clause is not available in DSQL or isql.

Examples

The following statement, from an embedded SQL application, adds a row to a table, assigning values from host-language variables to two columns:

 EXEC SQL
 INSERT INTO EMPLOYEE_PROJECT (EMP_NO, PROJ_ID)
 VALUES (:emp_no, :proj_id);

The next isql statement specifies values to insert into a table with a SELECT statement:

 INSERT INTO PROJECTS
 SELECT * FROM NEW_PROJECTS
 WHERE NEW_PROJECTS.START_DATE > '6-JUN-1994';

See also:

UPDATE

Changes the data in all or part of an existing row in a table, view, or active set of a cursor. Available in gpre, DSQL, and isql.

Syntax SQL form

 <expr> = A valid SQL expression that results in a single value.
 <search_condition> = See CREATE TABLE for a full description.

Notes on the UPDATE statement

In SQL and isql, youcannot use val as a parameter placeholder (like "?").
In DSQL and isql, val cannot be a variable.
You cannot specify a COLLATE clause for Blob columns.

Argument Description
TRANSACTION
transaction Name of the transaction under control of which the statement is executed.

767

table | view Name of an existing table or view to update.
SET col = val Specifies the columns to change and the values to assign to those columns.
WHERE search_
condition Searched update only; specifies the conditions a row must meet to be modified.

WHERE CURRENT OF
cursor

Positioned update only; specifies that the current row of a cursor’s active set is to be modified. Not available in
DSQL and isql.

ORDER BY order_list Specifies columns to order, either by column name or ordinal number in the query, and the sort order (ASC or DESC)
for the returned rows.

ROWS1 value
[TO upper_value]
[BY step_value]
[PERCENT][WITH TIES]

Value is the total number of rows to return if used by itself.
Value is the starting row number to return if used with TO.
Value is the percent if used with PERCENT.
Upper_value is the last row or highest percent to return.
If step_value = n, returns every nth row, or n percent rows.
PERCENT causes all previous ROWS values to be interpreted as percents.
WITH TIES returns additional duplicate rows when the last value in the ordered sequence is the same as values in subsequent rows of the result set;
must be used in conjunction with ORDER BY.

1 Please also refer to ROWS syntaxfor Firebird 2.0 syntax, description and examples.

New in Firebird 2.0: New extensions to UPDATE and DELETE syntaxes - ROWS specifications and PLAN and ORDER BY clauses can now be used in UPDATE and
DELETE statements.

Users cannow specifyexplicit plans for UPDATE/DELETE statements in order to optimize them manually. It is also possible to limit the number of affected rows
with a ROWS clause, optionally used in combinationwith an ORDER BY clause to have a sorted record set.

Syntax

 UPDATE ... SET ... WHERE ...
 [PLAN <plan items>]
 [ORDER BY <value list>]
 [ROWS <value> [TO <value>]]

Description

UPDATEmodifies one or more existing rows in a table or view. UPDATE is one of the database privileges controlled by GRANT and REVOKE.

For searched updates, the optionalWHERE clause can be used to restrict updates to a subset of rows in the table. Searched updates cannot update array
slices.

Important

Without a WHERE clause, a searched update modifies all rows in a table.

Whenperforming a positioned update with a cursor, the WHERE CURRENT OF clause must be specified to update one row at a time in the active set.

Note: When updating a blob column, UPDATE replaces the entire blob with a new value.

Examples

The following isql statement modifies a column for all rows in a table:

 UPDATE CITIES
 SET POPULATION = POPULATION * 1.03;

The next embedded SQL statement uses a WHERE clause to restrict column modification to a subset of rows:

 EXEC SQL
 UPDATE PROJECT
 SET PROJ_DESC = :blob_id
 WHERE PROJ_ID = :proj_id;

DELETE

Removes rows in a table or in the active set of a cursor. Available in gpre, DSQL, and isql.

Syntax SQL and DSQL form

Important: Omit the terminating semicolon for DSQL.

 DELETE [TRANSACTION transaction] FROM table
 {[WHERE search_condition] | WHERE CURRENT OF cursor}

768

 [ORDER BY order_list]
 [ROWS value [TO upper_value] [BY step_value][PERCENT][WITH TIES]];

<search_condition>= Search conditionas specified in SELECT.

isql form

 DELETE FROM TABLE [WHERE search_condition];

Argument Description
TRANSACTION
transaction Name of the transaction under control of which the statement is executed; SQL only.

table Name of the table from which to delete rows.

WHERE search_
condition

Search condition that specifies the rows to delete; without this clause, DELETE affects all rows in the specified table
or view.

WHERE CURRENT OF
cursor Specifies that the current row in the active set of cursor is to be deleted.

ORDER BY order_list Specifies columns to order, either by columnname or ordinal number in the query, and the sort order (ASC or DESC)
for the returned rows.

ROWS1 value
[TO upper_value]
[BY step_value]
[PERCENT][WITH TIES]

Value is the total number of rows to return if used by itself.
Value is the starting row number to return if used with TO.
Value is the percent if used with PERCENT.
Upper_value is the last row or highest percent to return.
If step_value = n, returns every nth row, or n percent rows.
PERCENT causes all previous ROWS values to be interpreted as percents.
WITH TIES returns additional duplicate rows when the last value in the ordered sequence is the same as values in subsequent rows of the result set;
must be used in conjunction with ORDER BY.

1 Please also refer to ROWS syntaxfor Firebird 2.0 syntax, description and examples.

New in Firebird 2.0: New extensions to UPDATE and DELETE syntaxes- ROWS specifications and PLAN and ORDER BY clauses can now be used in UPDATE and
DELETE]] statements.

Users can now specify explicit plans for UPDATE/DELETE statements in order to optimize them manually. It is also possible to limit the number of affected rows
with a ROWS clause, optionallyused in combination with an ORDER BY clause to have a sorted recordset.

Syntax

 DELETE ... FROM ...
 [PLAN <plan items>]
 [ORDER BY <value list>]
 [ROWS <value> [TO <value>]]

Description

DELETE specifies one or more rows to delete from a table or . DELETE is one of the database privileges controlled by the GRANT and REVOKE statements.

The TRANSACTION clause can be used in multiple transaction SQL applications to specify which transaction controls the DELETE operation. The TRANSACTION
clause is not available in DSQL or isql.

For searched deletions, the optional WHERE clause canbe used to restrict deletions to a subset of rows in the table.

Important

Without a WHERE clause, a searched delete removes all rows from a table.

When performing a positioned delete with a cursor, the WHERE CURRENT OF clause must be specified to delete one row at a time from the active set.

Examples

The following isql statement deletes all rows in a table:

 DELETE FROM EMPLOYEE_PROJECT;

The next embedded SQL statement is a searched delete in an embedded application. It deletes all rows where a host-language variable equals a column
value.

 EXEC SQL
 DELETE FROM SALARY_HISTORY
 WHERE EMP_NO = :emp_num;

769

The following embedded SQL statements use a cursor and the WHERE CURRENT OF option to delete rows from CITIES with a population less thanthe host
variable, min_pop. Theydeclare and open a cursor that finds qualifying cities, fetch rows into the cursor, and delete the current row pointed to by the cursor.

 EXEC SQL
 DECLARE SMALL_CITIES CURSOR FOR
 SELECT CITY, STATE
 FROM CITIES
 WHERE POPULATION < :min_pop;

 EXEC SQL
 OPEN SMALL_CITIES;

 EXEC SQL
 FETCH SMALL_CITIES INTO :cityname, :statecode;
 WHILE (!SQLCODE)
 {EXEC SQL
 DELETE FROM CITIES
 WHERE CURRENT OF SMALL_CITIES;
 EXEC SQL
 FETCH SMALL_CITIES INTO :cityname, :statecode;}
 EXEC SQL
 CLOSE SMALL_CITIES;

MERGE
MERGE is used to combine the data of multiple tables. It is something of a combination of the INSERT and UPDATE elements.

See also:
DCL- Data Control Language
DDL - Data Definition Language
Data Retrieval
Data Transaction
SQL basics

770

DDL - Data Definition Language
1. ALTER
2. CONNECT
3. CREATE
4. DECLARE EXTERNAL FUNCTION

(incorporating a new UDF library)
1. ENTRY_POINT
2. MODULE NAME
3. RETURNS

5. DISCONNECT
6. DROP
7. END DECLARE SECTION
8. EVENT

1. EVENT INIT
2. EVENT WAIT

9. EXECUTE
1. EXECUTE PROCEDURE

10. SET
1. SET DATABASE
2. SET GENERATOR
3. SET NAMES
4. SET SQL DIALECT
5. SET STATISTICS
6. SET TRANSACTION

11. WHENEVER

DDL - Data Definition Language
DDL is the abbreviation for Data Definition Language.

The task of DDL is database definition, i.e. the predefinition and manipulationof the metadata. Using different DDL commands, the database metadata can
be created, altered and deleted. For example table structure, use of indices, the activation of exceptions and constructionof procedures can all be defined by
DDL commands. DDL commands are a subarea of SQL; the range of the SQL language is composed of DDL and DML together.

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++, and in isql, the semicolon is
a terminating symbol for the statement, so it must be included.

The source of all definitions included in this section is the Borland InterBase Language Reference.

ALTER
ALTER is the SQL command used to modify database objects, i.e. databases, domains, tables, views, triggers, procedures, generators/sequences, UDFs etc.
can all be changed using the ALTER command.

The different versions of the ALTER command serve to extend or change an already defined structure, the type of alteration defined as an additional attribute of
the command. This allows, for example, the metadata in already defined tables, stored procedures or triggers to be manipulated.

A database object can be altered in IBExpert using the DB Explorer right mouse button menu (Edit ...) or simply by double-clicking on the object to be altered.

771

Alterations can of course also be made directly in the SQL Editor.

CONNECT
A connectioncan be made to one or more existing databases using the CONNECT command.

The connectionparameters can be specified in IBExpert using the menu item Database / Register Database. Here a specified connection mayalso be
tested. the IBExpert menu item Services / CommunicationDiagnostics may be used to analyze connection problems. It delivers a detailed protocol of the test
connect to a registered InterBase/Firebird server and the results. IBExpert also offers toolbar icons for connecting, reconnecting and disconnecting to a
registered database.

The CONNECT statement initializes the database data structures and determines if the database is on the originating node (local database) or on another node
(remote database). Anerror message occurs if InterBase/Firebird cannot locate the database. The CONNECT statement attaches to the database and verifies
the header page. The database file must contain a valid database, and the on-disk structure (ODS) version number of the database must be recognized by
the installed InterBase version on the server.

It is possible to specifya cache buffer for the process attaching to a database. In SQL programs, a database must first be declared with the SET DATABASE
command, before it can be opened with the CONNECT statement. When attaching to a database, CONNECT uses the default character set (NONE), or one specified
in a previous SET NAMES statement.

A subset of CONNECT features is available in ISQL (see syntax below). ISQL can only be connected to one database at a time. Each time the CONNECT
statement is used to connect to a database, previous attachments are disconnected. ISQL does not use SET DATABASE.

Syntax ISQL form

 CONNECT 'filespec' [USER 'username'][PASSWORD 'password']
 [CACHE int] [ROLE 'rolename']

 SQL form:

 CONNECT [TO] {ALL | DEFAULT} config_opts
 | db_specs config_opts [, db_specs config_opts...];
 <db_specs> = dbhandle
 | {'filespec' | :variable} AS dbhandle
 <config_opts> = [USER {'username' | :variable}]
 [PASSWORD {'password' | :variable}]

772

 [ROLE {'rolename' | :variable}]
 [CACHE int [BUFFERS]]

Argument Description
{ALL | DEFAULT} Connects to all databases specified with SET DATABASE; options specified with CONNECT TO ALL affect all databases.

'filespec' Database file name - can include pathspecification and node. The filespec must be in quotes if it includes spaces. |

dbhandle Database handle declared in a previous SET DATABASE statement; available in embedded SQL but not in isql.

:variable Host-language variable specifying a database, user name, or password; available in embedded SQL but not in isql.

AS dbhandle Attaches to a database and assigns a previouslydeclared handle to it; available in embedded SQL but not in isql.

USER
{'username'
| :variable}

String or host-language variable that optionally specifies a user name for use when attaching to the database. The server
checks the user name against the . User names are case insensitive on the server. PC clients must always send a valid
user name and password.

PASSWORD
{‘password’
| :variable}

String or host-language variable, up to 8 characters in size, that specifies password for a user listed in the security
database, if used, for use when attaching to the database. The server checks the user name and password against the
securitydatabase. Case sensitivity is retained for the comparison. PC clients must always send a valid user name and
password.

ROLE
{‘rolename’
| :variable}

String or host-language variable, up to 67 characters in size, which optionally specifies the role that the user adopts on
connection to the database. The user must have previouslybeen granted membership in the role to gain the privileges of
that role. Regardless of role memberships granted, the user has the privileges of a role at connect time only if a ROLE
clause is specified in the connection. The user can adopt at most one role per connection, and cannot switchroles except
by reconnecting.

CACHE int
[BUFFERS]

Sets the number of cache buffers for a database (default is 75), which determines the number of database pages a
program can use at the same time. Values for int: a) Default: 256, b) Maximum value: system-dependent. This can be
used to set a new default size for all databases listed in the CONNECT statement that do not already have a specific cache
size, or specify a cache for a program that uses a single database. The size of the cache persists as long as the
attachment is active. A decrease in cache size does not affect databases that are already attached through a server. Do
not use the filespec form of database name with cache assignments.

Example

 CONNECT C:\DB01\DB01.GDB USER SYSDBA PASSWORD masterkey

In the above example a connection is made to the InterBase database DB01.GDB in the C:\DB01 directory on a Windows NT Server.

When making a connection to a UNIX server the path definitions need to be adapted accordingly:

 CONNECT /usr/db01/db01.gdb USER SYSDBA PASSWORD masterkey

If the user details are not specified when performing the CONNECT command, the relevant system variables for establishing the connection to the specified
database are used. This can have the consequence, that if these variables have undefined values, a database connection is not made, and instead an
appropriate error message appears.

CREATE
CREATE is the SQL command used to create database objects, i.e. databases, domain, tables, views, triggers, procedures, generators, UDFs etc. can all be
defined using the CREATE command.

A database object can be created in IBExpert using the DB Explorer right mouse button menu (New ...), the Database menu, or the respective NewDatabase
Object icon.

It can of course also be created, by those who are competent in SQL, directly in the SQL Editor. CREATE command syntax canbe found under the respective
subjects (e.g. Create Database, Create Domain, Create Table, etc.).

DECLARE EXTERNAL FUNCTION (incorporating a new UDF library)

In order to use an already defined or programmed UDF (User-Defined Function) within an InterBase/Firebird database, this has to be explicitlydeclared using
the DECLARE EXTERNAL FUNCTION command.

The DECLARE EXTERNAL FUNCTION command syntax is as follows:

 DECLARE EXTERNAL FUNCTION name [datatype | CSTRING (int)
 [, datatype | CSTRING (int) …]]
 RETURNS {datatype [BY VALUE] | CSTRING (int) | PARAMETER n} [FREE_IT]
 ENTRY_POINT <External_Function_Name>
 MODULE NAME <Library_Name>;

Bydeclaring the UDF, the database is informed of the following for an existing UDF (<External_Function_Name>):

Argument Description

name Name of the UDF to use in SQL statements. It canbe different to the name of the functionspecified after the ENTRY_POINT
keyword.

773

datatype Datatype of an input or return parameter. All input parameters are passed to a UDF by reference. Return parameters can be
passed by value. It cannot be an arrayelement.

CSTRING
(int) Specifies a UDF that returns a null-terminated string int bytes in length.

RETURNS Specifies the returnvalue of a function.
BY VALUE Specifies that a return value should be passed by value rather thanby reference.

PARAMETER n Specifies that the nth input parameter is to be returned. Used when the returndatatype is a blob.
FREE_IT Frees memory of the return value after the UDF finishes running.

<External_
Function_
Name>

Quoted string that contains the functionname as it is stored in the library that is referenced by the UDF. The entryname is the
actual name of the functionas stored in the UDF library. It does not have to match the name of the UDF as stored in the
database.

<Library_
Name>

Quoted specification identifying the library that contains the UDF. The library must reside on the same machine as the
InterBase/Firebird server. Onany platform, the module canbe referenced with no path name if it is in. <InterBase/Firebird_
home>/UDF or <InterBase/Firebird_home>/intl. If the library is in a directory other than<InterBase/Firebird_home>/UDF or
InterBase/Firebird_home>/intl, youmust specify its location in InterBase/Firebird’s configuration file (ibconfig) using the
EXTERNAL_FUNCTION_DIRECTORY parameter. It is not necessary to supply the extension to the module name.

The UDF name in the database does not have to correspond to the original functionname. The input parameters are basically transferred BY REFERENCE. In the
case of the return parameters it is also possible to specify the form BY VALUE, using the optional BY VALUE parameter.

Note: Whenever a UDF returns a value by reference to dynamically allocated memory, you must declare it using the FREE_IT keyword in order to free the
allocated memory.

To specifya location for UDF libraries in a configuration file, enter the following for Windows platforms:

 EXTERNAL_FUNCTION_DIRECTORY D:\Mylibraries\InterBase

For UNIX, the statement does not include a drive letter:

 EXTERNAL_FUNCTION_DIRECTORY \Mylibraries\InterBase

The InterBase/Firebird configuration file is called ibconfig or firebird.conf on all platforms.

Examples

The following isql statement declares the TOPS() UDF to a database:

 DECLARE EXTERNAL FUNCTION TOPS
 CHAR(256), INTEGER, BLOB
 RETURNS INTEGER BY VALUE
 ENTRY_POINT 'te1' MODULE_NAME 'tm1';

This example does not need the FREE_IT keyword because only cstrings, CHAR and VARCHAR return types require memory allocation.

The next example declares the LOWERS() UDF and frees the memory allocated for the return value:

 DECLARE EXTERNAL FUNCTION LOWERS VARCHAR(256)
 RETURNS CSTRING(256) FREE_IT
 ENTRY POINT 'fn_lower' MODULE_NAME 'udflib';

In the example below (takenfrom the RFunc library) a functionSUBSTR is declared, which calculates the substring of strings, from character i1 and length
maximum i2:

 DECLARE EXTERNAL FUNCTION SUBSTR
 CSTRING(256),
 INTEGER,
 INTEGER
 RETURNS CSTRING(256)
 ENTRY_POINT 'fn_substr' MODULE_NAME 'rfunc';

774

ENTRY_POINT

ENTRY_POINT is a term used in the declaration of an external function.

Syntax

 ENTRY_POINT <External_Function_Name>

The entrypoint is a text which specifies when the functionshould jump into a starting address from a DLL.

MODULE NAME

The DLL name of a UDF is entered as the last parameter when declaring an external function.

Syntax

 MODULE NAME <Library_Name>

It specifies in whichUDF library the UDF can be found (<Library_Name>). Whether the file suffix needs to be entered or not, and how, is dependent uponthe
operating system. For example, Linux requires the suffix .SO (Shared Object Library); in Windows .DLL (Dynamic Link Library).

RETURNS

RETURNS is a term used in the declaration of an external function. Here the output parameters are specified (i.e. datatype and in which form).

Syntax

 RETURNS <Return_Type>

RETURN parameters can also be specified in the form BY VALUE, using the optional BY VALUE parameter.

DISCONNECT
The DISCONNECT command detaches an application from one or more databases, defined by its/their database handle, and frees the relevant sources.
Available in gpre.

In IBExpert there is a toolbar icon to execute this command (or alternatively use the IBExpert menu item Database / Disconnect from Database).

Syntax

 DISCONNECT {{ALL | DEFAULT} | dbhandle [, dbhandle] …]};

ALL|DEFAULT: Either keyword detaches all open databases.
dbhandle: Previously declared database handle specifying a database to detach.

DISCONNECT closes a specific database identified by a database handle or all databases, releases resources used by the attached database, zeroes
database handles, commits the default transaction if the gpre -manual option is not in effect, and returns an error if anynon-default transaction is not
committed.

Before using DISCONNECT, commit or roll back the transactions affecting the database to be detached.

Examples

The following embedded SQL statements close all databases:

 EXEC SQL
 DISCONNECT DEFAULT;

775

 EXEC SQL
 DISCONNECT ALL;

The following embedded SQL statements close the databases identified by their handles:

 EXEC SQL
 DISCONNECT DB1;

 EXEC SQL
 DISCONNECT DB1, DB2;

DROP
DROP is the SQL command used to delete database objects, i.e. databases, domains, tables, views, triggers, procedures, generators, UDFs etc. canall be
deleted using the DROP command.

A database object can be dropped in IBExpert using the DB Explorer right mouse button menu(Drop ...).

IBExpert requires confirmation of this command, as it is irreversible.

The DROP command can of course also be used directly in the SQL Editor. More information can be found under the respective subjects (e.g. Drop Database,
Drop Domain, Drop Table, etc.).

Syntax

 DROP <database_object_type> <object_name>;

Example

 DROP TABLE Customer;

END DECLARE SECTION
Identifies the end of a host-language variable declaration section. Available in gpre.

Syntax

 END DECLARE SECTION;

The END DECLARE SECTION command is used in embedded SQL applications to identify the end of host-language variable declarations for variables used in
subsequent SQL statements.

Example:

The following embedded SQL statements declare a section and single host-language variable:

 EXEC SQL
 BEGIN DECLARE SECTION;
 BASED_ON EMPLOYEE.SALARY salary;

 EXEC SQL
 END DECLARE SECTION;

EVENT
EVENT INIT

EVENT INIT is the first step in the InterBase two-part synchronous event mechanism:

1. EVENT INIT registers an application’s interest in an event.
2. EVENT WAIT causes the application to wait until notified of the event’s occurrence.

776

EVENT INIT registers an application’s interest in a list of events in parentheses. The list should correspond to events posted by stored procedures or triggers
in the database. If an application registers interest in multiple events with a single EVENT INIT, then when one of those events occurs, the application must
determine whichevent occurred. The command EVENT INIT is only required by embedded SQL programmers, and not required when programming the BDE.

Events are posted by a POST_EVENT call within a stored procedure or trigger. The event manager keeps track of events of interest. At commit time, when an
event occurs, the event manager notifies interested applications.

The EVENT INIT command is constructed as follows:

Syntax

 EVENT INIT request_name [dbhandle]
 [('string' | :variable [, 'string' | :variable …]);

Argument Description
request_
name Applicationevent handle.

dbhandle Specifies the database to examine for occurrences of the events; if omitted, dbhandle defaults to the database named in the
most recent SET DATABASE statement.

‘string’ Unique name identifying an event associated with event_name.

:variable Host language character array containing a list of event names to associate with.

Example:

The following embedded SQL statement registers interest in an event:

 EXEC SQL
 EVENT INIT ORDER_WAIT EMPDB ('new_order');

See also:
Create Procedure
Create Trigger
SET DATABASE

EVENT WAIT

Causes an application to wait until notified of an event’s occurrence. Available in gpre.

Syntax

 EVENT WAIT request_name;

Argument Description
request_name Application event handle declared in a previous EVENT INIT statement.

EVENT WAIT is the second step in the InterBase/Firebird two-part synchronous event mechanism. After a program registers interest in an event, EVENT WAIT
causes the process running the application to sleep until the event of interest occurs.

Examples

The following embedded SQL statements register an application event name and indicate the program is readyto receive notificationwhen the event occurs:

 EXEC SQL
 EVENT INIT ORDER_WAIT EMPDB ('new_order');

 EXEC SQL
 EVENT WAIT ORDER_WAIT;

EXECUTE
The EXECUTE command performs a specified SQL statement. The statement can be any SQL data definition, manipulation, or transaction management
statement. Once it is prepared, a statement can be executed any number of times.

SQL commands canbe executed using the [F9] key or following icon:

enabling the SQL code to be executed and tested before finally committing.

Should a part of the text have been highlighted, only the marked portion is executed, which oftencauses an error message. If the execution has been
successful, the SQL can be committed using the respective icon or [Ctrl + Alt + C].

Syntax

777

 EXECUTE [TRANSACTION transaction] statement
 [USING SQL DESCRIPTOR xsqlda] [INTO SQL DESCRIPTOR xsqlda];

Argument Description
request_name Applicationevent handle declared in a previous EVENT INIT statement.

TRANSACTION
transaction

Specifies the transaction under which execution occurs: This clause can be used in SQL applications running multiple,
simultaneous transactions to specifywhich transaction controls the EXECUTE operation.

USING SQL
DESCRIPTOR

Specifies those values corresponding to the prepared statement’s parameters should be taken from the specified
XSQLDA. It need only be used for statements that have dynamic parameters.

INTO SQL
DESCRIPTOR

Specifies that returnvalues from the executed statement should be stored in the specified XSQLDA. It need only be used
for DSQL statements that return values.

xsqlda XSQLDA host-language variable.

Note: If an EXECUTE statement provides both a USING DESCRIPTOR clause and an INTO DESCRIPTOR clause, then two XSQLDA structures must be provided.

EXECUTE carries out a previously prepared DSQL statement. It is one of a group of statements that process DSQL statements.

PREPARE: Readies a DSQL statement for execution.
DESCRIBE: Fills in the XSQLDA with information about the statement.
EXECUTE: Executes a previouslyprepared statement.
EXECUTE IMMEDIATE: Prepares a DSQL statement, executes it once, and discards it (please refer to the EXECUTE IMMEDIATE statement for further
information).

Before a statement canbe executed, it must be prepared using the PREPARE statement. The statement can be any SQL data definition, manipulation, or
transaction management statement. Once it is prepared, a statement can be executed anynumber of times.

Example

The following embedded SQL statement executes a previouslyprepared DSQL statement:

 EXEC SQL
 EXECUTE DOUBLE_SMALL_BUDGET;

The next embedded SQL statement executes a previously prepared statement with parameters stored in an XSQLDA:

 EXEC SQL
 EXECUTE Q USING DESCRIPTOR xsqlda;

The following embedded SQL statement executes a previouslyprepared statement with parameters in one XSQLDA, and produces results stored in a second
XSQLDA:

 EXEC SQL
 EXECUTE Q USING DESCRIPTOR xsqlda_1 INTO DESCRIPTOR xsqlda_2;

EXECUTE PROCEDURE

Calls a specified stored procedure. Available in gpre, DSQL, and isql.

In IBExpert a procedure canbe executed in the Stored Procedure Editor or SQL Editor using the [F9] key or following icon:

Syntax SQL form

DSQL form

 EXECUTE PROCEDURE name [param [, param …]]
 [RETURNING_VALUES param [, param …]]

isql form

 EXECUTE PROCEDURE name [param [, param …]]

778

Argument Description
TRANSACTION transaction Specifies the TRANSACTION under which execution occurs.
name Name of an existing stored procedure in the database.

param Input or output parameter; canbe a host variable or a constant.
RETURNING_VALUES: param Host variable which takes the values of an output parameter.

[INDICATOR] :indicator Host variable for indicating NULL or unknown values.

EXECUTE PROCEDURE calls the specified stored procedure. If the procedure requires input parameters, theyare passed as host-language variables or as
constants. If a procedure returns output parameters to a SQL program, host variables must be supplied in the RETURNING_VALUES clause to hold the values
returned.

In isql, do not use the RETURN clause or specifyoutput parameters. isql will automaticallydisplay returnvalues.

Note: in DSQL, an EXECUTE PROCEDURE statement requires an input descriptor area if it has input parameters and an output descriptor area if it has output
parameters.

In embedded SQL, input parameters and return values may have associated indicator variables for tracking NULL values. Indicator variables are integer values
that indicate unknownor NULL values of returnvalues.

An indicator variable that is less than zero indicates that the parameter is unknown or NULL. An indicator variable that is zero or greater indicates that the
associated parameter is knownand not NULL.

Examples

The following embedded SQL statement demonstrates how the executable procedure, DEPT_BUDGET, is called from embedded SQL with literal parameters:

 EXEC SQL
 EXECUTE PROCEDURE DEPT_BUDGET 100
 RETURNING_VALUES :sumb;

The next embedded SQL statement calls the same procedure using a host variable instead of a literal as the input parameter:

 EXEC SQL
 EXECUTE PROCEDURE DEPT_BUDGET :rdno
 RETURNING_VALUES :sumb;

SET
SET DATABASE

The SET DATABASE command creates a so-called database handle when creating embedded SQL applications for a specified database. It is available in
gpre.

As it is possible to access several databases with embedded SQL applications, the desired database can be explicitlyspecified with the aid of the handle.
The SET DATABASE command is only required by embedded SQL programmers and is not necessary for programming the BDE.

Syntax

 SET DATABASE DB_Handle =
 [GLOBAL | STATIC | EXTERN]
 [COMPILETIME] [FILENAME] "<db_Name>"
 [USER "UserName" PASSWORD "PassString"]
 [RUNTIME] [FILENAME] {"<DB_Name>"|:VarDB}
 [USER {"Name"| :VarName}
 PASSWORD {"Password"| :VarPassWord=};

DB_Handle: This is the name of the database handle, defined by the application. It is an alias (usually an abbreviation) for a specified database. It must be
unique within the program, follow the file syntaxconventions for the server where the database resides, and be used in subsequent SQL statements that
support database handles. For example, they canbe used in subsequent CONNECT, COMMIT and ROLLBACK statements, or can also be used within transactions to
differentiate table names when two or more attached databases contain tables with the same names. The optional parameters GLOBAL, STATIC and EXTERN
can be used to specify the validity range of the database declaration. Following rules apply for the validity range:

Global The database declaration is visible for all modules (default).

Static Limits the database declaration to the current module (i.e. limit the database handle availability to the code module where
the handle is declared).

Extern References a global database handle in another module, rather than actually declaring a new handle.

Compiletime Identifies the database used to look up columnreferences during preprocessing. If only one database is specified in SET
DATABASE, it is used both at runtime and compiletime.

Runtime
Specifies a database to use at runtime if different thatn the one specified for use during preprocessing. And if necessary,
different standard users can be specified for both situations. InterBase/Firebird sets the same database for runtime and
development time as standard, if the optional parameters COMPILETIME and RUNTIME are not used.

<DB_Name> Represents a file specification for the database to associate with db_handle. It is platform-specific.

:VarDB This is the host-language variable containing a database specification, user name, or password.

779

USER and
PASSWORD

Valid user name and password on the server where the database resided. Required for PC client attachments, optional for
all others.

Example

 EXEC SQL
 SET DATABASE EMPDB = 'employee.gdb'
 COMPILETIME "Test.gdb"
 RUNTIME :db_runtime;

SET GENERATOR

The SET GENERATOR command sets a new start value for an existing generator.

The SET GENERATOR command syntax is composed as follows:

 SET GENERATOR Gen_Name TO int_value;

As soon as the functionGEN_ID() enters or alters a value in a table column, this value is calculated from the int_value plus the increment defined by the GEN_
ID() step parameter.

Example

 SET GENERATOR CUST_ID_GEN TO 1030;

Assuming that the step parameter in the functionGEN_ID() is given the value 1, the next customer would receive the customer number 1031.

This statement can also be easily and quickly performed using IBExpert's Generator Editor (please refer to Alter Generator for further information):

SET NAMES

The SET NAMES statement specifies an active character set to use for subsequent database attachments. Available in gpre, and isql.

Syntax

 SET NAMES [charset | :var];

charset Name of a character set that identifies the active character set for a given process; default: NONE.
:var Host variable containing string identifying a known character set name. Must be declared as a character set name. SQL only.

SET NAMES specifies the character set to use for subsequent database attachments in an application. It enables the server to translate between the default
character set for a database on the server and the character set used by an application on the client.

SET NAMES must appear before the SET DATABASE and CONNECT statements it is to affect.

Tip: Use a host-language variable with SET NAMES in an embedded application to specify a character set interactively.

Choice of character sets limits possible collation orders to a subset of all available collation orders. Given a specific character set, a specific collation order
canbe specified when data is selected, inserted, or updated in a column. If a default character set is not specified, the character set defaults to NONE.

Using character set NONE means that there is no character set assumption for columns; data is stored and retrieved just as it is originally entered. You can load
anycharacter set into a column defined with NONE, but you cannot load that same data into another columnthat has beendefined with a different character set.
No transliteration is performed between the source and destination character sets, so in most cases, errors occur during assignment.

Example

The following statements demonstrate the use of SET NAMES in an embedded SQL application:

 EXEC SQL
 SET NAMES ISO8859_1;

 EXEC SQL

780

 SET DATABASE DB1 = 'employee.gdb';

 EXEC SQL
 CONNECT;

The next statements demonstrate the use of SET NAMES in isql:

 SET NAMES LATIN1;
 CONNECT 'employee.gdb';

SET SQL DIALECT

SET SQL DIALECT declares the SQL dialect for database access.

n is the SQL dialect type, either 1, 2, or 3. If no dialect is specified, the default dialect is set to that of the specified compile-time database. If the default dialect
is different than the one specified by the user, a warning is generated and the default dialect is set to the user-specified value. Available in gpre and isql.

Syntax

 SET SQL DIALECT n;

where n is the SQL dialect type, either 1, 2, or 3.

SQL Dialect Used for
1 InterBase 5 and earlier compatibility.

2 Transitional dialect used to flag changes when migrating from dialect 1 to dialect 3.
3 Current InterBase/Firebird; allows you to use delimited identifiers, exact NUMERICs, and DATE, TIME, and TIMESTAMP datatypes.

SET STATISTICS

SET STATISTICS enables the selectivity of an index to be recomputed. Index selectivity is a calculation, based on the number of distinct rows in a table, which is
made by the InterBase/Firebird optimizer when a table is accessed. It is cached in memory, where the optimizer canaccess it to calculate the optimal
retrieval plan for a given query. For tables where the number of duplicate values in indexed columns radically increases or decreases, periodically
recomputing index selectivity can improve performance. Available in gpre, DSQL, and isql.

Only the creator of an index can use SET STATISTICS.

Note: SET STATISTICS does not rebuild an index. To rebuild an index, use ALTER INDEX.

Syntax:

 SET STATISTICS INDEX name;

name Name of an existing index for which to recompute selectivity.

Example:

The following embedded SQL statement recomputes the selectivity for an index:

 EXEC SQL
 SET STATISTICS INDEX MINSALX;

It is possible to recompute the selectivity for all indices using the IBExpert Database menu item Recompute selectivity of all indices.

781

SET TRANSACTION

SET TRANSACTION starts a transaction, and optionallyspecifies its database access, lock conflict behavior, and level of interaction with other concurrent
transactions accessing the same data. It canalso reserve locks for tables. As an alternative to reserving tables, multiple database SQL applications can
restrict a transaction’s access to a subset of connected databases. Available in gpre, DSQL, and isql.

Important: applications preprocessed with the gpre -manual switchmust explicitlystart each transaction with a SET TRANSACTION statement.

Syntax

 SET TRANSACTION [NAME transaction]
 [READ WRITE | READ ONLY]
 [WAIT | NO WAIT]
 [[ISOLATION LEVEL] {SNAPSHOT [TABLE STABILITY]
 | READ COMMITTED [[NO] RECORD_VERSION]}]
 [RESERVING reserving_clause
 | USING dbhandle [, dbhandle …]];
 <reserving_clause> = table [, table …]
 [FOR [SHARED | PROTECTED] {READ | WRITE}] [, reserving_clause]

NAME transaction Specifies the name for this transaction. Transaction is a previously declared and initialized host-language
variable. SQL only.

READ WRITE [Default] Specifies that the transaction can read and write to tables.

READ ONLY Specifies that the transaction can only read tables.
WAIT [Default] Specifies that a transaction wait for access if it encounters a lock conflict with another transaction.

NO WAIT Specifies that a transaction immediatelyreturn an error if it encounters a lock conflict.

ISOLATION LEVEL Specifies the isolation level for this transaction when attempting to access the same tables as other
simultaneous transactions; default: SNAPSHOT.

RESERVING reserving_
clause Reserves lock for tables at transaction start.

USING dbhandle [,
dbhandle …] Limits database access to a subset of available databases; SQL only.

Examples

The following embedded SQL statement sets up the default transaction with an isolation level of READ COMMITTED. If the transaction encounters an update
conflict, it waits to get control until the first (locking) transaction is committed or rolled back.

 EXEC SQL
 SET TRANSACTION WAIT ISOLATION LEVEL READ COMMITTED;

The next embedded SQL statement starts a named transaction:

 EXEC SQL
 SET TRANSACTION NAME T1 READ COMMITTED;

The following embedded SQL statement reserves three tables:

 EXEC SQL
 SET TRANSACTION NAME TR1
 ISOLATION LEVEL READ COMMITTED
 NO RECORD_VERSION WAIT

782

 RESERVING TABLE1, TABLE2 FOR SHARED WRITE,
 TABLE3 FOR PROTECTED WRITE;

See also:
SET NAMES
COMMIT
ROLLBACK

WHENEVER
WHENEVER traps for SQLCODE errors and warnings. Everyexecutable SQL statement returns a SQLCODE value to indicate its success or failure. If SQLCODE is zero,
statement execution is successful. A non-zero value indicates an error, warning, or not found condition. Available in gpre.

If the appropriate condition is trapped, WHENEVER can:

Use GOTO label to jump to an error-handling routine in an application.
Use CONTINUE to ignore the condition.

WHENEVER canhelp limit the size of an application, because the application can use a single suite of routines for handling all errors and warnings.

WHENEVER statements should precede anySQL statement that can result in an error. Each condition to trap for requires a separate WHENEVER statement. If
WHENEVER is omitted for a particular condition, it is not trapped.

Tip: Precede error-handling routines with WHENEVER … CONTINUE statements to prevent the possibilityof infinite looping in the error-handling routines.

Syntax

 WHENEVER {NOT FOUND | SQLERROR | SQLWARNING}
 {GOTO label | CONTINUE};

NOT FOUND Traps SQLCODE = 100, no qualifying rows found for the executed statement.

SQLERROR Traps SQLCODE < 0, failed statement.

SQLWARNING Traps SQLCODE > 0 AND < 100, system warning or informational message.

GOTO label Jumps to program locationspecified by label when a warning or error occurs.

CONTINUE Ignores the warning or error and attempts to continue processing.

Example

In the following code from an embedded SQL application, three WHENEVER statements determine which label to branch to for error and warning handling:

 EXEC SQL
 WHENEVER SQLERROR GO TO Error; /* Trap all errors. */

 EXEC SQL
 WHENEVER NOT FOUND GO TO AllDone; /* Trap SQLCODE = 100 */

 EXEC SQL
 WHENEVER SQLWARNING CONTINUE; /* Ignore all warnings.

See also:
Firebird 2.0.4 Release Notes: Data Definition Language
SQL basics

783

Data Transaction
1. COMMIT
2. ROLLBACK

Data Transaction
COMMIT and ROLLBACK interact with areas such as transaction control and locking. Strictly, both terminate any open transaction and release any locks held on
data. In the absence of a BEGIN or similar statement, the semantics of SQL are implementation-dependent.

COMMIT
The COMMIT command makes a transaction's changes to the database permanent. It is used to start all transactions.

COMMIT is used to end a transaction and:

Write all updates to the database.
Make the transaction's changes visible to subsequent SNAPSHOT transactions or READ COMMITTED transactions.
Close opencursors, unless the RETAIN argument is used.

After executing a transaction with [F9] or the

icon, and all operations in the transaction have beensuccessfully performed by the server, the changes to the database must be explicitlycommitted. This can
be done using [Ctrl + Alt + C] or the

icon.

Of course, those competent in SQL canalso enter the command directly in SQL Editor.

Syntax

 COMMIT [WORK] [TRANSACTION name] [RELEASE] [RETAIN [SNAPSHOT]];

WORK An optional work used for compatibility with other relational databases that require it.

TRANSACTION name Commits a transaction name to database. Without this option, COMMIT affects the default transaction.
RELEASE Available for compatibility with earlier versions of InterBase/Firebird.

RETAIN [SNAPSHOT] Commits changes and retains current transaction context.

The transaction name is only valid in an embedded SQL application using SQL or DSQL, where more than one transaction canbe active at a time.

A transaction ending with COMMIT is considered a successful termination. Always use COMMIT or ROLLBACK to end the default transaction. Tip: after read-only
transactions, whichmake no database changes, use COMMIT rather than ROLLBACK. The effect is the same, but the performance of subsequent transactions is
better and the system resources used by them are reduced.

This statement is not valid inside a trigger, because a trigger is started automaticallyas part of a larger transaction, with other triggers perhaps firing after it. It
is also not valid inside a stored procedure because the procedure might be invoked from a trigger.

In IBExpert it is possible to force all commands to be automaticallycommitted, by checking the Autocommit Transactions box in the Database Properties
dialog / Additional (menu item: Database / Database Registration Info...):

784

However, this is NOT recommended, as it is all too easyto accidentally drop a database (instead of a database field for example), as the developer is no
longer asked for confirmation before committing.

ROLLBACK
If a transaction's operations did not all complete successfully or satisfactorily, it is possible to roll back the transaction. A rollback restores the data to the state
it was in before the transaction started. All changes made by insertions, updates and deletions are reversed.

The ROLLBACK is performed in IBExpert using the

icon or [Ctrl + Alt + R].

Rolling back can of course also be specified by issuing the following statement:

 ROLLBACK [TRANSACTION name];

The transaction name is only required in embedded SQL applications using SQL or DSQL, where more thanone transaction can be active at anyone time.

It is important to note that when a transaction is rolled back, the changes performed by that transaction are not immediately deleted. Instead, InterBase flags
the transaction associated with that entry as having beenrolled back in the Transaction Inventory Page (TIP). Subsequent queries must then reconstruct the
row using the version history.

When InterBase/Firebird performs a garbage collection or database sweep, the server detects that the row entry for the current version does not in fact
contain the complete current version. It is thenupdated and the various data segments and version history relinked to ensure that the current version of the row
is stored in the correct place, so that back versions do not need to be read eachtime.

See also:
DCL - Data Control Language
DDL - Data Definition Language
DML - Data ManipulationLanguage
Data Retrieval
Compile, Commit, Rollback

785

DCL - Data Control Language
1. GRANT
2. REVOKE

DCL - Data Control Language
The third group of SQL keywords is the Data Control Language (DCL). DCL handles the authorisationaspects of data and permits the user to control who has
access to see or manipulate data within the database.

Its two mainkeywords are:

GRANT: - authorises a user to perform an operation or a set of operations e.g. grant all privileges to user X.
REVOKE: - removes or restricts the capability of a user to perform an operation or a set of operations.

GRANT
GRANT is the SQL statement, used to assign privileges to database users for specified database objects.

Grants canbe assigned and revoked using the IBExpert Grant Manager, the relevant object editors' Grants pages, or the SQL Editor.

InterBase/Firebird offers the following access privileges at database object level:

Privilege Allows user to:
SELECT Read data.

INSERT Write new data.

UPDATE Modify existing data.

DELETE Delete data.

ALL Select, insert, update, delete data, and reference a primary key from a foreignkey. (Note: does not include references or code
for InterBase 4.0 or earlier).

EXECUTE Execute or call a stored procedure.

REFERENCES Reference a primary key with a foreign key.

role Use all privileges assigned to the role (please refer to Role for further information).

PUBLIC is used to assign a set of privileges to every user of the database. Using the PUBLIC keyword does not grant the specified rights to stored procedures,
only to all database users. Procedures need to be specified explicitly. Please note: PUBLIC is really public! This GRANT option enables all users to access and
manipulate a database object with PUBLIC rights, evencertain system files.

Table Interactions

Many operations require that the user has rights to linked tables, in order for InterBase/Firebird to process updates.

1. If foreignkey constraints exist betweentwo tables, thenan UPDATE, DELETE or INSERT operation on the first table requires SELECT or REFERENCES
privileges on the referenced table. Tip: Make it easy: if read security is not an issue, GRANT REFERENCES on the primary keytable to PUBLIC. If you grant
the REFERENCES privilege, it must, at a minimum, be granted to all columns of the primary key. When REFERENCES is granted to the entire table, columns
that are not part of the primary key are not affected in any way. When a user defines a foreign keyconstraint on a table owned by someone else,
InterBase/Firebird checks that the user has REFERENCES privileges on the referenced table. The privilege is used at runtime to verify that a value entered
in a foreign keyfield is contained in the primary keytable. You can grant REFERENCES privileges to roles.

2. If there is a check constraint withina table, an UPDATE or INSERT operation also requires SELECT privileges on the same table.
3. If a constraint includes one or more queries, an UPDATE or INSERT operation also requires SELECT privileges on the table or tables used in the SELECT.

IBExpert allows privileges to be granted on objects at the time of creation directly in the objects editor's Grants page (please refer to Table Editor / Grants for
further details). Dependencies uponor from other objects are also displayed in the individual object editors, to show visuallyany object interactions, whichmay
need to be taken into considerationwhen assigning user permissions. Refer to Table Editor / Dependencies for further information. All objects or a filtered
selection of objects can be displayed and processed in the IBExpert Grant Manager.

Privileges can be granted to a role as well as to users or stored procedures, tables, views and triggers.

The GRANT statement canbe used in gpre, DSQL and isql.

Syntax

 GRANT privileges ON [TABLE] {tablename | viewname}
 TO {object|userlist [WITH GRANT OPTION]|GROUP UNIX_group}
 | EXECUTE ON PROCEDURE procname TO {object | userlist}
 | role_granted TO {PUBLIC | role_grantee_list}[WITH ADMIN OPTION];

 <privileges> = ALL [PRIVILEGES] | privilege_list

 <privilege_list> = {
 SELECT
 | DELETE
 | INSERT
 | UPDATE [(col [, col...])]
 | REFERENCES [(col [, col...])]
 }[, privilege_list...]

786

 <object> = {
 PROCEDURE procname
 | TRIGGER trigname
 | VIEW viewname
 | PUBLIC
 }[, object...]

 <userlist> = {
 [USER] username
 | rolename
 | UNIX_user
 }[,userlist...]

 <role_granted> = rolename [, rolename...]

 <role_grantee_list> = [USER] username [, [USER] username...]

privilege_list Name of privilege to be granted; valid options are SELECT, DELETE, INSERT, UPDATE, and REFERENCES.

col Columnto which the granted privileges apply.

tablename Name of an existing table for which granted privileges apply.

viewname Name of an existing view for whichgranted privileges apply.

GROUP unix_group Ona UNIX system, the name of a group defined in /etc/group.

object Name of an existing procedure, trigger, or view; PUBLIC is also a permitted value.

userlist A user in the InterBase/Firebird security database or a role name created with CREATE ROLE.

WITH GRANT
OPTION

Passes GRANT authority for privileges listed in the GRANT statement to userlist (please refer to GRANT AUTHORITY for further
information).

rolename Anexisting role created with the CREATE ROLE statement.
role_grantee_
list A list of users to whom rolename is granted; users must be in the Firebird/InterBase .

WITH ADMIN
OPTION Passes grant authority for roles listed to role_grantee_list.

Important: In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++, and in isql, the semicolon is
a terminating symbol for the statement, so it must be included.

To grant privileges to a group of users, create a role using the CREATE ROLE statement. Please refer to New Role for details.

On UNIX systems, privileges can be granted to groups listed in /etc/groups and to anyUNIX user listed in /etc/passwd on both the client and server, as well
as to individual users and to roles.

Examples

 GRANT insert, update, delete
 ON customer
 TO Janet, John
 WITH GRANT OPTION;

or:

 GRANT references
 ON customer
 TO PUBLIC;

If different levels of access are to be assigned to different objects and different people, separate GRANT statements have to be used.

This embedded SQL statement grants EXECUTE privileges for a procedure to another procedure and to a user:

 EXEC SQL
 GRANT EXECUTE ON PROCEDURE GET_EMP_PROJ
 TO PROCEDURE ADD_EMP_PROJ, LUIS;

The following example creates a role called administrator, grants UPDATE privileges on table1 to that role, and thengrants the role to user1, user2, and user3.
These users thenhave UPDATE and REFERENCES privileges on table1:

 CREATE ROLE administrator;
 GRANT UPDATE ON table1 TO administrator;
 GRANT administrator TO user1, user2, user3;

REVOKE
REVOKE is the SQL statement, used to withdraw those rights already assigned to database users or objects for database objects. Rights canbe revoked using
the IBExpert Grant Manager, the relevant object editors' Grants pages, or the SQL Editor.

The following rules apply when revoking user privileges:

1. Only the user who granted the privilege or the SYSDBA mayrevoke it.

787

2. Revoking a privilege has no effect on anyother privileges granted by other users. However, if multiple users have the ability to grant privileges, one user
might have received a specific privilege from more than one source. If only one of them is revoked, the other remains in effect.

3. If a privilege, whichwas originally granted using the WITH GRANT OPTION clause, is revoked, any subsequent users to which the same privilege had
beengranted in turn lose their privileges too.

4. The ALL keyword can be used to revoke all granted privileges to an object, even if the user has not been granted all available privileges in the first
place. REVOKE ALL however has no effect on the EXECUTE privilege, which must always be explicitly revoked.

5. If a privilege is granted to all users using the PUBLIC option, this grant can only be revoked using the same PUBLIC option.

Syntax

 REVOKE [GRANT OPTION FOR] privilege ON [TABLE] {tablename | viewname}
 FROM {object | userlist | rolelist | GROUP UNIX_group}
 | EXECUTE ON PROCEDURE procname FROM {object | userlist}
 | role_granted FROM {PUBLIC | role_grantee_list}};
 <privileges> = ALL [PRIVILEGES] | privilege_list
 <privilege_list> = {
 SELECT
 | DELETE
 | INSERT
 | UPDATE [(col [, col ...])]
 | REFERENCES [(col [, col ...])]
 }[, privilege_list ...]
 <object> = {
 PROCEDURE procname
 | TRIGGER trigname
 | VIEW viewname
 | PUBLIC
 }[, object ...]
 <userlist> = [USER] username [, [USER] username ...]
 <rolelist> = rolename [, rolename]
 <role_granted> = rolename [, rolename ...]
 <role_grantee_list> = [USER] username [, [USER] username ...]

privilege_list Name of privilege to be granted; valid options are SELECT, DELETE, INSERT, UPDATE and REFERENCES.

GRANT OPTION FOR Removes grant authority for privileges listed in the REVOKE statement from userlist; cannot be used with object.

col Column for which the privilege is revoked.

tablename Name of an existing table for which privileges are revoked.

viewname Name of an existing view for whichprivileges are revoked.

GROUP unix_group On a UNIX system, the name of a group defined in /etc/group.

object Name of an existing database object from whichprivileges are to be revoked.

userlist A list of users from whom privileges are to be revoked.

rolename An existing role created with the CREATE ROLE statement.

role_grantee_list A list of users to whom rolename is granted; users must be in the Firebird/InterBase .

Examples

To revoke INSERT and UPDATE privileges from Janet and John:

 REVOKE INSERT, UPDATE
 ON PROJ_DEPT_BUDGET
 FROM Janet, John

To revoke all privileges from every user, use the PUBLIC option, for example:

 REVOKE ALL
 ON PROJ_DEPT_BUDGET
 FROM PUBLIC;

See also:
Grant Manager
User Manager
DDL - Data Definition Language
DML - Data Manipulation Language
Data Retrieval
Data Transaction

788

JOIN
1. INNER JOIN
2. OUTER JOIN
3. CROSS JOIN
4. Joining more than two tables
5. Self joins / reflexive joins

JOIN
In practice it seldom occurs that all relevant information canbe found in a single database table. It is much more often the case that the data required is
distributed across several tables and linked by relations. Indeed, information in a normalized database should be spread across multiple tables!

In a fullynormalized database, the vast majority of tables have a primary key consisting of one or two columns only. If a referential integrity relationship exists,
these primary keycolumns are replicated in other tables to ensure consistency in the data. These are the columns that allow you to establish logical links
between these tables. When queries are performed, tables are commonly joined on these columns.

There is actually no restriction by design to the number of tables that maybe joined. However the task of joining tables is exponential in relation to the number
of tables in the join. The largest practical number of tables in a join is about 16, but experiment with your application and a realistic volume of data to find the
most complex join that has an acceptable performance.

When youestablish a join, InterBase/Firebird looks for matching values in the designated columns of each table. It does not care if a value appears once on
one side of the join and multiple times on the other side, as is often the case.

In this instance, InterBase/Firebird joins eachmatching row in TableB to the single matching row in TableA, thereby creating what is knownas a virtual row.
Each TableB row can logically be linked to a single unambiguous row in TableA.

InterBase/Firebird also provides options for establishing a relationship where a value canappear on one side of the join instead of both. This is known as an
OUTER JOIN.

The following statement selects from bothTableA and TableB tables:

 SELECT column_list
 FROM TableA, TableB;

When youselect from two or more tables, these tables are normally joined on a common column. For example, you might joinTableA and TableB tables on the
column that is commonto eachof them, the TableA_ID.

Theoretically it is not necessary to specify a join column. If you do not specifyone, InterBase/Firebird performs a Cartesianproduct between the two tables,
joining eachrow in one table to each row in the other. So, for example, if the first table had 100 rows, and the second had 20, the result set would have 2000
rows. Such a join normally makes no sense because the row information in one table is not logically related to the row information in the other table, except
where column and field values are shared between the tables.

InterBase/Firebird does not prevent youfrom establishing a meaningless join. You can issue an SQL statement that joins, for example, Orders.PaymentMethod
with ustomer.Country, and InterBase/Firebird processes the statement! But the result set is always empty because there are no matching values in either
column.

JOIN syntax

InterBase/Firebird currently supports two methods to link two or more tables via a common column:

the traditional SQL syntax, and
the SQL '92 syntax.

The traditional SQL syntax integrates the link in the WHERE clause:

 SELECT <ColumnList>
 FROM Table1 Synonym1 , Table2 Synonym2
 WHERE Synonym1.JoinColumn = Synonym2.JoinColumn
 AND <Other_WHERE_Conditions> ;

The following example illustrates this syntax:

 SELECT C.Name, C.Country, O.OrderID, O.SaleDate, O.TotalInvoice
 FROM Customer C, Orders O
 WHERE C.CustomerID = O.CustomerID
 AND C.Country != 'U.S.A.'
 ORDER BY C.Name, O.OrderID;

As opposed to traditional SQL syntax, the SQL 92 syntaxdetaches the link from the WHERE clause and relocates it in the FROM clause, i.e. that area, in which the
tables to be used are defined:

 SELECT <ColumnList>
 FROM Table1 Alias1 JOIN Table2 Alias2
 ON Alias1.Column = Alias2.Column
 WHERE <Where_Conditions> ;

Example

 SELECT C.Name, C.Country, O.OrderID, O.SaleDate, O.TotalInvoice
 FROM Customer C JOIN Orders O

789

 ON C.CustomerID = O.CustomerID)
 WHERE C.Country != 'U.S.A.'
 ORDERBY C.Name, O.OrderID;

Either syntaxcan be used at anytime; theyare virtually interchangeable. The difference is that the SQL 92 syntaxpermits OUTER JOINs, whereas the traditional
syntaxdoes not.

Specifying columns and rows

Whentwo or more tables are joined, rows can be included from either table in the result. It is also possible to specify WHERE conditions to limit the rows in either
table that are considered for the join.

For example, the following statement asks for customers in Florida who placed orders in 1994 with a total invoice of more than $5,000 for the order:

 SELECT C.Name, C.City, O.SaleDate, O.TotalInvoice
 FROM Customer C JOIN Orders O
 ON C.CustomerID = O.CustomerID
 WHERE C.State_Province = ’FL’
 AND O.SaleDate BETWEEN ’1/1/94’ AND ’12/31/94’
 AND O.TotalInvoice > 5000;

Please refer to Joining more than two tables for further information.

INNER JOIN
Whenyou join two tables, the result set includes only those rows where the joining value appears in both tables.

Syntax

 TableA JOIN TableB

The joinapplies to the table written to the left of the command.

For example, the following query joins Stock to LineItem to find out many orders included each stock item:

 SELECT S.StockID, COUNT(L.OrderID)
 FROM Stock S JOIN Lineitem L
 ON S.StockID = L.StockID
 GROUP BY S.StockID

From a theoretical standpoint, this is known as an INNER JOIN, but the INNER keyword is optional. What if youalso want to include those stock items that have
not yet been ordered, so that the result set shows all stock items. These items do not appear in the LineItem table at all. The solution lies in performing an
OUTER JOIN. An outer join includes every column in one table and a subset of columns in the other table.

OUTER JOIN
Whenyou join two tables, the result set includes only those rows where the joining value appears in both tables.

There are three types of outer joins:

SQL92 syntax permits outer joins, whereas the traditional syntax does not.

Types of outer joins

LEFT OUTER JOIN, which includes all rows from the table on the left side of the join expression.
RIGHT OUTER JOIN, which includes all rows from the table on the right side of the joinexpression.
FULL OUTER JOIN, which includes all rows from both tables.

Syntax

 TableA LEFT OUTER JOIN TableB

The joinapplies to the table written to the left of the command.

 TableA RIGHT OUTER JOIN TableB

The joinapplies to the table written to the right of the command.

Whenyour tables are linked in a referential relationship on a foreignkey column, only the LEFT OUTER JOIN usually makes sense. For example, every order
includes a customer from the Customer table. If you join Customer to Orderswith a RIGHT OUTER JOIN, the result is the same as if you had performed an INNER
JOIN.

The following query modifies the preceding example to include all stock items, even the one that have not yet been ordered:

 SELECT S.StockID, COUNT(L.OrderID)
 FROM Stock S LEFT OUTER JOIN Lineitem L

790

 ON S.StockID = L.StockID
 GROUP BY S.StockID

Adding selection criteria

If two tables are joined using an outer join, and there are also selection criteria in the table where the inclusion operator is placed, it would appear as first
glance that youare asking two conflicting questions.

Consider the following query, which asks for the value of all orders placed by customers located in California, including those customers who might not have
placed an order.

 SELECT C.Name, SUM(O.TotalInvoice)
 FROM Customer C LEFT OUTER JOIN Orders O
 ON C.CustomerID = O.CustomerID
 WHERE C.State_Province = ’CA’
 GROUP BY C.Name;

On the one hand, the LEFT OUTER JOIN is asking InterBase/Firebird to include all customers in the result set, whether or not that customer has also placed any
orders. Onthe other hand, the query is also asking InterBase/Firebird to limit the query to only those customers located in California.

InterBase/Firebird resolves this apparent conflict by always processing the WHERE clause before processing any outer joins. The Customer table is first limited
to those customers in California, and this intermediate result is then joined to the Orders table to which of the California customers have placed orders.

CROSS JOIN
CROSS JOIN was introduced in Firebird 2.0. Logically, this syntax pattern:

 A CROSS JOIN B

is equivalent to either of the following:

 A INNER JOIN B ON 1 = 1

or, simply:

 FROM A, B

Joining more than two tables
The SQL92 joinsyntax provides for joins that reference more thantwo tables. The trick is to establish the joinwith the first pair of tables, then join this product
with the third table, and so on.

For example, the following query finds customers and the order details, where the order included a specific stock item:

 SELECT C.Name, O.SaleDate, L.Quantity
 FROM Customer C JOIN Orders O
 ON (C.CustomerID = O.CustomerID)
 JOIN LineItem L
 ON (O.OrderID = L.OrderID)
 WHERE L.StockID = ’5313’;

This syntaxcan be extended to anynumber of tables. You caneven create a circular join. For example, the following statement asks for customers who have
ordered products that were made by vendors in the same state as the customer. This queryrequires a series of joins from Customer to Orders to LineItem to
Stock to Vendors, and another join from the Customer state to the Vendor's state.

 SELECT DISTINCT C.Name, V.VendorName, C.State_Province
 FROM Customer C JOIN Orders O
 ON (C.CustomerID = O.CustomerID)
 JOIN LineItem L
 ON (O.OrderID = L.OrderID)
 JOIN Stock S
 ON (L.StockID = S.StockID)
 JOIN Vendors V
 ON (S.VendorID = V.VendorID)
 AND (C.State_Province = V.State_Province);

Note an important limitation in this SELECT statement: tables are added to the JOIN expression one at a time. You cannot reference columns from a table until
the table has been joined to the expression. For example, the condition linking the Customer and Vendor tables on their State columns cannot be specified
until the Vendor table has been added to the expression and correctly joined.

Self joins / reflexive joins
A self-join, also knownas a reflexive join, is a join in whicha table is joined to itself. It compares rows of data withina single table. For example, we could add
another column to the employee table in the sample employee database that would contain the employee’s manager number. Since managers are also stored
in the employee table, we could create a self-joinon the employee table to determine the name of eachemployee’s manager.

791

 SELECT e1.full_name AS Employee, e2.full_name AS Manager
 FROM employee e1 JOIN employee e2
 ON e1.mng_id = e2.emp_no;

See also:
View
Query Builder

792

Stored procedure and trigger language
1. Summary of PSQL commands
2. Supported Firebird 2 features
3. Using DML statements
4. Using SELECT statements
5. SET TERM terminator or terminating character
6. SUSPEND
7. BEGIN and END statement
8. DECLARE VARIABLE
9. FOR EXECUTE INTO

10. FOR SELECT ... DO ...
11. IF THEN ELSE
12. WHILE and DO
13. OPEN CURSOR

Stored procedure and trigger language
The InterBase/Firebird procedure and trigger language includes all the constructs of a basic structured programming language, as well as statements unique
to working with table data. The SQL SELECT, INSERT, UPDATE and DELETE statements can be used in stored procedures exactly as they are used in a query, with
only minor syntaxchanges. Local variables or input parameters can be used for all of these statements in anyplace that a literal value is allowed. Certain
constructs, including all DDL (Data Definition Language) statements, are omitted.

Firebird 2.0 introduced high performance cursor processing, for cursors originating from a SELECT query and for cursors originating from a selectable stored
procedure.

Because PSQL programs run on the server, data transfer between the relational core and the PSQL engine is very fast, much faster than transfer to a client
application.

Other statements that are specific to stored procedures include, among others, error handling and raising exceptions. Please refer to the relevant sections for
further information.

Note that the string concatenation operator in InterBase/Firebird procedure and trigger language is || (a double vertical bar, or pipe), and not the + that is
used in many programming languages. Please refer to concatenation of strings for further information.

Withina trigger or stored procedure, statements are separated by semicolons.

For further reading, particularly for those new to PSQL, please refer to Writing stored procedures and triggers.

Summary of PSQL commands

Command Description
BEGIN <statements>
END Compound statement like in PASCAL.

variable = expression Assignment. variable canbe a local variable, an in or an out parameter.
compound_statement A single command or a BEGIN/END block.

select_statement

Normal SELECT statement. The INTO clause must be present at the end of the statement. Variable names can be
used with a colon preceding them. Example:
SELECT PRICE FROM ARTICLES
WHERE ARTNO = :ArticleNo
INTO :EPrice

/* Comment */ Comment, like in C.
-- Comment Single line SQL comment.
DECLARE VARIABLE name
datatype [= startval] Variable declaration. After AS, before the first BEGIN.

EXCEPTION Re-fire the current exception. Onlymakes sense in a WHEN clause.
EXCEPTION name
[message] Fire the specified exception. Canbe handled with WHEN.

EXECUTE PROCEDURE
name
arg, arg
RETURNING_VALUES
arg, arg

Calling a procedure. arg's must be local variables. Nesting and recursion allowed.

EXIT Leaves the procedure (like in PASCAL).
FOR select_statement
DO
compound_statement

Executes compound_statement for every line that is returned by the SELECT statement.

IF (condition)
THEN compound_
statement
[ELSE compound_
statement]

IF statement, like in PASCAL.

POST_EVENT name Posts the specified event.

SUSPEND Only for SELECT procedures whichreturn tables: Waits for the client to request the next line. Returns the next line to
the client.

WHILE (condition) DO
compound_statement WHILE statement. Like in PASCAL.

793

WHEN {EXCEPTION a |
SQLCODE x | ANY}
DO
compound_statement

Exceptionhandling. WHEN statements must be at the end of the procedure, directly before the final END.

EXECUTE STATEMENT
stringvalue Executes the DML statement in stringvalue.

EXECUTE STATEMENT
stringvalue
INTO variable_list

Executes the statement and returns variables (singleton).

FOR EXECUTE STATEMENT
stringvalue
INTO variable_list DO
compound_statement

Executes the statement and iterates through the resulting lines.

(Source: Stored Procedures in Firebird by Stefan Heymann, 2004)

A complete Firebird 2.0 PSQL Language Reference including expressions, conditions and statements can be found at: http://www.janus-software.com/
fbmanual/index.php?book=psql.

The most important items are listed in detail below.

Supported Firebird 2 features
Since IBExpert version 2005.03.12 the following Firebird 2 features are also supported:

DECLARE <cursor_name> CURSOR FOR ...
OPEN <cursor_name>
FETCH <cursor_name> INTO ..
CLOSE <cursor_name>
LEAVE <label>
NEXT VALUE FOR <generator>

There are a number of further enhancements to PSQL in Firebird 2.0. Please refer to the Firebird 2.0.4 Release Notes chapter, Stored Procedure Language
(PSQL), for details.

Using DML statements
The SQL Data Manipulation Language (DML), consists primarilyof the SELECT, INSERT, UPDATE and DELETE statements.

Statements that are not recognized or permitted in the stored procedures and trigger language include DDL statements such as CREATE, ALTER, DROP, and SET
as well as statements such as GRANT, REVOKE, COMMIT, and ROLLBACK.

Wherever a literal value is specified in an INSERT, UPDATE or DELETE statement, an input or local variable can be substituted in place of this literal. For example,
variables can be used for the values to be inserted into a new row, or the new values in an UPDATE statement. Theycan also be used in a WHERE clause, to
specify the rows that are to be updated or deleted.

Since Firebird 2.0, the SQL language extension EXECUTE BLOCK makes "dynamic PSQL" available to SELECT specifications. It has the effect of allowing a self-
contained block of PSQL code to be executed in dynamic SQL as if it were a stored procedure. For further information please refer to EXECUTE BLOCK
statement.

Using SELECT statements
InterBase/Firebird supports an extension to the standard SELECT statement, to solve the problem of what to do with the results when using a SELECT statement
inside a stored procedure. The INTO clause appoints variables that receive the results of the SELECT statement. The syntax is as follows:

 SELECT <result1, result2, ..., resultN>
 FROM ...
 WHERE ...
 GROUP BY ...
 INTO : <Variable1, : Variable2, ..., VariableN>;

The INTO clause must be the final clause in the SELECT statement. A variable must be given for each result generated by the statement. Important: this form of
SELECT statement can generate only one row. Therefore the ORDER BY clause is unnecessary here.

To use a SELECT that generates more thanone row within a stored procedure, use the FOR SELECT statement.

New to Firebird 2.0: support for derived tables in DSQL (subqueries in FROM clause) as defined by SQL200X. A derived table is a set, derived from a
dynamic SELECT statement. Derived tables can be nested, if required, to build complexqueries and they canbe involved in joins as though they were normal
tables or views.

Syntax

 SELECT
 <select list>
 FROM
 <table reference list>

 <table reference list> ::= <table reference> [{<comma> <table reference>}...]

 <table reference> ::=
 <table primary>
 | <joined table>

794

http://www.janus-software.com/

 <table primary> ::=
 <table> [[AS] <correlation name>]
 | <derived table>

 <derived table> ::=
 <query expression> [[AS] <correlation name>]
 [<left paren> <derived column list> <right paren>]

 <derived column list> ::= <column name> [{<comma> <column name>}...]

Examples canbe found in the Data ManipulationLanguage chapter.

Points to Note

Every columnin the derived table must have a name. Unnamed expressions like constants should be added with an alias or the columnlist should be
used.
The number of columns in the column list should be the same as the number of columns from the queryexpression.
The optimizer canhandle a derived table veryefficiently. However, if the derived table is involved in an inner join and contains a subquery, then no join
order can be made.

SET TERM terminator or terminating character
Normally InterBase processes a script step by step and separates two statements by a semicolon. Each statement between two semicolons is parsed,
interpreted, converted into an internal format and executed. This is not possible in the case of stored procedures or triggers where there are often multiple
commands which need to be successively executed, i.e. there are several semicolons in their source codes. So if CREATE PROCEDURE …was called, InterBase/
Firebird assumes that the command has finished when it arrives at the first semi colon.

In order for InterBase/Firebird to correctly interpret and transfer a stored procedure to the database, it is necessary to temporarily alter the terminating
character using the SET TERM statement. The syntaxfor this is as follows (Although when using the IBExpert templates this is not necessary, as IBExpert
automatically inserts the SET TERM command):

 SET TERM NEW_TERMINATOR OLD_TERMINATOR

Example

 SET TERM ̂ ;
 CREATE PROCEDURE NAME
 AS
 BEGIN
 <procedure body>;
 END̂
 SET TERM ;^

Before the first SET TERM statement appears, InterBase/Firebird regards the semicolon as the statement terminating character and interprets and converts the
script code up until eachsemicolon.

Following the first SET TERM statement, the terminator is switched and all following semicolons are no longer interpreted as terminators. The CREATE
PROCEDURE statement is thentreated as one statement up until the new terminating character, and parsed and interpreted. The finalSET TERM statement is
necessary to change the terminating character back to a semicolon, using the syntax:

 SET TERM OLD_TERMINATOR NEW_TERMINATOR

(refer to above example: SET TERM ;^).

The statement must be concluded by the previouslydefined temporary termination character. This concluding statement is again interpreted as a statement
between the two last termination characters. Finally the semicolon becomes the termination character for use in further script commands.

It is irrelevant whichcharacter is used to replace the semi colon; however it should be a seldom-used sign to prevent conflicts e.g. ^, and not * or + (used in
mathematical formulae) or ! (this is used for "not equal": A!=B).

SUSPEND
SUSPEND is used in stored procedures; It is used to return a row of data from a procedure to its caller. It acts as if it was a data set, i.e. returns the named data
set visually as a result.

It suspends procedure execution until the next FETCH is issued by the calling application and returns output values, if there are any, to the calling application. It
prevents the stored procedure from terminating until the client has fetched all the results. This statement is not recommended for executable procedures.

Syntax

 <suspend_stmt> ::=
 SUSPEND ;

Suspends execution of a PSQL routine until the next value is requested by the calling application, and returns output values, if any, to the calling application. If
the procedure is called from a SELECT statement, processing will continue following SUSPEND when the next row of data is needed. Use the EXIT statement or let
the code path end at the finalEND of the bodyto signal that there are no more rows to return.

If the procedure is called from a EXECUTE PROCEDURE statement, then SUSPEND has the same effect as EXIT. This usage is legal, but not recommended.

795

BEGIN and END statement
As well as defining the contents of the stored procedure, these keywords also delimit a block of statements which then executes as a single statement. This
means that BEGIN and END can be used to enclose several statements and so form a simple compound statement. Unlike all other PSQL statements, a
BEGIN ... END block is not followed by a semicolon.

DECLARE VARIABLE
Please refer to local variables.

FOR EXECUTE INTO
Use the FOR EXECUTE INTO statement to execute a (canalso be dynamically created) SELECT statement contained in a string and process all its result rows.

The execute SQL statement allows the execution of dynamically constructed SELECT statements. The rows of the result set are sequentially assigned to the
variables specified in the INTO clause, and for eachrow the statement in the DO clause is executed.

To work with SELECT statements that return only a single row, consider using the EXECUTE INTO statement.

It is not possible to use parameter markers (?) in the SELECT statement as there is no way to specify the input actuals. Rather than using parameter markers,
dynamicallyconstruct the SELECT statement, using the input actuals as part of the constructionprocess.

FOR SELECT ... DO ...
The FOR SELECT DO statement allows the compact processing of a SELECT statement. The rows of the result set are sequentially assigned to the variables
specified in the INTO clause, and for each row the statement in the DO clause is executed.

If the AS CURSOR clause is present, the select statement is assigned a cursor name. The current row being processed by the FOR SELECT DO statement can be
referred to in DELETE and UPDATE statements in the bodyof the FOR SELECT DO by using the WHERE CURRENT OF clause of those statements.

Examples can be found in Writing stored procedures and triggers.

IF THEN ELSE
A condition is evaluated and if it evaluates to TRUE the statement in the THEN clause is executed. If it is not TRUE, i.e. It evaluates to FALSE or to NULL, and an
ELSE clause is present, thenthe statement in the ELSE clause is executed.

IF statements canbe nested, i.e. The statements in the THEN or ELSE clauses can be IF statements also. If the THEN clause contains a IF THEN ELSE
statement, thenthat ELSE clause is deemed to be part of the nested IF, just as in nearly all other programming languages. Enclose the nested IF in a
compound statement if you want the ELSE clause to refer to the enclosing IF statement.

 variable = expression;

The variable can be an input or output parameter, or a local variable defined in a DECLARE VARIABLE statement. The expression needs to be concluded with a
semicolon. The syntax for the IF statement is as follows:

 IF <conditional_test>
 THEN
 <statements>;
 ELSE
 <statements>;

Any of the standard comparison operators available in SQL an be used (please refer to comparison operators for a full list).

The value canbe a constant or one of the input parameters, output parameters or local variables used in the procedure.

If a single statement is placed after the THEN or ELSE clauses, it should be terminated with a semicolon.

If multiple statements need to be placed after one of these clauses, use the BEGIN and END keywords as follows:

 IF <conditional_test> THEN
 BEGIN
 <statement1>;
 <statement2>;
 ...
 <statementN>;
 END
 ELSE
 etc.;

WHILE and DO
The WHILE … DO statement provides a looping capability. The syntax for this statement is as follows:

 WHILE
 <conditional_test>

796

 DO
 <statements>;

InterBase/Firebird evaluates the conditional test. If it is TRUE, the statements following the WHILE are executed. If it is FALSE, the statements are ignored. If only
one statement is placed after the DO clause, it should be terminated with a semicolon. If multiple statements are used after one of these clauses, use the BEGIN
and END keywords. Brackets need to be put around the conditional test.

OPEN CURSOR
New to Firebird 2.0, the OPEN statement allows youto open a local cursor.

Syntax

 <open_stmt> ::=
 OPEN <cursor_name>;

 <cursor_name> ::= <identifier>

where cursor_name is the name of a local cursor.

The OPEN statement opens a local cursor. Opening a cursor means that the associated query is executed and the that the result set is kept available for
subsequent processing by the FETCH statement. The cursor must have beendeclared in the declarations section of the PSQL program.

Attempts to opena cursor that is already open, or attempts to open a named FOR SELECT cursor will fail and generate a runtime exception. All cursors which
were not explicitlyclosed will be closed automatically on exit from the current PSQL program.

Please also refer to Explicit cursors in the Firebird 2.0.4 Release Notes.

See also:
Comments
Comparison Operators
Conditional Test
Writing stored procedures and triggers
Firebird 2 SQL Reference Guide

797

Firebird 2 Quick Start Guide
IBPhoenix Editors
Firebird Project members
8 April 2008, document version 3.7 — covers Firebird 2.0–2.0.4 and 2.1

About this guide
What is in the kit?
Classic or Superserver?
Default disk locations
Installing Firebird
Server configurationand management
Working with databases
Preventing data loss
How to get help
The Firebird Project
Appendix A Document history
Appendix B License notice

About this guide
The Firebird Quick Start Guide is an introduction for the complete newcomer to a few essentials for getting off to a quick start with a Firebird binary kit. The
guide first saw the light as Chapter 1 of the Using Firebird manual, sold on CD by http://www.IBPhoenix.com. Later it was published separately on the Internet.
In June 2004, IBPhoenixdonated it to the Firebird Project. Since then it is maintained, and regularlyupdated, by members of the Firebird documentation
project.

Important Before you read on, verify that this guide matches your Firebird version. This guide covers versions 2.0–2.0.4 and 2.1. For all other Firebird
versions, get the corresponding Quick Start Guide at http://www.firebirdsql.org/?op=doc.

Some warnings before you start

Firebird 2.0.2 was recalled due to a regression; if you use it, upgrade to 2.0.3 or higher ASAP and make sure to read your new version's Release
Notes.
If youwant to relyon Linux forced writes to work correctly, upgrade to at least 2.0.4.

What is in the kit?
All of the kits containall of the components needed to install the Firebird server:

The Firebird server executable.
One or more client libraries.
The command-line tools.
The standard user-defined function libraries.
A sample database.
The C header files (not needed by beginners).
Release notes – ESSENTIAL READING!

798

http://www.IBPhoenix.com.LateritwaspublishedseparatelyontheInternet
http://www.firebirdsql.org/?op=doc

Classic or Superserver?
Embedded Server for Windows

Classic or Superserver?
Firebird comes in two flavours, called architectures: Classic Server and Superserver. Which one should you install? That depends on your situation. A short
overview of the most important differences follows.

Table 1. Firebird 2 Classic Server vs. Superserver

 Classic Server Superserver

Processes
Creates a separate process for every client
connection, each with its owncache. Less resource
use if the number of connections is low.

A single process serves all connections, using threads to handle
requests. Shared cache space. More efficient if the number of
simultaneous connections grows.

Local
connections

Permits fast, direct I/O to database files for local
connections on Linux. The client process must have
filesystem-level access rights to the database for
this to work.

On Linux, all local connections are made via the network layer, using
localhost (often implicitly). Only the server process needs access
rights to the database file.

 OnWindows, botharchitectures now support safe and reliable local connections, with only the server process requiring
access rights to the database file.

Multiprocessor
SMP (symmetrical multi-processor) support. Better
performance in case of a small number of
connections that do not influence eachother.

No SMP support. On multi-processor Windows machines,
performance caneven drop dramaticallyas the OS switches the
process between CPUs. To prevent this, set the CpuAffinityMask
parameter in the configuration file firebird.conf.

Guardian

Whenrun as a Windows application (as opposed to
a service) youcan't use the Firebird Guardian. Note
that running Firebird as an application is the only
optionon Windows 9x–ME.

Can be used with the Guardianon Windows, whether run as an
application or as a service.

As youcan see, neither of the architectures is better in all respects. This is hardly surprising: we wouldn't maintain two separate architectures if one of them
was an all-fronts loser.

If you're still not sure what to choose (maybe youfind all this tech talk a little overwhelming), use this rule of thumb:

On Windows, choose Superserver.
On Linux, just pick one or the other. In most circumstances, chances are that youwon't notice a performance difference.

Note that you canalways switch to the other architecture later; your applications and databases will keep functioning like before.

For Linux, Superserver download packages start with FirebirdSS, Classic packages with FirebirdCS. For Windows, there is a combined installation
package; youchoose the architecture during the installationprocess.

Embedded Server for Windows
On Windows platforms only, Firebird offers a third flavor: Embedded Server, a client and server rolled into one DLL for ease of deployment. While very
practical, it lacks most of Firebird's usual security features. For more information on Firebird Embedded Server, consult the Clients and Servers chapter in
Using Firebird:

http://www.firebirdsql.org/manual/ufb-cs-embedded.html (HTML)
http://www.firebirdsql.org/pdfmanual/Using-Firebird_(wip).pdf (PDF)

The Embedded Server comes in a separate download package.

799

http://www.firebirdsql.org/manual/ufb-cs-embedded.html
http://www.firebirdsql.org/pdfmanual/Using-Firebird_

Default disk locations
1. Linux
2. Windows

The Windows system directory

Default disk locations
Linux
The following table shows the default component locations of a Firebird installation on Linux. Some of the locations may be different on other Unix-like
systems.

Table 2. Firebird 2 component locations on Linux

Component File Name Default Location
Installation directory
(referred to hereafter as
<InstallDir>)

— /opt/firebird

Release Notes and other
documentation various files <InstallDir>/doc

Firebird server fbserver (SS) or fb_inet_server (CS) <InstallDir>/bin
Command-line tools isql, gbak, nbackup, gsec, gfix, gstat, etc. <InstallDir>/bin
Sample database employee.fdb <InstallDir>/examples/empbuild
UDF libraries ib_udf.so, fbudf.so <InstallDir>/UDF
Additional server-side
libraries libicu*.so, libib_util.so <InstallDir>/bin

Client libraries

libfbclient.so.2.m.n# (network client)
libfbembed.so.2.m.n (local client with embedded
engine, Classic only)
The usual symlinks (*.so.2,*.so) are created. Legacy
libgds.* symlinks are also installed.

/usr/lib (actually, the real stuff is in <InstallDir>/
lib, but youshould use the links in /usr/lib)

Windows
In the table below, <ProgramDir> refers to the Windows programs folder. This is usually C:\Program Files but may also be a different path, e.g. D:\Programmi.
Likewise, <SystemDir> refers to the Windows system directory. Be sure to read the notes below the table, especially if you're running Firebird on a 64-bit
Windows system.

Table 3. Firebird 2 component locations on Windows

Component File Name Default Location
Installation directory
(referred to hereafter as
<InstallDir>)

— <ProgramDir>\Firebird\Firebird_2_0

Release Notes and other
documentation Various files <InstallDir>\doc

Firebird server fbserver.exe (SS) or fb_inet_server.exe (CS) <InstallDir>\bin

Command-line tools isql.exe, gbak.exe, nbackup.exe, gsec.exe, gfix.exe,
gstat.exe, etc.

<InstallDir>\bin

Sample database employee.fdb <InstallDir>\examples\empbuild
User-defined function (UDF)
libraries ib_udf.dll, fbudf.dll <InstallDir>\UDF

Additional server-side libraries icu*.dll, ib_util.dll <InstallDir>\bin

Client libraries
fbclient.dll
(with an optional gds32.dll, to support legacy apps)

<InstallDir>\bin
(with an optional copy in <SystemDir> – see note
below table)

The Windows system directory

The exact path to the Windows System directorydepends on your Windows version. Typical locations on 32-bit systems are:

for Windows 95/98/ME: C:\Windows\System
for Windows NT/2000: C:\WINNT\System32
for Windows XP: C:\Windows\System32

For 64-bit systems, read the next note.

800

Important notice for 64-bit Windows users

On 64-bit Windows systems, the "Program Files" directory is reserved for 64-bit programs. If you try to install a 32-bit application into that folder, it will be
auto-redirected to a directory which– in English versions – is called “Program Files (x86)”. In other language versions the name may be different.

In the same vein, the System32 directory is reserved for 64-bit libraries. 32-bit libraries go into SysWOW64. That's right: 64-bit libraries are in System32, 32-bit
libraries in SysWOW64.

If you're not aware of this, youmay have a hard time locating your 32-bit Firebird components on a 64-bit Windows system.

(Incidentally, WOW stands for Windows on Windows. Now you canalso work out what LOL means.)

801

Installing Firebird
1. Installing the Firebird server

1. Installation drives
2. Installation script or program
3. Installing on Windows
4. Installing on Linux and other Unix-like platforms

2. Installing multiple servers
3. Testing the installation

1. Pinging the server
2. Checking that the Firebird server is running

4. Performing a client-only install
1. Windows
2. Linux and some other Posix clients

Installing Firebird
The instructions given below for the installation of Firebird on Windows and Linux should be sufficient for the vast majorityof cases. However, if youexperience
problems or if you have special needs not covered here, be sure to read the INSTALLATION NOTES chapter in the Release Notes. This is especially
important if youare upgrading from a previous version or if there are remnants of an old (and maybe long gone) InterBase or Firebird installation floating
around your system (DLLs, Registry entries, environment variables...).

Installing the Firebird server

Installation drives

Firebird server – and any databases you create or connect to – must reside on a hard drive that is physically connected to the host machine. You cannot locate
components of the server, or any database, on a mapped drive, a filesystem share or a network filesystem.

Note: You can mount a read-only database on a CD-ROM drive but you cannot run Firebird server from one.

Installation script or program

Although it is possible to install Firebird by a filesystem copying method – such as “untarring” a snapshot build or decompressing a structured .zip archive – it
is stronglyrecommended that youuse the distributed release kit (.exe for Windows, .rpm for Linux), especially if this is the first time you install Firebird. The
Windows installationexecutable, the Linux rpm program and the install.sh script in the official .tar.gz for various Posixplatforms all perform some essential
setup tasks. Provided you follow the installation instructions correctly, there should be nothing for you to do upon completion but log in and go!

Installing on Windows
The Firebird installer lets you choose betweenSuperserver and Classic Server installation. Both are fullymature and stable and there is no reasonto
categorically prefer one to the other. Of course youmay have your ownspecific considerations.

If you install Firebird under Windows 95/98/ME, uncheck the option to install the Control Panel applet. It doesn't work on these platforms. You'll find a link to a
usable applet further down. (Note: the option to install the applet is only available for Superserver.)

OnWindows server platforms – NT, 2000, 2003 and XP – Firebird will run as a system service by default, but during the installationyou canalso choose to let
it run as an application. Non-server Windows systems – 95, 98 and ME – don't support services; running as an application is the only option there.

Use the Guardian?

The Firebird Guardian is a utility that monitors the server process and tries to restart it if it terminates abnormally. The Guardiandoes not work with Firebird
Classic Server on Windows if run as an application. This is due to a knownbug, whichwill be fixed later. Currently the Firebird 2 installer doesn't give youthe
option to include the Guardianat all with a Classic Server, even if you install it as a service.

The Guardianworks correctlywith Superserver, whether run as an application or as a service.

If yourun Firebird as a service on Windows 2000, 2003 or XP, the Guardian is a convenience rather than a necessity, since these operating systems have the
facility to watch and restart services. It is recommended that youkeep the Guardianoption on (if possible) in all other situations.

Warning

If you install Firebird 2.0.3 (and probably earlier 2.0 versions too) on Windows without the Guardian, the installer doesn't correctlydetect an already running
server. This leads to errors when it tries to overwrite existing DLLs and executables. So, in the above case, make sure to uninstall any existing Firebid server
before attempting to install the new one. This bug has beenfixed in versions 2.0.4 and 2.1.

Installing on Linux and other Unix-like platforms
In all cases, read the Release Notes that came with your Firebird package (chapter Installation Notes, section Posix Platforms). There may be significant
variations from release to release of anyPosix operating system, especially the opensource ones. Where possible, the build engineers for each Firebird
versionhave attempted to document anyknown issues.

If youhave a Linux distribution that supports rpm installs, consult the appropriate platform documentation for instructions about using RPM Package Manager.
In most distributions youwill have the choice of performing the install from a command shell or through a GUI interface.

For Linux distributions that cannot process rpm programs, and for Unix flavours for which no .rpm kit is provided, use the .tar.gz kit. You will find detailed
instructions in the Release Notes. Shell scripts have beenprovided. In some cases, the Release Notes mayinstruct you to edit the scripts and make some
manual adjustments.

802

Installing multiple servers
Firebird 2 allows the operation of multiple servers on a single machine. It can also run concurrently with Firebird 1.x or InterBase servers. Setting this up is not
a beginner's task though. If you need to run multiple servers, consult the Installation Notes chapter of the Release Notes, and have the Firebird 1.5 Release
Notes handy too – you will be directed to them at a certain point during your reading of the Installation Notes.

Testing the installation
If everything works as designed, the Firebird server process will be running on your server machine upon completion of the installation. It will also start up
automatically whenever yourestart your computer.

Before testing the Firebird server itself, it is advisable to verify if the server machine is reachable from the client at all. At this point, it is assumed that you will
use the recommended TCP/IP network protocol for your Firebird client/server connections.

Notes:
If you have installed a Classic Server on Linux/Unix or anyFirebird server on Windows, it is possible to connect directly to the local server, without using
a network layer. If you intend to use Firebird for this type of connection only, you canskip the Pinging the server section below.
For information about using the NetBEUIprotocol in an all-Windows environment, refer to the Network Configuration chapter in the Using Firebird
manual sold by IBPhoenix, or consult the InterBase 6 Operations Guide (http://www.ibphoenix.com/downloads/60OpGuide.zip).
Firebird does not support IPX/SPX networks.

Pinging the server

The ping command – available on most systems – is a quick and easyway to see if youcan connect to a server machine via the network. For example, if your
server's IP address in the domain that is visible to your client is 192.13.14.1, go to a command shell on the client machine and type the command

 ping 192.13.14.1

substituting this example IP address with the IP address that your server is broadcasting. If youare on a managed network and youdon't know the server's IP
address, ask your system administrator. Of course youcan also ping the server by its name, if you know it:

 ping vercingetorix

If you are connecting to the server from a local client – that is, a client running on the same machine as the server – youcan ping the virtual TCP/IP loopback
server:

 ping localhost –or– ping 127.0.0.1

If you have a simple network of two machines linked by a crossover cable, youcan set up your server with any IP address you like except 127.0.0.1 (which is
reserved for a local loopback server) and, of course, the IP address whichyou are using for your client machine. If you know the “native” IP addresses of your
network cards, and theyare different, you cansimply use those.

Once you have verified that the server machine is reachable from the client, you cango on to the next step.

Checking that the Firebird server is running

After installation, Firebird server should be running:

On Linux or other Unix-like systems:As a service.

On Windows server systems (NT, 2000, 2003, XP): As a service or as an application. Service is default and highly recommended.

On Windows non-server systems (95, 98, ME): As an application.

The following sections show you how to test the server in each of these situations.

Server check: Linux and other Unices

Use the top command in a command shell to inspect the running processes interactively. If a Firebird Superserver is running, you should see a process named
fbguard. This is the Guardianprocess. Further, there will be one main and zero or more child processes named fbserver.

The following screen shows the output of top, restricted by grep to show only lines containing the characters fb:

 frodo:/inkomend/firebird # top -b -n1 | grep fb
 2587 firebird 24 0 1232 1232 1028 S 0.0 0.3 0:00.00 fbguard
 2588 firebird 15 0 4124 4120 2092 S 0.0 0.9 0:00.04 fbserver
 2589 firebird 15 0 4124 4120 2092 S 0.0 0.9 0:00.00 fbserver
 2604 firebird 15 0 4124 4120 2092 S 0.0 0.9 0:00.00 fbserver
 2605 firebird 15 0 4124 4120 2092 S 0.0 0.9 0:00.02 fbserver
 2606 firebird 15 0 4124 4120 2092 S 0.0 0.9 0:00.00 fbserver
 2607 firebird 15 0 4124 4120 2092 S 0.0 0.9 0:00.00 fbserver

As an alternative to top, you canuse ps -ax or ps -aux and pipe the output to grep.

For Classic Server versions, the process name is fb_inet_server. There will be one instance of this process running for each network connection. Note that if
there are no active connections, or if there are only direct local connections, you won't find fb_inet_server in the process list. fb_lock_mgr should be present
though as soon as any kind of Classic connectionhas been established.

803

http://www.ibphoenix.com/downloads/60OpGuide.zip

Other ways to test a Firebird server immediately after installation include connecting to a database, creating a database, and launching the gsec utility. All
these operations are described later on in this guide.

Server check: Windows, running as service

OpenControl Panel -> Services (NT) or Control Panel -> Administrative Tools -> Services (2000, XP).

This illustration shows the Services applet display on Windows 2000. The appearance mayvary from one Windows server edition to another. Also, service
names mayvary with the Firebird version.

You should at least find the Firebird server in the services listing. The Guardianmay or may not be running, depending on the choices youmade during
installation.

Server check: Windows, running as application

If Firebird is up and running as an application, it is represented by an icon in the system tray:

A greenand grey server symbol if controlled by the Guardian;
A round yellow and black graphic if running standalone.

A flashing icon indicates that the server is in the process of starting up (or at least trying to do so). A red icon, or an iconwith an overlying red stop sign,
indicates that startup has failed.

One way to make 100% sure if the server is running or not is to press [Ctrl-Alt-Del] and look for the fbserver or fb_inet_server process (and possibly
fbguard) in the task list.

Onsome occasions, youmay need to start the Guardian or server once explicitlyvia the Start menu even if you opted for ''Start Firebird now## at the end of the
installationprocess. Sometimes a reboot is necessary.

If you're desperately trying to start Firebird and nothing seems to work, ask yourself if you've installed Firebird 2 Classic server with the Guardianoption
enabled (the installationprogram doesn't offer this possibility anymore, but there are other ways). As said before, the combination Classic + Guardiancurrently
doesn't work if Firebird runs as an application. Uninstall Firebird if necessary and reinstall Classic without Guardian, or Superserver with or without Guardian.

You canshut the server down via the menuthat appears if you right-click on the tray icon. Notice that this also makes the icondisappear; you canrestart
Firebird via the Start menu.

Note: Windows Classic Server launches a new process for every connection, so the number of fb_inet_server processes will always equal the number of
client connections plus one. Shutdownvia the tray iconmenuonly terminates the first process (the listener). Other processes, if present, will continue to
functionnormally, each terminating when the client disconnects from the database. Of course, once the listener has beenshut down, new connections can't be
made.

Performing a client-only install
Each remote client machine needs to have the client library – libfbclient.so on Posix clients, fbclient.dll on Windows clients – that matches the release
versionof the Firebird server.

Firebird versions from 1.5 onward can install symlinks or copies named after the 1.0 libs (with the “old” Inter-Base names), to maintain compatibility with third-
partyproducts whichneed these files.

Some extra pieces are also needed for the client-only install.

Windows

804

At present, no separate installation program is available to install only the client pieces on a Windows machine. If youare in the commonsituation of running
Windows clients to a Linux or other Unix-like Firebird server (or another Windows machine), you need to download the full Windows installationkit that
corresponds to the versionof Firebird server you install on your server machine.

Fortunately, once you have the kit, the Windows client-only install is easyto do. Start up the installationprogram just as though youwere going to install the
server, but select one of the client-only options from the installationmenu.

Linux and some other Posix clients

A small-footprint client install program for Linux clients is not available either. Additionally, some Posix flavours – evenwithin the Linux constellation – have
somewhat idiosyncratic requirements for filesystem locations. For these reasons, not all*x distributions for Firebird evencontain a client-only install option.

For most Linux flavours, the following procedure is suggested for a Firebird client-only install. Log in as root for this.

1. Look for libfbclient.so.2.m.n (m.n being the minor plus patchversion number) in /opt/firebird/lib on the machine where the Firebird server is
installed. Copy it to /usr/lib on the client.

2. Create chained symlinks using the following commands:

ln -s /usr/lib/libfbclient.so.2.m.n /usr/lib/libfbclient.so.2 ln -s /usr/lib/libfbclient.so.2 /usr/lib/libfbclient.so

...replacing 2.m.nwith your version number, e.g. 2.0.0 or 2.1.0

If you're running applications that expect the legacy libraries to be present, also create the following symlinks:

 ln -s /usr/lib/libfbclient.so /usr/lib/libgds.so.0
 ln -s /usr/lib/libfbclient.so /usr/lib/libgds.so

3. Copy firebird.msg to the client machine, preferably into the /opt/firebird directory. If youplace it somewhere else, create a system-wide permanent
FIREBIRD environment variable pointing to the right directory, so that the API routines can locate the messages.

4. Optionallycopy some of the Firebird command-line tools – e.g. isql – to the client machine. Note: always copythe tools from a Superserver kit,
regardless of the architecture of the server(s) you're planning to connect to. Tools from Classic distributions terminate immediately if theycan't find the
libfbembed library (which is useless for network connections) upon program start.

Instead of copying the files from a server, you can also pull them out of a Firebird tar.gz kit. Everything youneed is located in the /opt/firebird tree within
the buildroot.tar.gz archive that's packed inside the kit.

805

1. Server configuration and management
1. User management: gsec

a. Changing the SYSDBA password
b. Adding Firebird user accounts

2. Security
3. Windows Control Panel applets

a. Firebird Server Manager
b. Firebird Control Center

2. Administration tools

Server configuration and management
There are several things you should be aware of – and take care of – before you start using your freshly installed Firebird server. This part of the manual
introduces youto some useful tools and shows youhow to protect your server and databases.

User management: gsec
Firebird comes with a command-line user management tool called gsec. Although its functions can also be performed by a number of third-partyGUI utilities,
youshould at least have a basic knowledge of gsec, since this is the official tool and it's present in every Firebird server installation. In the next sections you will
use gsec to execute two tasks: changing the SYSDBA password and adding a Firebird user. First though, some points of attention:

Permission to run gsec

With some Firebird installations, youcan only run gsec if youare logged into the operating system as Superuser (root on Linux) or as the user the Firebird
server process runs under. OnWindows server platforms, you typicallyneed to be in the Power User group or higher to run gsec successfully.

Trouble running gsec

If youhave enough privileges but invoking gsec results in a message like cannot attach to password database - unable to open database:

You maybe running Firebird on Windows and for some reason the local protocol isn't working. One rather common cause for this is running Windows
Vista, 2003 or XP with terminal services enabled. To enable the local protocol, openfirebird.conf, uncomment the IpcName parameter and set it to
Global\FIREBIRD. Thenrestart the server.
Note: In Firebird 2.0.1 and up, Global\FIREBIRD is already the default on TS-enabled Windows systems.
If the above doesn't apply to you, you can at least circumvent the problem by “tricking” gsec into using TCP/IP. Add the following parameter to the
command line, adjusting the path if necessary:

-database "localhost:C:\Program Files\Firebird\Firebird_2_0\security2.fdb"

The file security2.fdb is the securitydatabase, where Firebird keeps its user account details. It is located in your Firebird installationdirectory.
Maybe your security database is a renamed security.fdb from Firebird 1.5. Of course this can't be the case immediately after installation. Someone
(you?) must have put it there, in order to keep the existing accounts available. Consult the Release Notes for instructions on how to upgrade old
securitydatabases.

If the error message starts with Cannot attach to services manager, the server may not be running at all. In that case, go back to Testing your installationand
fix the problem.

Calling gsec on Linux

On**nix systems, if you callgsec from its own directory, you should type ./gsec instead of just gsec. The current directory is usually not part of the search
path, so plain gsec mayeither fail or launch a “wrong” gsec.

Changing the SYSDBA password

One Firebird account is created automatically as part of the installation process: SYSDBA. This account has all the privileges on the server and cannot be
deleted. Depending on version, OS, and architecture, the installation program will either

install the SYSDBA user with the password masterkey (actually, masterke: characters after the eighth are ignored), or
ask you to enter a password during installation, or
generate a random password and store that in the file SYSDBA.password withinyour Firebird installationdirectory.

If the password is masterkey and your server is exposed to the Internet at all – or even to a local network, unless you trust every user with the SYSDBA
password – you should change it immediatelyusing the gsec command-line utility. Go to a command shell, cd to the Firebird bin subdirectory and issue the
following command to change the password to (as an example) icuryy4me:

 gsec -user sysdba -pass masterkey -mo sysdba -pw icuryy4me

Notice that you specify “sysdba” twice in the command:

With the -user parameter you identify yourself as SYSDBA. You also provide SYSDBA's current password in the -pass parameter.
The -mo[dify] parameter tells gsec that you want to modify an account – which happens to be SYSDBA again. Lastly, -pw specifies the type of
modification: the password.

If all has gone well, the new password icuryy4me is now encrypted and stored, and masterkey is no longer valid. Please be aware that unlike Firebird user
names, passwords are case-sensitive.

Adding Firebird user accounts

806

Firebird allows the creation of many different user accounts. Each of them can owndatabases and also have various types of access to databases and
database objects it doesn't own.

Using gsec, you canadd a user account as follows from the command line in the Firebird bin subdirectory:

 gsec -user sysdba -pass masterkey -add billyboy -pw sekrit66

Provided that you've supplied the correct password for SYSDBA, a user account called billyboywill now have been created with password sekrit66.
Remember that passwords are case-sensitive.

Note: Since Firebird 2, users can change their ownpasswords. Previous versions required SYSDBA to do this.

Security
Firebird 2 offers a number of securityoptions, designed to make unauthorised access as difficult as possible. Be warned however that some configurable
security features default to the old, “insecure” behaviour inherited from InterBase and Firebird 1.0, in order not to break existing applications.

It pays to familiarise yourself with Firebird's security-related configuration parameters. You can significantly enhance your system's security if youraise the
protection level wherever possible. This is not only a matter of setting parameters, by the way: other measures involve tuning filesystem access permissions,
an intelligent user accounts policy, etc.

Below are some guidelines for protecting your Firebird server and databases.

Run Firebird as non-system user

On Unix-like systems, Firebird already runs as user firebird by default, not as root. On Windows server platforms, youcan also run the Firebird service under a
designated user account (e.g. Firebird). The default practice – running the service as the LocalSystem user – poses a security risk if your system is
connected to the Internet. Consult README.instsvc in the doc subdir to learnmore about this.

Change SYSDBA's password

As discussed before, if your Firebird server is reachable from the network and the system password is masterkey, change it.

Don't create user databases as SYSDBA

SYSDBA is a verypowerful account, with full (destructive) access rights to all your Firebird databases. Its password should be known to a few trusted database
administrators only. Therefore, youshouldn't use this super-account to create and populate regular databases. Instead, generate normal user accounts, and
provide their account names and passwords to your users as needed. You can do this with gsec as shownabove, or with anythird-party Firebird
administration tool.

Protect databases on the filesystem level

Anybody who has filesystem-level read access to a database file can copy it, install it on a system under his or her owncontrol, and extract all data from it –
including possibly sensitive information. Anybody who has filesystem-level write access to a database file can corrupt it or totally destroy it.

As a rule, only the Firebird server process should have access to the database files. Users don't need, and should not have, access to the files – not even
read-only. Theyquerydatabases via the server, and the server makes sure that users only get the allowed type of access (if at all) to any objects within the
database.

Disable Classic local mode on Linux

An exception to the above rule is the so-called local or embedded access mode of Firebird Classic Server on Linux. This mode requires that users have
proper access rights to the database file itself. Theymust also have read access to the securitydatabase security2.fdb. If this worries you, reserve
filesystem access to the securitydatabase (and other databases, while you're at it) for the server process only. Users are thenobliged to connect via the
network layer. However, the libfbembed.* libraries should not be removed from your system, because the Firebird command-line tools refuse to run if theyare
not present.

(Another exception is the Windows Embedded Server, but that's outside the scope of this manual.)

Use database aliases

Database aliases shield the client from physical database locations. Using aliases, a client can e.g. connect to “frodo:zappa” without having to know that the
real location is frodo:/var/firebird/music/underground/mothers_of_invention.fdb. Aliases also allow you to relocate databases while the clients keep
using their existing connection strings.

Aliases are listed in the file aliases.conf, in this format on Windows machines:

 poker = E:\Games\Data\PokerBase.fdb
 blackjack.fdb = C:\Firebird\Databases\cardgames\blkjk_2.fdb

And on Linux:

 books = /home/bookworm/database/books.fdb
 zappa = /var/firebird/music/underground/mothers_of_invention.fdb

Giving the alias an .fdb (or anyother) extension is fully optional. Of course if youdo include it, you must also specify it when you use the alias to connect to the
database.

807

Restrict database access

The DatabaseAccess parameter in firebird.conf can be set to Restrict to limit access to explicitly listed filesystem trees, or evento None to allow access to
aliased databases only. Default is All, i.e. no restrictions.

Note that this is not the same thing as the filesystem-level access protectiondiscussed earlier: when DatabaseAccess is anything other than All, the server will
refuse to open anydatabases outside the defined scope even if it has sufficient rights on the database files.

There are more securityparameters, but the ones not mentioned here are already set to an adequate protection level by default. You can read about them in
the 1.5 and 2.0 Release Notes and in the comments in firebird.conf itself.

Windows Control Panel applets
Several control panel applets are available for use with Firebird. Whilst such applets are not essential, theydo provide a convenient way to start and stop the
server and check its current status.

Firebird Server Manager

The Firebird Server Manager applet is included in the Firebird distribution. The option to install this applet is only available for Superserver.

Note: The applet is also usable for Classic server, provided that it (the server, that is) runs as a service, not as an application. Since the installationdialogue
won't give youthe option to include the applet with a Classic server, you must, if you really want it:

Install Superserver first;
Copy the applet Firebird2Control.cpl from the Windows system folder to a safe place;
Uninstall Superserver;
Install Classic;
Copy the applet back to the system directory.

This is a screenshot of the activated applet. Notice that the title bar says “Firebird Server Control”, although it is listed in the Control Panel as Firebird 2.0
Server Manager.

Unfortunately, the bundled applet only works on Windows NT, 2000/2003 and XP.

Firebird Control Center

If youwant an applet that also works on Windows 9x or ME, visit this webpage: http://www.achim-kalwa.de/fbcc.phtml

...and download the Firebird Control Center fbcc-0.2.7.exe. Please note that, unlike the applet included with Firebird, the Firebird Control Center will not
work with Classic servers at all.

The Control Center doesn't look anything like the Firebird applet shownin the screenshot, but offers the same functionality, and thensome. Attention: if yourun
Firebird as a service and without the Guardian, the Start/Stop button will be labeled Start all the time, evenwhen the server is already running. It functions as it
should though. In all other configurations the button will say Start or Stop according to the situation.

Administration tools
The Firebird kit does not come with a GUI admin tool. It does have a set of command-line tools – executable programs which are located in the bin
subdirectoryof your Firebird installation. One of them, gsec, has already been introduced to you.

The range of excellent GUI tools available for use with a Windows client machine is too numerous to describe here. A few GUI tools written in Borland Kylix, for
use on Linux client machines, are also in various stages of completion.

808

http://www.achim-kalwa.de/fbcc.phtml

Inspect the page at for all of the options.

Remember: youcan use a Windows client to access a Linux server and vice-versa.

809

Working with databases
1. Connection strings

1. Local connection strings
2. TCP/IP connection strings
3. Third-party programs

2. Connecting to an existing database
1. Connecting with isql
2. Connecting with a GUI client

3. Creating a database using isql
1. Starting isql
2. The CREATE DATABASE statement

4. Firebird SQL
1. Division of an integer by an integer

a. String delimiter symbol
b. Apostrophes in strings
c. Concatenation of strings
d. Double-quoted identifiers

2. Expressions involving NULL
a. The DISTINCT keyword comes to the rescue!
b. More about NULLs

Working with databases
In this part of the manual you will learn:

how to connect to an existing database,
how to create a database,
and some things you should know about Firebird SQL.

In as much as remote connections are involved, we will use the recommended TCP/IP protocol.

Connection strings
If youwant to connect to a database or create one you have to supply, amongst other things, a connection string to the client application (or, if youare a
programmer, to the routines you are calling). A connection string uniquely identifies the locationof the database on your computer, local network, or eventhe
Internet.

Local connection strings

Anexplicit local connectionstring consists of the path + filename specification in the native format of the filesystem used on the server machine, for example

• on a Linux or other Unix-like server:

 /opt/firebird/examples/empbuild/employee.fdb

• on a Windows server:

 C:\Biology\Data\Primates\Apes\populations.fdb

Many clients also allow relative path strings (e.g. ..\examples\empbuild\employee.fdb) but youshould use them with caution, as it's not always obvious how
theywill be expanded. Getting an error message is annoying enough, but applying changes to another database thanyou thought youwere connected to may
be disastrous.

Instead of a file path, the local connectionstring mayalso be a database alias that is defined in aliases.conf, as mentioned earlier. The format of the alias
depends only on how it's defined in the aliases file, not on the server filesystem. Examples are:

zappa
blackjack.fdb
poker

Tip: If your local connections fail, it maybe because the local protocol isn't working properly on your machine. If you're running Windows Vista, 2003 or XP with
terminal services enabled, this can oftenbe fixed by setting IpcName to Global\FIREBIRD in the configuration file irebird.conf (don't forget to uncomment the
parameter and restart the server). In Firebird 2.0.1, Global\FIREBIRD is already the default on TS-enabled Windows systems.

If setting IpcName doesn't help and youdon't get the local protocol enabled, youcan always work around the problem by putting localhost: before your
database paths or aliases, thus turning them into TCP/IP connection strings (discussed below).

TCP/IP connection strings

A TCP/IP connection string consists of:

1. a server name or IP address
2. a colon (“:”)
3. either the absolute path+ filename on the server machine, or an alias defined on the server machine.

Examples

OnLinux/Unix:

810

pongo:/opt/firebird/examples/empbuild/employee.fdb bongo:fury112.179.0.1:/var/Firebird/databases/butterflies.fdb localhost:blackjack.fdb

On Windows:

siamang:C:\Biology\Data\Primates\Apes\populations.fdb sofa:D:\Misc\Friends\Rich\Lenders.fdb 127.0.0.1:Borrowers

Notice how the aliased connection strings don't give anyclue about the server OS. And they don't have to, either: you talk to a Linux Firebird server just like you
talk to a Windows Firebird server. In fact, specifying an explicit database path is one of the rare occasions where you have to be aware of the difference.

Third-party programs

Please note that some third-partyclient programs may have different requirements for the composition of connection strings. Refer to their documentation or
online help to find out.

Connecting to an existing database
A sample database named employee.fdb is located in the examples/empbuild subdirectory of your Firebird installation. You canuse this database to "try your
wings".

If you move or copythe sample database, be sure to place it on a hard disk that is physically attached to your server machine. Shares, mapped drives or (on
Unix) mounted SMB (Samba) filesystems will not work. The same rule applies to any databases that youcreate or use.

Connecting to a Firebird database requires the user to authenticate with a user name and a valid password. In order to work with objects inside the database
– such as tables, views, etc. – youalso need explicit permissions on those objects, unless youown them (you ownan object if youhave created it) or if you're
connected as SYSDBA. In the example database employee.fdb, sufficient permissions have been granted to PUBLIC (i.e. anybody who cares to connect) to
enable you to view and modify data to your heart's content.

For simplicityhere, we will look at authenticating as SYSDBA using the password masterkey. Also, to keep the lines in the examples from running off the right
edge, we will work with local databases and use relative paths. Of course everything you'll learn in these sections can also be applied to remote databases,
simply by supplying a full TCP/IP connection string.

Connecting with isql

Firebird ships with a text-mode client named isql (Interactive SQL utility). You can use it in several ways to connect to a database. One of them, shown below,
is to start it in interactive mode. Go to the bin subdirectory of your Firebird installation and type isql (Windows) or ./isql (Linux) at the command prompt.

[In the following examples, #means "hit Enter"]

 C:\Program Files\Firebird\Firebird_2_0\bin>isql#

 Use CONNECT or CREATE DATABASE to specify a database
 SQL>CONNECT ..\examples\empbuild\employee.fdb user SYSDBA password masterkey;#

Important:

In isql, every SQL statement must end with a semicolon. If you hit Enter and the line doesn't end with a semicolon, isql assumes that the statement
continues on the next line and the prompt will change from SQL> to CON>. This enables youto split long statements over multiple lines. If youhit Enter
after your statement and you've forgotten the semicolon, just type it after the CON> prompt on the next line and press Enter again.
If you run Classic Server on Linux, a fast, direct local connection is attempted if the database path does not start with a hostname. This may fail if your
Linux logindoesn't have sufficient access rights to the database file. In that case, connect to localhost:<path>. Thenthe server process (with Firebird
2 usually running as user firebird) will open the file. On the other hand, network-style connections mayfail if a user created the database in Classic local
mode and the server doesn't have enough access rights.

Note: You can optionally enclose the path, the user name and/or the password in single (') or double (") quotes. If the pathcontains spaces, quoting is
mandatory. At this point, isql will inform you that youare connected:

 Database: ..\examples\empbuild\employee.fdb, User: sysdba
 SQL>

You can now continue to playabout with the employee.fdb database. With isql youcan querydata, get information about the metadata, create database
objects, run data definitionscripts and much more. To get back to the command prompt, type:

 SQL>QUIT;#

You can also type EXIT instead of QUIT, the difference being that EXIT will first commit any opentransactions, making your modifications permanent.

Connecting with a GUI client

GUI client tools usually take charge of composing the CONNECT string for you, using server, path (or alias), user name and password information that youtype
into prompting fields. Use the elements as described in the preceding topic.

Notes:

It is quite common for such tools to expect the entire server + path/alias as a single connection string – just like isql does.
Remember that file names and commands on Linux and other "Unix-ish" platforms are case-sensitive.

811

Creating a database using isql
There is more thanone way to create a database with isql. Here, we will look at one simple way to create a database interactively –although, for your serious
database definitionwork, youshould create and maintainyour metadata objects using data definitionscripts.

Starting isql

To create a database interactively using the isql command shell, get to a command prompt in Firebird's bin subdirectory and type isql (Windows) or ./isql
(Linux):

 C:\Program Files\Firebird\Firebird_2_0\bin>isql#

Use CONNECT or CREATE DATABASE to specify a database.

The CREATE DATABASE statement

Now youcan create your new database interactively. Let's suppose that youwant to create a database named test.fdb and store it in a directory named data
on your D drive:

 SQL>CREATE DATABASE 'D:\data\test.fdb' page_size 8192#
 CON>user 'SYSDBA' password 'masterkey';#

Important:

In the CREATE DATABASE statement it is mandatory to place quote characters (single or double) around path, username and password. This is different
from the CONNECT statement.
If yourun Classic Server on Linux and youdon't start the database path with a hostname, creation of the database file is attempted with your Linux
loginas the owner. This mayor maynot be what youwant (think of access rights if you want others to be able to connect). If you prepend localhost: to
the path, the server process (with Firebird 2 usually running as user firebird) will create and ownthe file.

The database will be created and, after a few moments, the SQL prompt will reappear. You are now connected to the new database and can proceed to
create some test objects in it.

But to verify that there really is a database there, let's first type in this query:

 SQL>SELECT * FROM RDB$RELATIONS;#

Althoughyou haven't created any tables yet, the screen will fill up with a large amount of data! This queryselects all of the rows in the system table RDB$
RELATIONS, where Firebird stores the metadata for tables. An "empty" database is not really empty: it contains a number of system tables and other objects.

The system tables will grow as you add more user objects to your database.

To get back to the command prompt type QUIT or EXIT, as explained in the section on connecting.

Firebird SQL
Everydatabase management system has its own idiosyncrasies in the ways it implements SQL. Firebird adheres to the SQL standard more rigorously than
most other RDBMSes. Developers migrating from products that are less standards-compliant oftenwrongly suppose that Firebird is quirky, whereas many of
its apparent quirks are not quirky at all.

Division of an integer by an integer

Firebird accords with the SQL standard by truncating the result (quotient) of an integer/integer calculation to the next lower integer. This canhave bizarre
results unless youare aware of it. For example, this calculation is correct in SQL:

 1 / 3 = 0

If youare upgrading from an RDBMS whichresolves integer/integer division to a float quotient, you will need to alter any affected expressions to use a float or
scaled numeric type for either dividend, divisor, or both. For example, the calculation above could be modified thus in order to produce a non-zero result:

 1.000 / 3 = 0.333

Things to know about strings

String delimiter symbol

Strings in Firebird are delimited by a pair of single quote (apostrophe) symbols: 'I am a string' (ASCII code 39, not 96). If youused earlier versions of
Firebird's relative, InterBase®, you might recall that double and single quotes were interchangeable as string delimiters. Double quotes cannot be used as
string delimiters in Firebird SQL statements.

Apostrophes in strings

If youneed to use an apostrophe inside a Firebird string, you can "escape" the apostrophe character by preceding it with another apostrophe. For example,
this string will give an error:

 'Joé s Emporium'

812

because the parser encounters the apostrophe and interprets the string as 'Joe' followed by some unknown keywords. To make it a legal string, double the
apostrophe character:

 'Joes´´ Emporium'

Notice that this is TWO single quotes, not one double-quote.

Concatenation of strings

The concatenation symbol in SQL is two "pipe" symbols (ASCII 124, in a pair with no space between). In SQL, the "+" symbol is an arithmetic operator and it
will cause an error if you attempt to use it for concatenating strings. The following expression prefixes a character column value with the string "Reported by:
":

 'Reported by: ' || LastName

Firebird will raise an error if the result of a string concatenation exceeds the maximum (var)char size of 32 Kb.

If only the potential result – based on variable or field size – is too long you'll get a warning, but the operation will be completed successfully. (In pre-2.0
Firebird, this too would cause an error and halt execution.)

See also the section below, Expressions involving NULL, about concatenating in expressions involving NULL.

Double-quoted identifiers

Before the SQL-92 standard, it was not legal to have object names (identifiers) in a database that duplicated keywords in the language, were case-sensitive
or contained spaces. SQL-92 introduced a single new standard to make any of them legal, provided that the identifiers were defined within pairs of double-
quote symbols (ASCII 34) and were always referred to using double-quote delimiters.

The purpose of this "gift" was to make it easier to migrate metadata from non-standard RDBMSes to standards-compliant ones. The down-side is that, if you
choose to define an identifier in double quotes, its case-sensitivity and the enforced double-quoting will remainmandatory.

Firebird does permit a slight relaxation under a very limited set of conditions. If the identifier which was defined in double-quotes:

1. was defined as all upper-case,
2. is not a keyword, and
3. does not contain anyspaces,

...then it can be used in SQL unquoted and case-insensitively. (But as soonas youput double-quotes around it, you must match the case again!)

Warning: Don't get too smart with this! For instance, if youhave tables "TESTTABLE" and "TestTable", both defined within double-quotes, and you issue the
command:

 SQL>select * from TestTable;

...you will get the records from "TESTTABLE", not "TestTable"!

Unless you have a compelling reason to define quoted identifiers, it is usually recommended that youavoid them. Firebird happily accepts a mix of quoted and
unquoted identifiers – so there is no problem including that keyword which you inherited from a legacy database, if you need to.

Warning: Some database admin tools enforce double-quoting of all identifiers by default. Try to choose a tool whichmakes double-quoting optional.

Expressions involving NULL

In SQL, NULL is not a value. It is a condition, or state, of a data item, in which its value is unknown. Because it is unknown, NULL cannot behave like a value.
When youtry to perform arithmetic on NULL, or involve it with values in other expressions, the result of the operation will almost always be NULL. It is not zero or
blank or an "empty string" and it does not behave like anyof these values.

Below are some examples of the types of surprises youwill get if you try to perform calculations and comparisons with NULL.

The following expressions all return NULL:

1 + 2 + 3 + NULL
not (NULL)
'Home ' || 'sweet ' || NULL

You might have expected 6 from the first expression and "Home sweet " from the third, but as we just said, NULL is not like the number 0 or an empty string –
it's far more destructive!

The following expression:

FirstName || ' ' || LastName

will return NULL if either FirstName or LastName is NULL. Otherwise it will nicely concatenate the two names with a space in between – even if anyone of the
variables is an empty string.

Tip: Think of NULL as UNKNOWN and these strange results suddenly start to make sense! If the value of Number is unknown, the outcome of '1 + 2 + 3 +
Number' is also unknown(and therefore NULL). If the content of MyString is unknown, then so is 'MyString || YourString' (even if YourString is non-NULL).
Etcetera.

813

Now let's examine some PSQL (Procedural SQL) examples with if-constructs:

if (a = b) then

 MyVariable = 'Equal';
 else
 MyVariable = 'Not equal';

After executing this code, MyVariable will be 'Not equal' if both a and b are NULL. The reason is that 'a = b' yields NULL if at least one of them is NULL. If the
test expression of an "if" statement is NULL, it behaves like false: the 'then' block is skipped, and the 'else' block executed.

Warning: Although the expression maybehave like false in this case, it's still NULL. If you try to invert it using not(), what you get is another NULL – not "true".

if (a <> b) then

 MyVariable = 'Not equal';
 else
 MyVariable = 'Equal';

Here, MyVariable will be 'Equal' if a is NULL and b isn't, or vice versa. The explanation is analogous to that of the previous example.

The DISTINCT keyword comes to the rescue!

Firebird 2 implements a new use of the DISTINCT keyword allowing you to perform (in)equality tests that take NULL into account. The semantics are as follows:

Two expressions are DISTINCT if theyhave different values or if one is NULL and the other isn't;
Theyare NOT DISTINCT if theyhave the same value or if both are NULL.

Notice that if neither operand is NULL, DISTINCT works exactly like the "<>" operator, and NOT DISTINCT like the "=" operator.

DISTINCT and NOT DISTINCT always return true or false, never NULL.

Using DISTINCT, youcan rewrite the first PSQL example as follows:

 if (a is not distinct from b) then
 MyVariable = 'Equal';
 else
 MyVariable = 'Not equal';

And the second as:

 if (a is distinct from b) then
 MyVariable = 'Not equal';
 else
 MyVariable = 'Equal';

These versions will give youthe results that a normal human being (untouched by SQL standards) would expect, whether there are NULLs involved or not.

More about NULLs

A lot more information about NULL behaviour can be found in the Firebird Null Guide, at these locations:

http://www.firebirdsql.org/manual/nullguide.html (HTML)
http://www.firebirdsql.org/pdfmanual/Firebird-Null-Guide.pdf (PDF)

Anupdated and greatly extended version of the Null Guide is available since January 2007.

See also:
Firebird 2 SQL Reference Guide

814

http://www.firebirdsql.org/manual/nullguide.html
http://www.firebirdsql.org/pdfmanual/Firebird-Null-Guide.pdf

Preventing data loss
1. Backup
2. How to corrupt a database

1. Modifying metadata tables yourself
2. Disabling forced writes

a. Disabling forced writes on Windows
b. Disabling forced writes on Linux

3. Restoring a backup to a running database
4. Allowing users to log in during a restore

Preventing data loss
Backup
Firebird comes with two utilities for backing up and restoring your databases: gbak and nbackup. Both can be found in the bin subdirectory of your Firebird
installation. Firebird databases can be backed up whilst users are connected to the system and going about their normal work. The backup will be takenfrom
a snapshot of the database at the time the backup began.

Regular backups and occasional restores should be a scheduled part of your database management activity.

Warning

Except in nbackup's lock mode, do not use external proprietary backup utilities or file-copying tools such as WinZip, tar, copy, xcopy, etc., on a database
which is running. Not only will the backup be unreliable, but the disk-level blocking used by these tools can corrupt a running database.

Important

Study the warnings in the next section about database activity during restores!

More information about gbak can be found in The Firebird Book, the Using Firebird guide (a not-so-recent version is available through IBPhoenix, an updated
version is currently in a state of growth on the Firebird site), or in the InterBase 6.0 manuals combined with the Firebird 1.5 and 2.0 Release Notes. See the
links to these resources in How to get help.

The nbackup manual is here (HTML and PDF version, same content):

http://www.firebirdsql.org/manual/nbackup.html
http://www.firebirdsql.org/pdfmanual/Firebird-nbackup.pdf

How to corrupt a database
The following sections constitute a summaryof things not to do if youwant to keep your Firebird databases in good health.

Modifying metadata tables yourself

Firebird stores and maintains all of the metadata for its ownand your user-defined objects in special tables, called system tables, right in the database itself.
The identifiers for these system tables, their columns and several other types of system objects beginwith the characters RDB$.

Because these are ordinary database objects, they canbe queried and manipulated just like your user-defined objects. However, just because you can does
not say youshould. The Firebird engine implements a high-level subset of SQL (DDL) for the purpose of defining and operating on metadata objects, typically
through CREATE, ALTER and DROP statements.

It cannot be recommended too strongly that youuse DDL – not direct SQL operations on the system tables - whenever youneed to alter or remove metadata.
Defer the "hot fix" stuff until your skills in SQL and your knowledge of the Firebird engine become veryadvanced. A wrecked database is neither pretty to
behold nor cheap to repair.

Disabling forced writes

Firebird is installed with forced writes (synchronous writes) enabled by default. Changed and new data are written to disk immediately uponposting.

It is possible to configure a database to use asynchronous data writes – wherebymodified or new data are held in the memory cache for periodic flushing to
disk by the operating system's I/O subsystem. The common term for this configuration is forced writes off (or disabled). It is sometimes resorted to in order
to improve performance during large batchoperations.

Disabling forced writes on Windows

The big warning here is: do not disable forced writes on a Windows server. It has been observed that the Windows server platforms do not flush the write
cache until the Firebird service is shut down. Apart from power interruptions, there is just too much that can go wrong on a Windows server. If it should hang,
the I/O system goes out of reach and your users' work will be lost in the process of rebooting.

Note

Windows 9x and ME do not support deferred data writes.

Disabling forced writes on Linux

Linux servers are safer for running an operation with forced writes disabled temporarily. Still, do not leave it disabled once your large batch task is completed,
unless youhave a veryrobust fall-back power system.

815

http://www.firebirdsql.org/manual/nbackup.html
http://www.firebirdsql.org/pdfmanual/Firebird-nbackup.pdf

Warning

It was recentlydiscovered that forced writes did not work at all under Linux. This is due to a bug in the fcntl() function on Linux and it affects all Firebird
versions up to and including 2.0.3. The only knownworkaround is to mount the partition in question with the sync option— or upgrade to Firebird 2.0.4 or
higher.

Other Unices don't seem to suffer from this bug. To make sure, test if yousystem's fcntl() can successfully set the O_SYNC flag. Set the flag on and off and
read it back both times to make sure the change was actually written.

Restoring a backup to a running database

One of the restore options in the gbak utility (gbak -rep[lace_database]) allows youto restore a gbak file over the top of an existing database. It is possible for
this style of restore to proceed without warning while users are logged in to the database. Database corruption is almost certain to be the result.

Note

Notice that the shortest form of this command is gbak -rep, not gbak -r as it used to be in previous Firebird versions.

What happened to gbak -r? It is now short for gbak -recreate_database, which functions the same as gbak -c[reate] and throws an error if the specified
database already exists. You can force overwriting of the existing database by adding the o[verwrite] flag though. This flag is only supported with gbak -r,
not with gbak -c.

These changes have beenmade because many users thought that the -r switchmeant restore instead of replace – and only found out otherwise when it was
too late.

Warning

Be aware that you will need to design your admin tools and procedures to prevent anypossibility for any user (including SYSDBA) to restore to your active
database if anyusers are logged in.

If is practicable to do so, it is recommended to restore to spare disk space using the gbak -c[reate] optionand test the restored database using isql or your
preferred admin tool. If the restored database is good, shut down the server. Make a filesystem copy of the old database and thencopy the restored database
file (or files) over their existing counterparts.

Allowing users to log in during a restore

If youdo not block access to users while performing a restore using gbak -rep[lace_database] thenusers may be able to log in and attempt to do operations
on data. Corrupted structures will result.

See also:
Database Corruption
Firebird for the database expert: Episode 3 - On Disk Consistency
Alternative database repair methods

How to get help
The communityof willing helpers around Firebird goes a long way back, to many years before the source code for its ancestor, InterBase® 6, was made open
source. Collectively, the Firebird community does have all the answers! It even includes some people who have been involved with it since it was a design on a
drawing board in a bathroom in Boston.

Visit the official Firebird Project site at http://www.firebirdsql.org and join the user support lists, in particular firebird-support. Look at http://
www.firebirdsql.org/?op=lists for instructions.
Use the Firebird documentation index at http://www.firebirdsql.org/?op=doc.
Visit the Firebird knowledge site at http://www.ibphoenix.com to look up a vast collection of information about developing with and using Firebird.
IBPhoenixalso sells a Developer CD with the Firebird binaries and lots of documentation.
Order the official Firebird Book at http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1093098777:149734&page=ibp_firebird_book, for more than
1100 pages jam-packed with Firebird information.
As a last resort – since our documentation is still incomplete – you canconsult the InterBase 6.0 beta manuals (the files whose names start with 60 at
http://www.ibphoenix.com/downloads/) in combination with the Firebird 1.5 and 2.0 Release Notes.

Note

The IBPhoenixpublications Using Firebird and The Firebird Reference Guide, though still on the Developer CD, are no longer actively maintained. However,
most of the material contained in those documents is currently being brought up to date and added, bit by bit, to the official project documentation.

The Firebird Project
The developers, designers and testers who gave you Firebird and several of the drivers are members of the Firebird open source project at SourceForge,
that amazing virtual community that is home to thousands of open source software teams. The Firebird project's address there is http://sourceforge.net/
projects/firebird. At that site are the source code tree, the download packages and a number of technical files related to the development and testing of the
codebases.

816

http://www.firebirdsql.organdjointheusersupportlists,inparticularfirebird-support.Lookathttp://
www.firebirdsql.org/?op=listsforinstructions
http://www.firebirdsql.org/?op=doc
http://www.ibphoenix.comtolookupavastcollectionofinformationaboutdevelopingwithandusingFirebird
http://www.ibphoenix.com/main.nfs?a=ibphoenix&s=1093098777:149734&page=ibp_firebird_book,formorethan
http://www.ibphoenix.com/downloads/
http://sourceforge.net/

The Firebird Project developers and testers use an email list forum – firebird-devel@lists.sourceforge.net – as their "virtual laboratory" for communicating with
one another about their work on enhancements, bug-fixing and producing new versions of Firebird.

Anyone who is interested in watching their progress can join this forum. However, user support questions are a distraction which theydo not welcome. Please
do not try to post your user support questions there! These belong in the firebird-support group.

Happy Firebirding!

817

mailto:firebird-devel@lists.sourceforge.net

Document History
The exact file history is recorded in the manual module in our CVS tree; see http://sourceforge.net/cvs/?group_id=9028

Revision History

0.0 2002 IBP Published as Chapter One of Using Firebird.

1.0 2003 IBP Published separately as a free Quick Start Guide.

1.x June
2004 IBP Donated to Firebird Project by IBPhoenix.

2.0 27 Aug
2004 PV

Upgraded to Firebird 1.5
Added Classic vs. Superserver section.
Reorganised and corrected Disk Locations Table.
Added (new) screenshots.
Added section on security.
Updated and completed information on Control Panel applets.
Added more examples to Expressions involving NULL.
Various other corrections and additions.

2.1 20 Feb
2005 PV

Enhanced GSEC section.
Added more info to CONNECT and CREATE DATABASE sections.
Added version number and document history.

2.1.1 1 Mar
2005 PV Changed gbak r[estore] to r[eplace] in two places.

2.1.2 8 Apr
2005 PV Reordered Firebird SQL subsections.

Added links to Firebird Null Guide.

2.2 2 Dec
2005 PV

Removed "Using the books by IBPhoenix" as it doesn't make sense in the QSG.
Promoted How to get help to 1st-level section and removed Where to next shell.
Removed link to UFB and RefGuide; added a note instead explaining their current status.
Updated/corrected classic-super comparison table.
Moved a number of sections on installing, working with databases, and (un)safety into newlycreated top-level sections.

2.2.1 22 Dec
2005 PV Corrected statement on SS thread usage in Classic-vs-Superserver table.

Fixed broken link.

3.0 21 May
2006 PV Creation of Firebird 2 Quick Start Guide, still equal to previous revision except for some versionnumbers, XML ids etc.

3.2 10 Aug
2006 PV

Promoted "Firebird Project members" to co-authors in articleinfo.
Updated references to website (firebird.sourceforge.net -> http://www.firebirdsql.org).
Removed "maturity" and "Service Manager" rows from Classic-vs-Super table; these things are no longer different in
Firebird 2. Also changed the row on local connections: CS and SS now bothallow safe, reliable local connections on
Windows. Added row on Guardian.
Prepended a columnwith feature names.
Removed any and all remarks about Classic not having a (full) Service Manager.
Removed 2nd paragraph of Default disk locations section.
Removed notes stating that Classic/Win connections will fail without a host name.
Updated location table and inserted rows for documentation.
Edited the Installation sections; added sections on Guardian and installing multiple servers. Removed "if-you-do-not-
find-the-release-notes" tip.
Heavily edited and extended the Testing your installationsections.
The Other things you need section is now gone and its contents distributed across other sections.
Added a sectionon gsec (consisting partly of existing material).
Greatlyenhanced and extended the Security section, and moved it to another location.
Extended and improved the Windows Control Panel applets section.
Edited Working with databases. Added a special section on connection strings. Added information on access to
database objects, the EXIT statement, and local vs. remote connections. Made some paths in the examples relative, to
keep the lines short. Extended paragraph on metadata.
Weakened the claim that Firebird is more SQL-compliant thanany other RDBMS.
Changed the Expressions involving NULL section. Added a subsection on DISTINCT. Changed More about NULLs
subsection somewhat.
Renamed "Safet measures to Preventing data loss. The Security subsection has been moved elsewhere.
Extended Backup section to include nbackup information. Added links to other documentation.
In the How to corrupt... part, changed gbak -r syntaxto -rep and added explanatory note.
Added the IB6 plus rlsnotes as last-resort option to How to get help.
Also mentioned firebird support explicitly.
Corrected more versionnumbers, paths, and stuff.
Many sections have beenreshuffled, moved up or down the hierarchy, etc. Many smaller modifications are not listed
here.
Added "Happy Firebirding!" to conclude the last section.

3.3 15 Oct PV

Default disk locations table: added isql to command line tools; added row for additional server-side libs.
Added introductory paragraph to Installing Firebird. Changed first sentence of "Installing on Linux...
Changed and extended "Server check: Linux and other Unices".
Corrected and extended the section on Linux client-only installs.
Security section: moved last paragraph of the “Protect databases...” list item into a new item on Classic local mode.
Connectionstrings: improved and extended introductory paragraph; added a subsection on third party program
requirements.
Changed 3rd and 4th paragraph of Connecting to an existing database. Used relative paths in connectionexamples.
Updated/corrected note on the use of quote characters.

818

http://sourceforge.net/cvs/?group_id=9028
http://www.firebirdsql.org

Edited first “Important” item in The CREATE DATABASE statement.
Updated the warning about concatenation of long strings.
Extended the note in Restoring a backup to a running database.
Updated last sentence of first paragraph in The Firebird Project.

3.4 25 Jan
2007 PV

About this guide: Changed note about versions and replaced HTML and PDF links with single link to new doc index
page.
Classic or Superserver?: Replaced note on Embedded Server with a proper subsection, containing more info and links
to UFB.
Default disk locations: Created two subsections (for Linux and Windows); also split table in two and removed first
column. Introduced placeholders <ProgramDir> and <SystemDir>. Changed text around tables, changed existing note,
and added note for Win64 users.
Security: Removed statement that 1.5 Release Notes are included with 2.x packages.
More about NULLs: Replaced note about the Null Guide being updated with a para announcing the availability of the new
version.
Backup: Updated information on UFB.
How to get help: Updated documentation links and changed text here and there.

3.5 14 Mar
2007 PV

About this guide and Important notice for 64-bit Windows users: Minor rewordings.
User management: gsec and Connectionstrings: Added information on enabling local protocol with IpcName=Global
\FIREBIRD.
Security:: Use database aliases: Changed type from <database> to <literal> to improve output.

3.6 21 Sep
2007 PV About this guide: Mentioned 2.0.3. Warned against 2.0.2.

Expressions involving NULL: Space added to expected concatenation result: "Home sweet ".

3.7 8 Apr
2008 PV

About this guide: Added 2.0.4 and 2.1 to covered versions. Mentioned forced writes bug.
Installing the Firebird server :: Use the Guardian?: Added warning about Win installer not detecting existing server.
How to corrupt a database: Gave subsections id attributes.
Disabling forced writes on Windows: Created new parent section Disabling forced writes, with the Windows and Linux
cases as subsections. Warned against Linux forced writes bug.
License notice : Copyright end year now 2008.

License Notice
The contents of this Documentation are subject to the Public Documentation License Version1.0 (the "License"); you mayonly use this Documentation if you
comply with the terms of this License. Copies of the License are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/
manual/pdl.html (HTML).

The Original Documentation is titled Firebird Quick Start Guide.

The Initial Writer of the Original Documentation is: IBPhoenixEditors.

Copyright (C) 2002-2004. All Rights Reserved. Initial Writer contact: hborrie at ibphoenix dot com.

Contributor: Paul Vinkenoog - see document history.

Portions created by Paul Vinkenoog are Copyright (C) 2004-2008. All Rights Reserved. Contributor contact: paul at vinkenoog dot nl.

819

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/

Firebird Development using IBExpert

This documentation introduces developers to Firebird development, with the emphasis on IBExpert as an aid to make your life easier. Even the more
experienced Firebird developers will find a wealthof tips here.

SQL Basics
Creating your first database
Programming the Firebird server
Writing stored procedures and triggers

Source: Firebird School at the Firebird Conference 2007 held in Hamburg, Germany

820

SQL basics
1. Setting up a sample database
2. Simple SELECT commands

1. Adding a WHERE clause
2. CONTAINING
3. ORDER BY

3. SELECT across multiple tables
4. Sub-SELECTs in fields and WHERE clauses
5. UNION SELECT
6. IN operator
7. EXISTS operator
8. INSERT and UPDATE with values
9. DELETE

10. CREATE, ALTER and DROP

SQL basics
If you are really new to SQL, first check the definitions for Structured Query Language, and DSQL, ESQL, isql and PSQL. You can find a reference of the most
important commands in the SQL Language Reference, and the full range of Firebird 2.0 commands in the Firebird 2 SQL Reference Guide. However youwill
find that the following are the most commonly used commands, with whichyou will be able to do the majority of your work:

SELECT
INSERT
UPDATE
DELETE

These commands are knowncollectively as DML (Data ManipulationLanguage)
commands. Theyare a collection of SQL commands, commonly knownas SIUD, whichcan
be used to manipulate a database's data. SIUD is the abbreviation for SELECT, INSERT,
UPATE, DELETE.

CREATE
ALTER
DROP
EXECUTE
SET

These commands belong to the Data Definition Language (DDL) set of commands, which
define and manipulate the database and its structure (knownas metadata). A full
explanationof these commands can be found in the DDL - Data Definition Language
chapter.

Setting up a sample database
In order to gain follow the examples in this section and to offer the chance to playaround with Firebird SQLs, we propose you install the demo database,
db1.fdb supplied with IBExpert. Installation details can be found in the IBExpertDemoDB documentation.

Alternatively, Firebird also supplies a sample database, employee.fdb. However as this is the orginal sample database provided by InterBase in the 1990's
it's potential for testing is unfortunately somewhat limited.

Simple SELECT commands

The most basic SELECT command is:

 select * from <table_name>

where * is a so-called wildcard. Let's take an example using our demo database, and enter the query in the IBExpert SQL Editor on the Edit page. If we want
a list of all information in the product table:

 select * from product

You will notice how IBExpert aids youwhen typing your database object name. When you enter PR the IBExpert Code Completion offers youa selection of all
objects beginning with PR. When the keycombination [Alt + Ctrl + T] is used, IBExpert offers a list of all tables beginning with PR.

If you've entered the object name correctly, for example the product table, IBExpert changes the text format (font color and underlined) if it recognizes the
object, so you know immediatelywhether youhave made a typing error (no change to text appearance) or not.

To run the query (EXECUTE) simplypress the [F9] keyor the greenarrow icon:

The SQL Editor displays all resulting data sets found that meet the conditions of the query (in this case all fields of all data sets in the product table):

Please note that in IBExpert youcan define whether youwish the results to appear on the same page as your query(i.e. below the editing area) or on a
separate page, and whether IBExpert should immediatelydisplay this Results page after the queryhas been executed. Please refer to Environment Options /
Tools / SQL Editor for further information.

Below the results you cansee a summaryof how Firebird attained the information.

If you wish to make your querymore selective, you canspecify whichspecific information you wish to see, instead of all of it. For example, the DVD title and
leading actor of all products:

 select title, actor from product

When you're writing a select it can become very tiresome repeatedlywriting out the full names of commonly used objects correctly. It's helpful to abbreviate
such objects, also reducing the amount of frequent typing errors. This is possible by defining a so-called alias. For example, if you wish to define an alias for
the product table, type select from product p. That way the server knows that whenever you type a p in this SQL, youare referring to the product table.

?

821

IBExpert also recognizes the p as an alias and automaticallyoffers me a list of all fields in the product table. Byholding down the [Ctrl] key multiple fields can
be selected, e.g. title and actor. Bypressing the [Enter] keyboth fields are automatically inserted into the SQL with the alias prefixp.

Adding a WHERE clause

It is possible to set conditions on the information you want to see by adding a WHERE clause. For example:

 select * from product p where p.category_id = 1

And if you only wish to see certain columns in the result sets:

 select p.title, p.price, p.category from product p
 where p.category_id = 1

SELECTs can of course get a lot more complicated than this! It's important to try and keep it as simple as possible though. Because it's a mathematical
notation, a complexSQL may look correct, but if you are not careful, youwill get results that you did not really want. When you're working with many millions of
data sets and you can't necessarilyassess the values in the resulting statistical data, it's vital you're sure there are no mistakes or logical errors in your query.
Build your statements up gradually, checking each stage - this is easy in the IBExpert SQL Editor, as you can execute queryparts by simply marking the
segment you wish to test and executing. Only if no queryareas are selected by marking them, does the SQL Editor execute the whole statement.

It is of course possible to specify more thanone condition, e.g.:

 select * from product where special=1 and category_id=2

CONTAINING
 select * from product where title containing 'HALLOWEEN'

This will supply all films with the word HALLOWEEN somewhere in the title. CONTAINING is case-insensitive, and never uses an index, as it searches for a string
contained somewhere in the field, not necessarily at the beginning.

ORDER BY

If youneed your results in a certain format, youcan specify that the results be ordered, alphabeticallyor numerically, by a certain field. For example, order by
price in ascending order (lowest first, highest last):

 select * from product order by price

The ascending order is the so-called default; that means it is not necessary to specify it specifically. However, if youwish to specifya descending order, this
needs to be explicitly specified:

 select * from product order by price desc

SELECT across multiple tables

To combine data across multiple tables you can JOIN the tables together, giving you results that contains information from both. For example, eachfilm is
categorized according to genre.

[Table Editor/Data)

Now what we want to see is the category that these filns are associated with:

 select p.title, c.txt
 from product p
 join category c on c.id=p.category_id

The JOIN is a flexible command. The above example is known as an INNER JOIN.

Theoretically there could be products that have not been categorized, or categories that have no products. If youwant to include these products or these
categories in your result list it is possible to define these using a so-called LEFT OUTER JOIN or a RIGHT OUTER JOIN.

The LEFT OUTER JOIN takes all information from the left-hand or first table (in our example product) and joins them to their categories. For example if you have
a customer list with individual sales figures and youalso want to see those cusotmers without anysales.

The RIGHT OUTER JOIN fetches all products with a category and also all categories.

If youwish to combine two different sets of data together, even if theyhave nothing in common, you canuse the CROSS JOIN, introduced in Firebird 2.0:

 select p.title, c.txt
 from product p
 cross join category c

822

From these simple building blocks youcan construct very complexstructures with extremely complex results. If you are just beginning with SQL, we
recommend the IBExpert Query Builder. This enables you to compile your SQL by simplydragging and dropping your objects, and using point-and-click to
specify which information you wish to see, set anyconditions and sort the results.

Please refer to the IBExpert Tools menu item, Query Builder for further information.

Sub-SELECTs in fields and WHERE clauses
We canvary our queryby replacing the second field by a sub-select:

 select p.title,
 (select c.txt from category c
 where c.id=p.category_id)category_txt
 from product

Byreplacing c.txtwith where c.id=p.category_id) category_txt the JOIN is no longer necessary. This new second field is determined for each data set.
As the sub-select is creating a new unnamed field, the field is given an alias, category_txt. You can name result columns as you like, particularlyuseful when
columns with similar names from different tables are to be queried. For example, if youwish to see c.id and p.id in the same result set, you might want to
rename c.id category_id and p.id product_id.

Physically this query is the same as the JOIN query, however this optionoffers more possibilities.

You can also insert a sub-select in a WHERE clause: select which fields youwant from which tables and restrict it by adding a sub-select in the WHERE condition.
For example, if you only want to see products from the first category:

 select p.title, c.txt
 from product p
 join category c on c.id=p.category_id
 where c.id=(select first 1 id from category)

Be careful with this, as this is one of the areas of SQL where a lot of developers start to go wrong!

UNION SELECT
SELECTs are great and you canretrieve almost any information you want with a single SELECT statement. A classic example of when you might need a UNION
SELECT is with a database system that stores its current data in one table and archive data in another table, and a report is required which includes both sets
of data being evaluated and presented as a single set of information.

The syntax is simple: two SELECT statements with a UNION in betweento fuse them together:

 Select
 p.title,
 cast('Children' as varchar(20))
 from product p
 join category c on c.id=p.category_id
 where c.txt containing 'children'
 union
 Select
 p.title,
 cast('not for Children' as varchar(20))
 from product p
 join category c on c.id=p.category_id
 where c.txt not containing 'children'

Here all titles are being selected that belong to the category children. These results are then going to be combined with another set where the category does
not contain the text children@, and all these results (i.e. every other category that isn't explicitly for children) will contain the
category text not for Children@@, regardless of their genre. This artificial field supplies information that is not directly in the database in that form.

The rules regarding the joining together of two result sets is that you have to have columns with the same datatypes, i.e. you cannot mixINTEGERs and blobs in
a single result column. You must have the same number of columns in the same layout, e.g. if you current orders table has 50 columns and the archive only 30
columns, you canonly select commoncolumns for the UNION SELECT.

IN operator
 Select p.title,c.txt
 from product p
 join category c on c.id=p.category_id
 where c.id in (select first 5 id from category)þ

Here the value c.id is being limited to the first five, i.e. we only wish to see the first five resulting sets.

The IN operator is verypowerful. Assume you wish to view film categories, Action, Animation and a couple of others and you had already retrieved the result
that these categories were 1, 2, 5 and 7. Then youcould queryas follows:

 Select p.title,c.txt
 from product p

823

 join category c on c.id=p.category_id
 where p.category_id in (1,2,5,7)

i.e. here it is asking for results where the category_id is in the specified set of values. The IN can be a set of values or a SELECT. You should be careful that
there are not too many results, as this can slow performance considerably.

EXISTS operator
 select c.* from customer c
 where not exists (select id from orders where orders.customer_id=c.id)

Here we are selecting the customers from the customer table where if one or more rows are returned then it will give youthe value. If no values are returned
then it omits it und does not show it. This means, these results will only return customers who have not placed anyorders.

The EXISTS operator is almost always more helpful than the IN operator. The EXISTS operator searches if data sets meeting the conditions exist and when it
finds results sends them back. The IN operator would initially fetchall data sets, i.e. fetchall orders, and then narrow down the result sets according to the
conditions.

If youhave a choice between IN and EXISTS, always use EXISTS as it's quicker.

INSERT and UPDATE with values
 insert into category values (20, 'Cartoons')

INSERT - As no columns have been named here the values 20 and Cartoons are inserted from left to right in the category table columns. If the column names
are not specified, data has to be inserted into all columns (the category table only has two columns). For larger tables it is wise to be more specific and
always name the columns youwish to insert data into, as you maynot wish to insert into all columns.

 insert into category (id,txt) values (21, 'More cartoons')

Always take into consideration that NOT NULL fields have to be filled.

UPDATE applies to the whole table. It is simplya list of z variables or fields and their new values, with a condition.

Update product
 set title='FIREBIRD CONFERENCE DAY',
 Actor='FIREBIRD FOUNDATION'
 where id=1;

If youdon't put a qualifying clause in there about what it's going to do, so if youdon't have a WHERE clause, it will update everything! So always check thoroughly
before committing!

Unlike SELECT, both these commands only interact with one table at a time.

You canalso use INSERT INTO with SELECTed data:

 insert into customer_without_orders
 select c.* from customer c
 where not exists (select id from orders where orders.customer_id=c.id)

This can be used to insert data into a table that's beensupplied from another source (here the select from customer).

Whereas Firebird requires the table in whichyou want to insert data to already exist, the IBExpert SQL Editor however has a nice feature: it will create the
table for you if it does not already exist! In the above example, if the customers_without_orders table does not already exist, IBExpert asks if it should create
the table. If you agree, it creates a table according to the information supplied in the queryand pushes the returns in to the new table customer_without_
orders. This function is ideal if you wish to extract certain data for testing or for a temporary report.

DELETE
 delete from orderlines
 where id<1000

This will delete all data sets with an id of less than1000.

 delete from orderlines
 where id between 1000 and 2000

This will delete all data sets with id between1000 and 2000.

Be careful when defining your delete conditions. A mistake here and you will delete the wrong data sets or too many!

CREATE, ALTER and DROP
If you're just starting off, we would not recommend creating all database objects by writing SQL. Use IBExpert's DB Explorer to create and manipulate all your
databases and database objects. Please refer to the IBExpert chapters: DB Explorer and Database Objects.

824

To understand how the database structure works, analyze the DDL code created by IBExpert as a result of your point and click actions. This can be found on
the DDL page in all object editors.

See also:
Select
DDL-DataDefinitionLanguage
DML - Data ManipulationLanguage
Database Objects

825

Creating your first database
1. Developing a data model

1. Naming conventions
2. Relationships

a. 1:1
b. n:1
c. n:m

3. Data modeling using
IBExpert's Database Designer

2. Create database
3. Database objects
4. Understanding and using views
5. Comparing data models

Creating your first database
Developing a data model
A data model includes everything that is going to sit inside the database. If youare new to database development, it's worth taking a little time and effort to
read up on the theory of database design. We recommend the database technologyarticle; Database design and database normalization as a basic
introductionto database model development.

Before youstart you need to make a few rules and stick to them. For example, primary keys should always be a simple BIGINT internal generator ID, not
influenced in anyway by any actual data. Many developers use unique information fields as primary keys, such as a social securitynumber or membership
number. But what if the social security number system changes or the membership card is stolen and a new membership with the same member details
needs to be created and the old made invalid? You are bound to encounter problems if yourely on such information for your primary key. And compound
primary keys (primary keys consisting of more thanone field) will almost always lead to problems at some stage as the sequence of the fields concerned must
be identical in all referenced tables, and compound keys will always slow performance.

Another consideration is how to structure your data. This is where basic information about database normalization comes in. If youstore your customer
address data in your customer table and your supplier address data in your supplier table, youmay end up with double entries (a supplier can also be a
customer, a single customer mayhave more that one address). So create an address table with relationships to the customer and supplier tables. Using
views the end user sees his customer, customer number and address or supplier, supplier number and his address.

Always start at the highest level, make sure youhave got your entities correct. Construct your main tables and relationships. More information about the
various kind of data relationships can be refered to below (Relationships). Don't get bogged down by the details at this intial stage; attributes can be added at
a later stage. Scope it first - how big is it going to be? How's is it all going to fit together?

And when youdo get down to the details, don't start using your fantasyor trying to look too far into the future. Only store information that is real and existent.

Naming conventions

You need to develop a naming convention that enables youand others to find and identifykeys, table fields, procedures, triggers etc. simplyand quickly, using
a simple but effective combination of table names, field names, keys and relationships.

Please name things simplyand logically: call a spade a spade, not an "manual excavationdevice" or "portable digging implement"! Another decision to be
made is whether to name things in the singular or plural. If you have a team developing the same database, youare bound to have conflicts here and maybe
evenduplicates (e.g. CUSTOMER and CUSTOMERS), if you don't make a decision before you start! As the singular form is shorter than the plural in most languages,
this is recommended, i.e. CUSTOMER instead of CUSTOMERS, ORDERLINE instead of ORDERLINES etc. Please note that in the db1 database, ORDER had to be named
ORDERS, because ORDER is a Firebird keyword. The table could still be named ORDER but would have to be defined in inverted commas, which could lead to other
problems. So English-language developers need to be aware of Firebird keywords and avoid eventual conflicts.

Another tip is to avoid using $ in your database object names, as $ is always used in system object names. All Firebird and InterBase system objects begin
with RDB$ and IBExpert system objects beginwith IBE$.

Primarykeys are easily recognizable if the field name has the prefixPK (alternatively: ID) followed by a reference to the table name. Foreignkeys should
logically then contain the prefixFK followed by the table name which theyreference.

Relationships

You need to be able to uniquely identifyeach row in eachtable, so eachtable requires a primary key. Other tables referencing this should be given a foreign
key.

In our sample database, db1, eachproduct is assigned to a category. The category_id links the product table to the category table, alternatively FK_category
would also be a suitable name for the columnreferencing the relationship to the category table. In fact, if a relationship exists between two tables, put it in -
make sure the database knows about it. It will help you in the long run, and in this way youcan improve integrity, for example, youcan enforce every product to
be assigned to a category. Please refer to the Keys chapter for a comprehensive guide to Firebird/InterBase keys. Further information regarding constraints
generally can be found in the Constraints chapter.

There are various kinds of relationships between data, which need to be taken into consideration when defining the constraints:

1:1

Withinyour application you have relationships which are 1:1. Many people say that if youhave a 1:1 relationship betweentwo tables, then it should be put
together and become one table. However this is not alway the case, particularlywhen developing one application for different clients with different

826

requirements. There are oftengood reasons for maintaining a core customer table that is distributed to all customers, and then a customer_x table that
includes information for a specific client. It prevents tables becoming too wide and confusing.

Another reasonfor 1:1 tables may be that in the case of wide tables with huge amounts of data, searching for specific information just takes too long. For
example most journalists search in a press agency database using keywords for anything relevant to a particular subject (e.g. concerning 9/11) or for all recent
articles (e.g. everything new in the last two days). They initially wish to see a full list of relevant articles including the title, creation date and short description. At
this stage theydo not need to view the whole article and accompanying photos for each article whichmeet their search conditions. This information canbe
returned later, after theyhave selected the article that particularly interests them. To improve performance, the table was split into four separate tables (each
with a 1:1 relationship), the initial key information table (now containing the information most intensively searched for) being now only 2% the size of the
original single table. The second table was used to store all other information, the third table the RTF articles themselves, and the fourth table the full-text
search contents.

n:1

n>= 0 Each category maycontain one or more products, it may have no products.
n> 0 Each category must contain at least one product.

As youcan see n:1 relationships can be defined in accordance with your business logic and rules. The multiplicity is defined by yourself. You may need to
define an n:1 relationship where n is > 0 but < 10. Maybe ncan be <null>; when it is <not null> youare enforcing a relationship.

The demo database, db1, demonstrates a simple n:1 relationship wherebyall products have one category, but one category can have many products or no
products assigned to it.

n:m

A classic example can be seen in db1: one customer can purchase several products and a single product can be purchased by many customers. To make this
happen you need to have some linking table in the middle. The db1 example shows the link from customer to orders; orders is linked to orderline and
orderline to product. All these relationships are built up using primary and foreign keys, thus forming an n:m relationship betweencustomers and products. It
is also possible to specifywhat should happen to these related data sets should one of them be updated or deleted. For example if you delete a customer in
the customer table that has no orders (and therefore no order lines or products related to him) there is no problem. If however youattempt to delete a customer
that has already placed orders, an error message will appear, due to a violation of FOREIGN KEY constraint "FK_ORDERS_ID" on table "ORDERLINE".
This is necessary to maintain the database's integrity. Update and delete rules can be defined on the Constraints page in IBExpert's Table Editor. Please
refer to Constraints, Referential integrity and Table Editor/Constraints for details.

To ascertain whichrelationships a table has with other database objects, and whichdependencies other database objects have on a certain table, view the
object editor's Dependencies page.

Data modeling using IBExpert's Database Designer

A simple method to initially design and visualize a new database is the IBExpert Database Designer. You canquickly and easilydefine what goes where,
where are your key relationships, etc. It canalso be used to graphicallydocument an existing database, providing a logical view of the database structure and
is an extremely quick and simple method to create views. Databases can be created or updated based on amendments made in the Designer by generating
and running a script (please refer to Generate Script). Theycan be saved to file, exported and printed.

Create database
You can either use the command-line tool, isql, part of the Firebird package or the IBExpert SQL Editor to use DDL (Data Definition Language) to create
your database manually. An easier option is to use the IBExpert Database menu item, Create Database.

Refer to the following subjects for further information:

InterBase and Firebird command-line utilities - isql
DDL - CREATE statement
CREATE DATABASE statement

Creating a database in IBExpert

Database objects
All database objects along with the how and when to use them are described in detail in the IBExpert documentation. Firebird/InterBase offer the following
database objects:

Domain
Table
View
Stored procedure
Trigger
Generator
Exception
User-defined functionUDF
Role
Index

The number of objects in a database is unlimited.

827

Understanding and using views
A view canbe likened to a virtual table. It can be treated, in almost all respects, as if it were a table, using it as the basis for queries and evenupdates in some
cases. It is possible to perform SELECT, PROJECT, JOIN and UNION operations on views as if theywere tables. Only the view definition is stored in the database,
it does not directly represent physically stored data.

Views simplify the visual displayof of complexdata. However when creating updateable views, a number of factors need to be taken into consideration.

Simple views displaying only one table can be updated as if theywere a table. But complexviews containing many tables can only update if the business logic
has been well thought through and realized with triggers. This is necessary for the database to understand and know how it is to react in certain situations. For
example, a user alters a category from cartoon to animation in a data set. Should the database a) allow the user to do this, b) alter the category just for this
data set or c) alter the category for all films assigned to the cartoon category? Indeterminate views will damage your data integrity. Before creating a view, you
need to decide whether to allow access to the view directly by the user, whether the user is only able to view data, or whether youwish to allow data updates
using triggers or stored procedures.

You cansimplify the relationships betweendata and tables for the user by flattening key information for them into a single view. We can add securityby
allowing users, for example, to update a film title but not allow them to alter a film category, by creating triggers on the view.

A further securityoption is to create views leaving fields with sensitive information (PIN numbers, passwords, confidential medical details and such like) blank.
For example, in a product table with the fields: ID, FIRSTNAME, LASTNAME, ACCOUNT_NO, PIN,ADDRESS, ZIP and TOWN etc, a view of the table could be created as
follows:

 as
 select
 id,
 firstname,
 lastname,
 account_no,
 '',
 address, etc.

Without suitable triggers and constraints, it is possible to add data to the "blank" column, it still cannot be seen in the view.

Another good reasonfor introducing views is for reasons of compatibility following data model improvements and the subsequent metadata alterations. For
example, youneed to split your product table up into two smaller tables, product_main and product_detail. All new triggers, procedures, exceptions etc. will
be written based on these new table names and contents. However if youdo not wish to update and alter all existing dependencies, you cansimply create a
view with the old table name and the old table structure. Universal triggers can be used to forward any data alterations made here onto the new tables.

Views can also be defined as stored SELECTs, for example:

 CREATE VIEW Vw_Product_Short(TITLE,TXT)
 AS
 Select p.title,c.txt
 from product p
 join category c on c.id=p.category_id

Views can be created using SQL in IBExpert's SQL Editor and thensaved as a view using the Create Viewicon. Alternatively theycan be created in
IBExpert's View Editor.

Once created, theycan be treated in SQL SELECTs exactly as if theywere tables:

 select * from Vw_Product_Short

Further information can be found in the IBExpert documentation chapter, Updatable views and read-only views. For further information on IBExpert's View
Editor, please refer to ViewEditor. To create a view in the SQL Editor, please refer to Create viewor procedure from SELECT.

Comparing data models
IBExpert also offers you the possibility to compare the metadata of two different databases, and generate a script whichalters the structure of the first
database, making the structure the same as the second database.

A huge advantage of Firebird is that metadata can be manipulated and altered during runtime. Regardless of whether youare adding fields to tables or
changing the basic structure, users canstill work on the database data. Please note that there is a limitation of the number of metadata changes youmay
make to any single table, before having to perfom a backup and restore (please refer to 253 changes of table <table_name> left).

Further reading (novice):

Database Comparer

Futher reading (advanced):
Automatic database structure comparison with recompilation of triggers and procedures
Comparing databases using IBEBlock
Comparing scripts with IBEBlock
ibec_CompareMetadata

828

Programming the Firebird server
Many developers shyaway from coding directly on the database server. IDEs (Integrated Development Environments) such as Delphi or C++ Builder maybe
easier to write and quicker and easier to debug. However, developing an efficient application with an intelligent database that offers the highest possible
performance can only be achieved by a combination of the two, along with intelligent programming.

Reasons for server-side programming include:

Speed of execution: server-side programmíng does exactly what it says, the work is done on the server, and the results are sent out to the client (whether
over a short internet line or worldwide). Client-side programming fetches all data and tables it might need, and then sorts and analyzes them on the client PC.
So if you've got to perform computations on a large database or table, you've got to suck all the data back to the workstation to actually do the work. This can
lead to time-consuming queries, traffic congestion and long wait times for the user.

It is possible to achieve up to 50,000 operations per second withina stored procedure. A Delphi or PHP application is considered efficient when it achieves
just 3,000 operations a second. If you're skeptical, try migrating some of your code from your front-end to the server and test and compare the performance!

Consistency: database operations performed on the server are either completed successfully or rolled back (i.e. not executed at all). Theyare never partially
completed. Another advantage of server-side programming is when youhave different front-ends, e.g. Dephi and PHP, doing similar things, programming both
to call a single procedure to perform a task is not just easier thanprogramming the whole thing twice, it also ensures consistency. Both applications call the
same procedure and are therefore guaranteed to provide the same result. Any alterations that mayneed to be made in the future only need to be made once,
directly in the procedure.

Modularity: stored procedures can be written for singular tasks such as order taking, order processing and dispatch. They canthen call each other.
Modularity is clear/easyto comprehend, which also makes future adjustments easier. And in the example above (Delphi and PHP applications share the same
database) modularity is achieved, as anyalterations that may need to be made in the future only need to be made once, directly in the procedure.

Even though PSQL (Procedure SQL) is initially not so easyto write as IDEs as the programming language is not as rich and not as user-friendly, if youwant to
develop efficient high-performance database applications, it is vital you take the time and effort to get to grips with this.

See also:
Structured Query Language
PSQL
Stored Procedure
Writing stored procedures and triggers

829

Writing stored procedures and triggers
1. Stored procedure

1. Simple procedures
2. Loops and conditions

a. FOR SELECT ... DO ...SUSPEND
b. FOR EXECUTE ... DO ...
c. WHILE ... DO
d. LEAVE and BREAK
e. EXECUTE statement

3. Recursions and modularity
4. Debugging

1. Stored procedure and trigger
debugger

5. Optimizing procedures
6. Complex SELECTs or selectable

stored procedures?
2. Trigger
3. Using procedures to create and drop

triggers

Writing stored procedures and triggers
The stored procedure and trigger language is a language created to run in a database. For this reason its range is limited to database operations and
necessary functions; PSQL is in itself however a full and powerful language, and offers more functionalities thanyou can use if youwere just sat on the client.
The full range of keywords and functions available for use in procedures and triggers can be found in the Structured Query Language chapter, Stored
Procedure and Trigger Language. New features can be found in the Firebird 2 Release Notes.

InterBase/Firebird provides the same SQL extensions for use in bothstored procedures and triggers. These include the following statements:

DECLARE VARIABLE
BEGIN … END
SELECT … INTO : variable_list
Variable = Expression
/* comments */
EXECUTE PROCEDURE
FOR select DO …
IF condition THEN … ELSE …
WHILE condition DO …

Both stored procedure and trigger statements includes SQL statements that are conceptuallynested inside the mainstatement. In order for InterBase/Firebird
to correctlyparse and interpret a procedure or trigger, the database software needs a way to terminate the CREATE PROCEDURE or CREATE TRIGGER that is
different from the way the statements inside the CREATE PROCEDURE/TRIGGER are terminated. This can be done using the SET TERM statement.

Since IBExpert version 2005.03.12 there is added support for following Firebird 2 features:

DECLARE <cursor_name> CURSOR FOR ...
OPEN <cursor_name>
FETCH <cursor_name> INTO ...
CLOSE <cursor_name>
LEAVE <label>
NEXT VALUE FOR <generator>

Stored procedure
Firebird/InterBase uses stored procedures as the programming environment for integrating active processes in the database. Please refer to the IBExpert
documentation chapter, Stored Procedure for the definition, description and variables of a stored procedure along with comprehensive instructions of how to
use IBExpert's Stored Procedure Editor.

There are two types of stored procedure: executable and selectable. An executable procedure returns no more than one set of variables. A select procedure
can, using the SUSPEND keyword, push back variables, one data set at a time. If an EXECUTE PROCEDURE statement contains a SUSPEND , then SUSPEND has the
same effect as EXIT. This usage is legal, but not recommended, and it is unfortunately an error that evenexperienced programmers oftenmake.

The syntaxfor declaring both types of stored procedure is the same, but there are two ways of invoking or calling one: either a stored procedure can act like a
functional procedure in another language, in so far as you execute it and it either gives you one answer or no answers:

 execute procedure <procedure_name>

It just goes away and does something. The other is to make a stored procedure a little more like a table, in so far as you can

 select * from <procedure_name>

and get data rows back as an answer.

Further reading:
Stored procedure
EXECUTE PROCEDURE
Stored procedure and trigger language
Stored procedure language

?

830

Simple procedures

An example of a verysimple procedure that behaves like a table, using SUSPEND to provide the returns:

 CREATE PROCEDURE DUMMY
 RETURNS (TXT CARCHAR(10))
 AS
 BEGIN
 TXT='DOG';
 SUSPEND;
 TXT='CAT';
 SUSPEND;
 TXT='MOUSE';
 SUSPEND;
 END

In this example, the returnvariable is TXT. The text DOG is entered, and by specifying SUSPEND the server pushes the result, DOG into the buffer onto a result set
stack. When the next data set is written, it is pushed onto the result pile. Using SUSPEND in a procedure, allows data definition that is not possible in this form in
an SQL. It is an extremely powerful aid, particularly for reporting.

FOR SELECT ... DO ...SUSPEND

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 BEGIN
 FOR
 select TITLE,ACTOR,PRICE from product
 where actor containing :name
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 SUSPEND;
 END
 END

This procedure is first given a name, SEARCH_ACTOR, then an input parameter is specified, so that the user canspecify whichname he wishes to search for. The
columns to be returned are TITLE, ACTOR and PRICE. The procedure then searches in a FOR ...SELECT loop for the relevant information in the table and returns
any data sets meeting the condition in the input parameter.

It is also possible to add conditions; below all films costing more that $30.00 are to be rounded down to $30.00:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 BEGIN
 FOR
 SELECT TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
 END

A good way of analyzing such procedures is to view them in the IBExpert Stored Procedure and Trigger Debugger.

To proceed further, the number of returns can be limited, for example, FIRST 10:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 BEGIN
 FOR
 SELECT FIRST 10 TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;

831

 END
 END

If youdeclare a variable for the FIRST statement, it needs to be put into brackets when referred to lower down in the procedure:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 DECLARE VARIABLE i INTEGER;
 BEGIN
 FOR
 SELECT FIRST (:i) TITLE,ACTOR,PRICE FROM PRODUCT
 WHERE ACTOR CONTAINING :NAME
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 IF (PRICE<30)THEN PRICE=30
 SUSPEND;
 END
 END

FOR EXECUTE ... DO ...

EXECUTE STATEMENT allows statements to be used in procedures, allowing dynamic SQLs to be executed contained in a string expression. Here, the above
example has been adapted accordingly:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 Declare variable i integer;
 BEGIN
 i=10;
 FOR
 execute statement
 'select first '|| :I ||' TITLE,ACTOR,PRICE from product
 where actor containing '''||name||''''
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 if (price>30) then price=30;
 SUSPEND;
 END
 END

It is also possible to define the SQL as a variable:

 CREATE PROCEDURE SEARCH_ACTOR(
 NAME VARCHAR(50))
 RETURNS (
 TITLE VARCHAR(50),
 ACTOR VARCHAR(50),
 PRICE NUMERIC(18,2))
 AS
 Declare variable i integer;
 Declare variable SQL varchar(1000);
 BEGIN
 i=10;
 Sql = 'select first '|| :i ||' TITLE,ACTOR,PRICE from product
 where actor containing '''||name||''''
 FOR
 execute statement :sql
 INTO :TITLE,:ACTOR,:PRICE
 DO
 BEGIN
 if (price>30) then price=30;
 SUSPEND;
 END
 END

Theoretically it is possible to store complete SQL statements in the database itself, and theycan be called at any time. It allows an enormous flexibilityand a
high level of user customization. Using such dynamic procedures allows youto define your SQL at runtime, making on the flyalterations as the situationmay
demand.

Note that not all SQL statements are allowed. Statements that alter the state of the current transaction (such as COMMIT and ROLLBACK) are not allowed and will
cause a runtime error.

832

The INTO clause is only meaningful if the SQL statement returns values, such as SELECT, INSERT ... RETURNING or UPDATE ... RETURNING. If the SQL
statement is a SELECT statement, it must be a 'singleton' SELECT, i.e. it must return exactly one row. To work with SELECT statements that return multiple rows, use
the FOR EXECUTE INTO statement.

It is not possible to use parameter markers (?) in the SQL statement, as there is no way to specify the input actuals. Rather than using parameter markers,
dynamically construct the SQL statement, using the input actuals as part of the constructionprocess.

WHILE ... DO

The WHILE ... DO statement also provides a looping capability. It repeats a statement as long as a conditionholds true. The condition is tested at the start of
each loop.

LEAVE and BREAK

LEAVE and BREAK are used to exit a loop. You may want to exit a loop because you've found the information you were looking for, or youonly require, for
example, the first 50 results.

By issuing a BREAK, if a specified condition isn't met, the procedure will break out of this loop and carry on executing past it, i.e. yougo out of the layer you're in
and proceed to the next one.

LEAVE is new to Firebird 2.0. The LEAVE statement also terminates the flow in a loop, and moves to the statement following the END statement that completes
that loop. It is only available inside of WHILE, FOR SELECT and FOR EXECUTE statements, otherwise a syntaxerror is thrown.

The LEAVE <label> syntax allows PSQL loops to be marked with labels and terminated in Java style. Theycan be nested and exited back to a certain level
using the <label> function. Using the BREAK statement this is possible using flags.

 CNT = 100;
 L1:
 WHILE (CNT >= 0) DO
 BEGIN
 IF (CNT < 50) THEN
 LEAVE L1; -- exists WHILE loop
 CNT = CNT – l;
 END

The purpose is to stop execution of the current block and unwind back to the specified label. After that execution resumes at the statement following the
terminated loop. Don't forget to specify the condition carefully, otherwise youcould end up with an infinite loop! As soon as you insert your WHILE loop, specify
whatever should cause the loop to finish.

Note that LEAVE without an explicit label means interrupting the current (most inner) loop:

 FOR SELECT ... INTO
 DO
 BEGIN
 IF () THEN
 SUSPEND;
 ELSE
 LEAVE; -- exits current loop
 END

The Firebird 2.0 keyword LEAVE deprecates the existing BREAK, so in new code the use of LEAVE is preferred.

EXECUTE statement

To create a simple table statistic, we cancreate a new procedure, TBLSTATS:

 CREATE PROCEDURE TBLSTATS
 RETURNS (
 table_name VARCHAR(100),
 no_recordsInteger)
 BEGIN
 FOR SELECT r.rdb$relation_name FROM rdb$relations r
 WHERE r.rdb$relation_name NOT CONTAINING '$'
 INTO :table_name
 DO
 BEGIN
 EXECUTE STATEMENT 'select count (*) from '||:table_name into :no_records;
 END
 SUSPEND;
 END

This TBLSTATS fetches a table and a count, and goes through all tables, pushes the table names in and counts all data sets in the database, allowing youto
see how large your tables are.

Recursions and modularity

833

If a procedure calls itself, it is recursive. Recursive procedures are useful for tasks that involve repetitive steps. Each invocation of a procedure is referred to
as an instance, since each procedure call is a separate entity that performs as if called from an application, reserving memory and stack space as required to
perform its tasks.

Stored procedures can be nested up to 1,000 levels deep. This limitation helps to prevent infinite loops that can occur when a recursive procedure provides
no absolute terminating condition. Nested procedure calls may be restricted to fewer than 1,000 levels by memory and stack limitations of the server.

Recursive procedures are oftenbuilt for tree structure. For example:

 Create procedure spx
 (inp integer)
 returns
 (outp integer)
 as
 declare variable vx integer;
 declare variable vy integer;
 begin
 ...
 execute procedure spx(:vx) returning values :vy;
 ...
 end

The input integer is defined and the variables computed in some way. Then the procedure calls itself and the returning values are returned to another variable.

A good example of this is a typical employee table in a large hierarchical company, where the table has a column containing a pointer to the employees' boss.
Everyemployee has a boss, and the bosses have bosses, who may also have bosses. If you wished to see a list of all bosses for one individual or the
upstream management, then youcould create a procedure selecting into and finish this with a suspend. Then it would go and call the same procedure again,
this time with the resulting boss's ID. The procedure would carry on in this way until it reached the top level management, who answer to noone (the CEO).

Debugging
Up to Firebird version 2.1, Firebird offered no integrated debugging APIat all. The only solution was to create log tables or external tables to record what the
procedure was doing, and try to debug that way. However, as your triggers and procedures become more complex, an intelligent and sound debugging tool is
vital.

Stored procedure and trigger debugger

IBExpert has an integrated Stored Procedure and Trigger Debugger whichsimulates running a procedure or trigger on the database server by interpreting the
procedure and running the commands one at a time. It offers a number of useful functionalities, such as breakpoints, step into, trace or run to cursor,youcan
watchcertain parameters, analyze the performance and indices used, and youcan evenchange values on the fly. If you have Delphi experience you will easily
find your way around the Debugger as key strokes etc. are the same.

Please refer to the IBExpert documentation chapter, Debug procedure or trigger (IBExpert Debugger) for details.

Optimizing procedures
Procedure operations are planned on Prepare, whichmeans that the index plan is created upon the first prepare. When working with huge amounts of data, it
is critical that you write it, rewrite it, look at each of the SQLs in it and break it down to ensure that it is optimally set up. A major contributing factor to the
performance and efficiency of procedures are indices. The subject of indices is an extensive subject, which has been covered in detail in other areas of this
documentation site:

Index
SQL Editor / Plan Analyzer
SQL Editor / Performance Analysis
IBExpert Table Editor / Indices
Recompute selectivity of all indices
Firebird for the database expert: Episode 1 - Indexes
Enhancements to indexing in Firebird 2.0

Also take into consideration the use of operators such as LIKE and CONTAINING, as well as the use of strings such as , as none of these can use indices. For
example, in the DemoDB, db1, compare:

 select * from product where actor like 'UMA%'

The server returns all data sets beginning with the name UMA. If youexamine the Performance Analysis, youwill see that 56 indexed read operations were
performed, and the Plan Analysis shows that the IDX_PROD_ACTOR index was used.

If however you need to view all records, where the name UMA appears somewhere in the ACTOR field:

 select * from product where actor like ''

Now the server has had to perform 10,000 non-indexed reads, rather more thanthe 56 in the last example!

So if youcan, use STARTING WITH instead of LIKE or CONTAINING. Check each procedure operation individuallyand remove bottlenecks, use the debugger,
check the index plans, not forgetting to recompute the selectivity of your indices regularly. Use the Plan Analyzer and Performance Analysis to help you
compare and improve your more complex procedures.

834

Another considerationwith those extremely complexprocedures is to postpone the SUSPEND. If youhave a SUSPEND on every data row on a report that maybe
returning thousands of rows of calculated results, it will slow your system. If you wish to have an element of control over it, then put your SUSPEND every 100 or
1,000 rows. This way the database server fills a buffer and sends the results back in the specified quantity. It makes it more manageable, and you canstop it
at any time should it congest your system too much.

Please also refer to Optimizing SQL statements.

Complex SELECTs or selectable stored procedures?
Selectable procedures can sometimes offer higher performance thancomplexselects. For example:

 CREATE PROCEDURE SPPROD
 RETURNS (TITLE VARCHAR(50),TXT VARCHAR(20))
 AS
 declare variable cid bigint;
 BEGIN
 FOR --outer select
 Select p.title,p.category_id
 from product p
 INTO :TITLE,:cid
 DO
 BEGIN
 select c.txt from category c
 where c.id=:cid into :txt; --inner select
 SUSPEND;
 END
 END

This simple example is mimicking a join. You have a procedure here which is going to return a title and some text. First it goes through all the products,
selecting the relevant titles. This outer select is however only providing one of the output fields. So another select is nested within the procedure, providing the
information for the second output field, cid.

Although some developers feel there's no reason to construct procedures this way, ever so often youwill find that the optimizer really has a problem with a
certain join, because it takes too long for it to work out how to approach the query. Breaking things down like this canactually often provide a more immediate
response.

Trigger
A trigger on the other hand is a special table- or database-bound procedure that is started automatically. After creating your database and constructing your
table structure, youneed to get your triggers sorted. Triggers are extremely powerful - the so-called police force of the database. Theyensure database
integrity because you just can't get round them. You, the developer, tell the system how to invoke them and whether they should react to an INSERT, UPDATE or
DELETE. And once we're there in a table inserting, updating or deleting, it is impossible not to execute them. You can specify whether your trigger should fire on
an INSERT or an UPDATE or a DELETE, or on all three actions (universal trigger).

Comprehensive details concerning triggers, how to create them, the different types and variables canbe found in the IBExpert documentation chapter,
Trigger.

Don't put all your logic into one trigger, build up layers of them, e.g. one for generating the primary key, one for logging or replication, one for passing on
information of the data manipulation to another table etc. The order in which such a series of triggers is executed canbe important. The before insert
logging trigger needs to know the primary key, so the before insert primary keytrigger needs to be fired first. The firing position is user-defined, beginning
with 0. Please refer to Trigger position in the IBExpert documentation chapter, Trigger.

Using procedures to create and drop triggers
 CREATE EXCEPTION ERRORTXT 'ERROR';
 CREATE PROCEDURE createautoinc
 AS
 declare variable sql varchar(500);
 declare variable tbl varchaR(30);
 BEGIN
 FOR
 select rdb$relation_name from rdb$relations r
 where r.rdb$relation_name not containing '$'
 INTO :TBL
 DO
 BEGIN
 sql='CREATE trigger '||:tbl||'_bi0 for '||:tbl||' '||
 'active before insert position 0 AS '||
 'BEGIN '||
 ' if (new.id is null) then '||
 ' new.id = gen_id(id, 1); '||
 'END';
 execute statement :sql;
 END
 when any do exception errortxt :tbl;
 END

835

This is a simple procedure whichuses all table names (all tables are stored in rdb$relations) and creates a BEFORE INSERT trigger which adds an
autoincrement ID. The following procedure then drops the trigger:

 CREATE PROCEDURE dropautoinc
 AS
 declare variable sql varchar(500);
 declare variable tbl varchaR(30);
 BEGIN
 FOR
 select rdb$relation_name from rdb$relations r
 where r.rdb$relation_name not containing '$'
 INTO :TBL
 DO
 BEGIN
 sql='DROP trigger '||:tbl||'_bi0;';
 execute statement :sql;
 END
 when any do exception errortxt :tbl;
 END

836

Firebird Administration using IBExpert

This documentation introduces DBAs to Firebird administration, with the emphasis on IBExpert as an aid to make your life easier. Eventhe more
experienced Firebird DBAs will find a wealth of tips here.

Administration tasks
Detect and avoid database errors
Database repair
Typical causes of server problems and how to avoid them
Understanding the log file
Temporary files
Memory configuration
Optimization
Secure data transfer
Optimizing SQL commands

Source: Firebird School at the Firebird Conference 2007 held in Hamburg, Germany

837

Firebird Administration using IBExpert
1. Administration tasks
2. Downloading and installing the various Firebird versions
3. Automating the database backup and restore
4. Garbage collection
5. Setting up protocols
6. Setting up and testing the ODBC driver
7. Importing and exporting data

Firebird Administration using IBExpert
Administration tasks
The Firebird DBA really does have an easy job as their are no administration tasks which he has to do! And when the application is programmed well,
absolutelyno maintenance is necessary! However databases do occasionally encounter problems, usually due to poor programming. So here are a few
things the Firebird DBA should be aware of.

Downloading and installing the various Firebird versions
Please refer to the previous chapter, Download and Install Firebird.

Automating the database backup and restore
It is not necessary for users to logout during a Firebird backup. A consistent backup is performed, regardless of whether users are working on the database at
the time. A database backup can be performed using the IBExpert Services menu item, Backup Database, or the Firebird command-line tool, GBAK.

For obvious reasons, should you need to perform a database restore, it is vital that no users are working on the database during the restore. A database
restore can be performed using the IBExpert Services menu item, Restore Database, or the Firebird command-line tool, GBAK. Please note that if yourun the
GBAK restore in verbose mode, it can take an awful long time.

Whenperforming a backup only the index definitions are stored, thenwhen the database is restored, data are restored into the tables, and right at the end the
indices newly generated. Backup and restore also resets all transaction parameters, that can be viewed in the Database Statistics.

Alway backup onto another machine. Check that the file stamp is differenct and do a test restore regularly to confirm that are backup files are fine.

It is possible to automate the database backup in a batch file in the Windows Scheduled Tasks.

A great tool for automating your backups and restores is the IBExpertBackupRestore Scheduler. This enables you to automate backups and restores, and
cansend youan e-mail to inform you of any errors or confirming that there were no errors.

See also:
InterBase and Firebird command-line utilities
IBExpertBackupRestore
Backup

Garbage collection
Garbage collection is the ongoing cleaning of the database and is performed in the background around the clock. This constantly reaorganizes the memory
space used by the database. If you don't clean up, database performance will slowly but surelydegrade. Garbage collection works for both data pages and

838

index pages (if you have created 100,000 new data sets and deleted another 100,000 data sets, an index won't help much, if the 100,000 deleted pages are
still there and being searched through.

The Firebird garbage collector does not require administrative commands or manuel maintenance as certain other database environments do. Whether the
garbage collector works efficientlyor not depends on how the application works.

For further information regarding garbage collection, please refer to the IBExpert Services menu item, Backup Database / Garbage collection.

See also:
Garbage
Garbage collectors

Setting up protocols
Your database is full of information. Sometimes it is helpful to log certain aspects of the information manipulation (selects, inserts, update, deletes), to gainan
insight what is really happening in your database.

Manual: Create a trigger on eachtable where you want to have a protocol
Almost automatically: take a look at the script db2.sql found in the IBExpertDemoDB folder, which creates a fully functional transaction log just by
executing the procedure INITLOG.
Automatically: Openthe table you wish to log in the IBExpert Table Editor and click on the Logging page. Confirm the generationof IBE$System
tables if required, and thenselect Prepare table for logging.
Other tools with advanced log functions can be found in the IBExpert Tools menu item, Log Manager.

See also:
Bidirectional replication for InterBase and Firebird
Log Manager

Setting up and testing the ODBC driver
If you need an ODBC driver, it canbe downloaded from http://www.firebirdsql.org. Then use the Windows menu: Settings / System Control / Administration /
Data Source and select fbodbc. This now allows youto access Firebird data from non-Firebird applications such as, for example, OpenOffice Base.

Should you wish to import data from other data sources, please refer to the IBExpert Tools menu item, ODBC Viewer.

Importing and exporting data
The Firebird core only offers import and export using external files, which requires a setting in and restarting the server.

The files can be defined by declaring a table:

 create table external file

This function is extremely quick; 100,000 data sets can be imported or exported every second. It is however limited for certain datatypes, particularly those of
a variable length, such as blobs. The best solution is to define the table using the above instruction, and defining as far as possible all fields as CHAR.

You can alternatively use the Firebird ODBC driver with any ODBC-capable tool, the IBExpert ODBC Viewer, or IBExpert's IBEBlock, ODBC support. You can
evenautomate your import/export using IBEBlock.

Results of SQL queries can be exported from the IBExpert SQL Editor.

See also:
IBEBlock examples including data import and export

Detect and avoid database errors
Typical reasons for corrupt databases include:

File system backup tools
Anti-virus tools
Hard drive defect
Server crashwith forced writes inactive.

Database errors canbe detected from Firebird error messages and entries in the firebird.log file.

More about database corruptioncan be found the Database Technology Articles section. Damaged databases can be repaired using GFIX or IBExpert.

839

http://www.firebirdsql.org.ThenusetheWindowsmenu

Database repair
1. Database repair using GFIX
2. Alternative database repair methods

Database repair
Database repair using GFIX
SET ISC_USER=SYSDBA SET ISC_PASSWORD=masterkey

 Copy employee.gdb database.gdb

Validate database:
 gfix -v -full database.gdb

Onerror try mend:
 gfix -mend -full -ignore database.gdb

Check again:
 gfix -v -full database.gdb

Onerror try backup without garbage collection:
 gbak -backup -v -ignore -garbage database.gdb database.gbk

Finally try restore:
 gbak -create -v database.gbk database.gdb

See also:
GBAK
GFIX

Alternative database repair methods
Database corruption canoccur at anytime in any part of the database. The sudden panic that often accompanies such a serious problem can be mitigated by
planning for the worst case scenario, before ich actually happens: who to call, what to do. Having a plan and executing it. Our proposal: always have a warm
backup copyof the database as read-only. Most companies canfunction with a read-only database for at least a few hours without critically failing the
business, giving youtime to put your contengency plan into action. Always relyon two databases: the live and the replicated; so with the knowledge that you
canswitch in an emergency with minimal loss of data.

For more information about replication, please refer to Bidirectional replication for InterBase and Firebird.

Thenyou will need to begin to analyze your problem, locate it and, as far as possible, repair it.

Begin with GFIX. If that doesn't bring you anyfurther, limit the damage to as few data sets as possible, and use IBExpert's Extract Metadata to extract all healthy
data. Please refer to our article: Database repair using Extract Metadata.

See also:
Database corruption
Firebird for the database expert: Episode 3 - On Disk Consistency
Preventing data loss

840

1. Typical causes of server problems
1. Network problems
2. Hardware problems
3. OS problems

2. Detect and avoid server problems

Typical causes of server problems
Network problems
If you encounter network problems try to ping the server. Check the firebird.log, as this can indicate where the source lies.

Approximately half the problems with failure to reach the server are due to a Firewall. If you're using the default port 3050 make sure this is listed in your
Firewall settings. Although Firebird normally only requires one port, this is not the case, if you use the Event Alerter. The Event Alerter is a mechanismus with
which youcan trigger a message, when a certain event occurs, to be sent to a client. These Event Alerters are a powerful feature. As soonas you register any
events with the Firebird server it will open a separate port. You can specifywhich port in the firebird.conf file. Otherwise it selects a random port.

Hardware problems
One of the issues on Firebird server hardware is running out of disk space, often due to temp files. Many DBAs don't set their temp directory in
firebird.conf, and often forget to check the temp directorywhen they notice the're running out of space. When the hard drive begins to become full, Windows
storesdata pages anywhere it can find space. Whichof course degrades performance when searching for and uploading the data on these pages. Please
refer to Temporary files below for further information.

OS problems
When performance starts to degrade it's important not just to look at queries and programming, but also at the operating system itself.

1. Windows system restore: OnWindows My Computer / System Properties the automatic System restore canbe disabled. This also prevents
Windows copying all manner of file into the Win/System32/dllcache directory (it not been unknownto discover files of 5GB and more in this directory!).

2. Automatic Windows update: the infamous automatic Windows update with it automatic rebooting is the cause of many Firebird server machines
suddenly being shut down, because noone was sitting in front of the screen to stop it. This must be disabled! And it's not just Windows. There are many
other services running that maydenyyou server access.

So prevent anyupdates running and rebooting your system automatically, evenantivirus applications. Close everything up, leaving only those really vital ports
free. Backups can be configured via ftp onto a backup server.

As far as possible, use a dedicated server for your Firebird applications.

Detect and avoid server problems
Check the Firebird logs from time to time. This provides an opportunity to notice things that users don't realize are going wrong. Check the Windows Event log
as well. When the daily log starts to increase in size, look for the causes, e.g. that the server is oftenrestarted. The cause of frequent Firebird server reboots is
often due to UDFs. Writing robust UDFs is vital. Poorlywritten UDFs can lead to technical suicide, if you are not familiar with memory management. If 2
processes are using the same UDF simultaneously, it canwell lead to server instability. Before you go ahead and write your ownUDFs for everything, consider
taking an existing one from a library such as FrreAdhocUDF, and complement it if necessary.

Recommendation:

Use only robust UDF libraries, such as FreeAdhocUDF.
Check every UDF you've writtenyourself not just once, but 10 times!

If you're using two difference Firebird/InterBase flavors concurrently, check that the correct fbclient.dll/gds32.dll version is installed on the server and all
clients. You'd be amazed how often DBAs are surprized by this or that previously undiscovered dll suddenly turning up, because somewhere there is an old
InterBase version installed (and maybe even still running). When you start your Firebird 2 database, it tries to work with the old dll. Ensure that at least the
correct client library is available in your application directory for the application's database version.

Remove any old redundant InterBase versions.

Use the IBExpert CommunicationDiagnostics to test connect to your server. Analyze any error messages returned. Alternatively attempt a connection at
TCPIP level and pinging the server. When the server can't be reached this way, it is obviouslynot a Firebird problem. Please refer to the IBExpert Services
menu item, CommunicationDiagnostics for further information.

Understanding the log file
Go back through the last couple of months logs and search for patterns. Thenthe source of many problems oftengoes back that far (eg. page corruptions are
not always immediately noticeable). There are a few typical unimportant entries, such as

841

 INET/inet_error: connect errno = 10061

or the Guardian restarting and of course, a routine shutdown.

There are however, a few important entries whichyou should take note of, should theyappear in your log.

Terminated abnormally: an indication that someone has shut down your Firebird server by pulling the plug.
Modifying procedure xxx which is currently in use by active user requests: this occurs fairly often with Firebird 2. It's not critical if you modify a
procedure whilst others are using it. The problem arises due to the multi-generational architecture - when others are working with the procedure, you
canonly see the results of the old procedure.
Page xxx is an orphan: if this message starts to occur regularly, perform a backup and restore.
Page xxx wrong type: this one's pretty terminal, because it's a clear indication that your database is corrupt. It is important to determine whichpages
are affected, because they not be in use anymore, or only store old record versions. In this case the problem will be solved by the next database
sweep. On the other hand, if you're unlucky the next database sweep will turn it into a real problem!

Temporary files
Firebird temp files are created when something needs to be sorted or combined from multiple tables and no index is usable or there is not enough sort
memory available.

Firebird temp files begin with FB and, by default, theyare stored in the Windows /temp directory, when the Firebird server is installed as a service. The
Firebird temp directory can be altered and specified in the firebird.conf.

Temp files canget verybig veryquickly. One of the reasons for this is that they include the full space for long CHAR or VARCHAR columns. If youneed large
character fields, use a blob field. The size of a blob field is dependent on the database page size, for example, in a database with a page size of 8 KB, the
maximum blob size is 32 GB.

Memory configuration
Memory settings depend on the one hand on the database page size and on the other the default cache pages specified in firebird.conf. The default value
is 2048 of the database pages are reserved for the cache. This value canbe altered in the firebird.conf, the maximum value being 128,000. However, if the
memory specified in the firebird.conf (number of pages multiplied by the page size) is larger than the actual available memomory, it will not be possible to
openthe database!

We therefore recommend leaving the default size in the firebird.conf as it is at 2048, and instead, define in the IBExpert Services menu item, Database
Properties, that the database should use 20.000 pages for the cache. The KB size is calculated automatically, and this is the quantityof bytes whichremains
in the working memory, which of course speeds up the database performance. This cache buffers setting for the database overrides the default cache pages
in firebird.conf.

Please note:
SuperServer: cache memory per database = page size * buffers
Classic server: cache memory per connection = page size * buffers

Therefore it is important to define the cache memory for the Classic server at a lower level thanfor the SuperServer.

See also:
Page size

842

Optimization
1. Operating systems
2. Optimal hard disk use
3. Optimizing hardware configuration
4. Optimizing OS configuration
5. Firebird benchmarks tests
6. Optimizing the database
7. Parameters for optimal performance
8. Index statistics

Optimization
This sectionconcentrates uponthe performance optimizationof your Firebird server. With anysystem there is always a limiting factor. If you remove that
limiting factor, something else then in turn becomes the limiting factor. It is therefore vital to be aware of all these factors whichcontribute to your overall
database server performance.

Operating systems
Certainly the popular operating system today is Microsoft, althoughLinux is constantly improving its strong foothold in the market. With regard to Windows it is
fairly irrelevant whichversion youuse. Windows 2000 does have the advantage however, that it does not carry as much overhead as Windows XP and co.
Physically it canbe roughlyestimated, that a Firebird server installationon Windows working with VMware, the performance is approximately 30% less than
native processor use. VMware offers a number of advantages, for example that you can back up the complete VMware, complete with database, configuration
etc., enabling the database to be restarted immediatelywith the same IP address. And VMware files are prettywell impossible to corrupt.

Performance variations are minimal when using the same hardware and the same Firebird version. Slight discrepancies in different areas maybe detected,
these having different advantages and disadvantages, which need to be assessed individually for indivual application requirements.

The real advantage with Linux is quite simply the stability of the total system. With Windows it is possible to achieve a high level of stability, there are a number
of parameters and settings that need to be accordinglyconfigured. Linux is certainly better with regard to memory configuration, and the larger the application,
the more advantages you will discover with Linux. And if youwish to run a web server alongside your Firebird server on the same machine, you should
definitely consider Linux.

If however youhave a classic medium-sized system with 10-20 users, you will not detect anysignificant differences in overall performance.

Optimal hard disk use
The optimal hard disk configuration for an efficient Firebird server is to have separate dedicated hard disks for the operating system, database and temp
files. Partitions are of no advantage here, as the read/write head still has to scanthe whole drive. The decisive factor with fixed disks is the read/write speed;
and a large cache canalso improve performance.

Raid systems are useful for large databases, and the larger the disk cache the better.

Small databases up to 2 GB can fit in the cache RAM – that can be the database cache RAM or just the Windows cache RAM.

Optimizing hardware configuration
Take into consideration the following factors when looking at optimizing your hardware:

Multicore CPU are useful for the Firebird Classic server, at least two cores are advisable for the SuperServer - for the server itself, and another for
events.
Large cache server CPUs (Xeon, Opteron) are useful for all architectures - particularly with large databases ith a highnumber of users.
Server main boards are optimized for I/O speed.
High speed RAM DDR3/DDR2.

Optimizing OS configuration
Firstly, remove all unnecessary tasks and services from the database server. Scrutinize anything listed in the Task Manager, when you are unsure why it's
there, stop it running, and if possible deinstall the application that started it in the first place. A Windows system can run with a minimum number of processes
on dedicated database server.

High performance database servers should not be used for anything else, be it file servers, mail servers (every time they do a POP grab, you're bound to
register a discernable drop in database performance), or print servers and the like. No antivirus software is at all necessary, no backup/restore software that
handles openfile backup, especiallynot for the database files but also for the temp files. Even when invoking a shadow, by backing up your database files,
serious degradation canbe noticed in the overall server performance, particulary if you have intensive user traffic at the time. Refer to Automating the
database backup and restore to automate backups to be performed at a low traffic time period.

And please do not run a 3D OpenGL screen saver; fancy screen savers also contribute to performance degradation! And if you're using Linux, run the server
without the GUI to save evenmore memory that can be better used by your database server.

Firebird benchmarks tests

843

The IBExpertDemoDB can be used for simple server benchmark tests. Byrunning the db1.sql it is possible to quickly determine discrepancies in
performance on different hardware and OS configurations. Please refer to IBExpert Benchmarks for details of benchmarking possibilites using IBExpert
tools.

Important: when benchmark testing, take into consideration the potential database size and number of users in a year's time. Testing performance on double
your current database size with double the number of users will offer you the comfort factor in the near future!

Optimizing the database
1. Split complextables into several smaller ones (Database normalization).

For reasons of compatability with legacy databases, it might help to add an updatable view with the name of the old table and with the same
structure.
Old source code can still use the old name for SELECT, INSERT, UPDATE or DELETE; new source code canwork directlyon the new smaller tables.

This can provide a real improvement in speed, especially in the case of very complextables. Typically it also improves the restore speed considerably.
2. Do not use GUID for primary key fields, as these use much more space and will be slower as an INTEGER or BIGINT.
3. Do not use very long CHAR/VARCHAR fields unless theyare really necessary.
4. Seldom-used columns should be stored in different tables.
5. Use indices only where necessary.
6. Compound indices should only be used on large tables.

Parameters for optimal performance
1. Database model - if your database model is weak no amount of tweaking other parameters will make any significant difference. Read the Database

design and database normalization article and use IBExpert's Database Designer to optimize your database model.
2. Test SQL statements (refer to Optimizing SQL statements for further information).
3. Analyze index plans - tons of information, examples and tips can be found here: Index statistics, Index, Performance Analysis.
4. Transaction control - monitor, analyze and improve.
5. Server-side programming - let the server do the work, rather thantransferring masses of data pages to the client and performing your queries there.
6. Optimizing cache - refer to Temporary files, Memory configuration and Optimizing hardware configuration for further information.
7. Hardware
8. Operating System
9. Network

Index statistics
Imagine the following situation: you have a database of all the inhabitants of Great Britain. You require a list of all men living in Little Bigton. How should the
server process the query? The population of Great Britain is currently around 60 million. Approximatelyhalf are men. Should the server first select all men
(around 30,000,000) and thentake these results and select all those who live in Little Bigton, or should it first select all residents of Little Bigton (which let's say
has a population of around 5,000) and then select all men?

The best selectivity is of course to first select all residents of Little Bigton, and thendiscern the number of males. The problem is that when yousend the query
to the server, it needs further information to help it decide how to go about executing the query. For this it uses indices, and to decide which index is the best to
use first, it relies on the index selectivity.

Refer to the following articles for further information regarding indices and index statistics:

Index
SQL Editor / Plan Analyzer
SQL Editor / Performance Analysis
IBExpert Table Editor / Indices
Recompute selectivity of all indices
Enhancements to indexing in Firebird 2.0
Firebird for the database expert: Episode 1 - Indexes
Recreating Indices 1
Recreating Indices 2

Secure data transfer
Many applications may have external users, who need to connect to the database remotelyand access or exchange database data, often over dialup, satellite
or public wide area networks. There are two key issues here: firstly that by using public band widths there is a security risk. Secondly, evenreasonable
amounts of data can congest a poor band width without compression.

Compressionreduced the file size, which increases speed. However the big issue for connection speed is latency, which can be measured for example by
pinging the server. Latency is a more critical factor than the bandwidth.

Many people set up VCNs through to their service, which solves both issues. The VPN does the compression for you and provides youwith a secure tunnel.
Alternatively there is an excellent free tool on the market, Zebedee, offering a tunnel that can be used to compress and encrypt the TCP traffic betweenthe
Firebird server and the client, similar to SSH or SSL. Basically you have a small piece of software sitting on the server and on the client. You need to specify
some port redirections and it listens on one port, decompresses the data and pushes it through to the correct port where the Firebird server (or Firebird client)
canbe reached. Byreturn it compresses and encrypts data going out. It is evenpossible to specifyclient ID files so that the connection is only allowed when
the respective client ID files are available both on the server and the client

The software can be downloaded from http://www.winton.org.uk/zebedee and is available for Windows, Linux and Unix. It is open source and completely free.

844

http://www.winton.org.uk/zebedeeandisavailableforWindows,LinuxandUnix.Itisopensourceandcompletelyfree

Optimizing SQL commands
Tips for optimizing SQL commands canbe found in the SQL Editor chapter, Optimizing SQL statements.

If you are new to Firebird SQL please first read Firebird Development using IBExpert for a comprehensive introduction to Firebird SQL.

The following references provide full syntaxand examples of Firebird SQL:

SQL Language Reference (InterBase 6.0, Firebird 1.x)
Firebird 2 SQL Reference Guide (Firebird 2.x)

845

Firebird SQL Server 2.x
Administration Handbook

5th November 2007
Stefan Heymann Copyright © 2007 Consic Software Engineering

heymann@consic.de
translated into English by Debra J. Miles, Copyright © 2008 IBExpert KG

www.ibexpert.com

About this book
About Firebird
Installation
Service configuration
Administration tools
Databases
Database configuration
Backup
Links, Literature

About this book
This handbook is a guide for Firebird database administrators. It is not a constituent of the official Firebird documentation. This is not a comprehensive guide;
it includes those features and details necessary for the installationand operation of a typical database for small and medium-sized applications.

This handbook relates to Firebird 2.0 versions and upwards. An edition referring to Firebird 1.5 [German language only] can be obtained from Consic.

The current version of this handbook [German language only] canbe downloaded from http://www.consic.de/firebird.

About Firebird
Firebird is, along with MySQL and PostgreSQL, the most successful open source database for professional applications. Firebird provides all important
functionalities that the large databases such as Oracle, DB2, Sybase and MSSQL offer as a matter of course. Views, triggers, procedures, user-defined
functions and a stable transaction model provide for a robust and powerful platform for database applications.

The Firebird server can look back at over 20 years development history. It is successdfully deployed by the German Press Agency (dpa) and German
Telekom in keyapplications used by several hundred users. The license model allows it to be deployed - even in a commercial environment - totally free of
charge. Firebird is available for Windows, Linux, Sun, Mac and other operating systems.

In 2007 Firebird was awarded the Sourceforge Choice Community Award in two categories:

Best project for the enterprise
Best user support

846

mailto:heymann@consic.de
www.ibexpert.com
http://www.consic.de/firebird

Installation
1. Preliminary considerations

1. Terms and definitions
2. Procedure

2. SuperServer, Classic server
3. Windows installation

1. Target directory
2. Components
3. Additional tasks and functions
4. Services
5. Ports
6. Databases
7. Database administrator SYSDBA

4. Installing on Linux
1. rpm Package Manager

a. Installation
b. Deinstallation
c. Database administrator SYSDBA
d. Write permission

2. Firebird Manager fbmgr
a. Starting up
b. Shutting down

5. Windows client installation

Installation
Preliminary considerations
Firebird is available for the following platforms:

Win32 (Windows 2003, XP, 2000, NT4, etc.)
Linux (i386, AMD64)
FreeBSD (Intel), HP/UX, Mac OS-X and Sun Solaris x86. These are not described in anyfurther detail in this handbook.

Firebird is an extremely slim server, the full installationrequires less than20 MB hard drive space. Clients canalso be installed on all supported operating
systems. The clients are also slim and in their simplest form the DLL comprises but a few hundred kilobytes (fbclient.dll).

Terms and definitions

Server: The computer uponwhich the Firebird service is running.
Service: A Windows service or Linux demon.
Database: a file (or connected multiple files), that containa related set of tables, indices, procedures, triggers etc.

Procedure

The procedure for installing the database server, database and clients roughly follows these steps:

1. Installation of the Firebird service on the server.
2. Verification or alteration of the services configuration (firebird.conf).
3. Specification of users and if necessary, alterationof the SYSDBA password.
4. Alias definition for each database (aliases.conf).

847

5. Setting up the database.
6. Client installation.

See also:
Download and install Firebird
Firebird 2 Quick Start Guide
Firebird 2.0.4 Release Notes

SuperServer, Classic server
The Firebird service can be installed as a "SuperServer" or "Classic server":

SuperServer: a new thread is started for each incoming client connection. It is quick and requires less system resources.

Recommended.

Classic server: a new process is started for each incoming client connection. This can scale better on multi-processore machines.

Windows installation
Start the installationprogram (e.g. Firebird-2.0.3.12981-1-Win32.exe).

See also:
Server versions and differences

Target directory

It is possible to install multiple Firebird services on a single system, althoughthis will be seldom necessary for an operative installation.

We recommend abbreviating the directory path proposed by the install wizard and using the directory: C:\Program Files\Firebird:

Components

For productive environments we recommend installing the SuperServer as this consumes less resources. The Server components and Developer and
admin tools components should also be installed:

848

Additional tasks and functions

Guardian: The Firebird Guardiancan be installed along with the Firebird service. This is a monitoring utility that does nothing other than check
whether the Firebird server is running or not, restarting it if necessary (Watchdog).
Recommendation: Use the Guardian.
Run the Firebird Server as an application or service: Firebird should be run as a service on productive servers.
Recommendation: Run as a service.
Start Firebird automatically every time you boot up Of course!
Recommendation: Yes.
Copy Firebird client library to <system> directory: If this option is checked, the Firebird client DLL fbclient.dll is also copied in the Windows
System directory, and can be found more easily by applications. This isn't necessary on pure database server machines. It can however be
advantageous (although not essential) on servers that co-function as file servers or for administrative purposes.
Recommendation: don't check this option.
Generate client library as GDS32.DLL for legacy app. support: Check this option, if you still want to run Borland InterBase™ applications, which
will expect the presence of a GDS32.DLL.
Recommendation: don't check this option.

Following installationthe Firebird service and, if selected, the Firebird Guardianservice are immediately readyfor use (Automatic start).

Services

The following services appear in the Windows Services panel:

Firebird Guardian: DefaultInstance (if installed)
Firebird Server: DefaultInstance

If the Guardian has been installed, it is sufficient just to start and end the Guardian. Otherwise the database services can be started manuallyor automatically
in the usual Windows way.

Ports

Firebird listens by default to TCP Port 3050, the service is called gds_db. This canhowever lead to conflicts, if another Borland InterBase™ database is
already running on the same machine. In this case, the port needs to be altered in the firebird.conf (found in the Firebird root directory) and, if necessary, an
entry in the etc/services file. Apart from that, no further changes are necessary.

Example: changing the port to 3051:

Specify in firebird.conf:

 RemoteServiceName = firebirdsql
 RemoteServicePort = 3051

Specify in the services file:

 firebirdsql 3051/tcp # Firebird 1.5 Server

Databases

The database files need to be on the same local file system as the database service itself. Netwerk drives cannot be used (independent of whether these
correspond via a UNC path or a drive letter).

Database administrator SYSDBA

When a service is first installed there is only one database user: the SYSDBA. This user has the password, masterkey.

849

To change the SYSDBA password, use the command-line GSEC tool, stored in the Firebird bin directory. Enter the following command (directlyon the server
wher the database service is running):

 cd \Programme\Firebird\bin
 gsec -user sysdba -password masterkey -modify sysdba -pw <new password>

Whenthe password for example should be defined as master, enter the following:

 gsec -user sysdba -password masterkey -modify sysdba -pw master

Only the first eight characters of the password are significant. If the new password is longer, the following warning appears:

 Warning - maximum 8 significant bytes of password used

See also:
Download and install Firebird
Firebird Administration
Configuring Firebird

Installing on Linux
Install the rpm package with a suitable package tool. It sets up the Firebird demonand the Firebird Guardiandemon. The Guardian is a watchdog demon,
checking if the Firebird demonitself is still running and restarts it if necessary.

rpmPackage Manager

Firebird can be installed and deinstalled using the command-line Package Manager:

Installation

 rpm -ivh <rpm-Datei>

for example:

 rpm -ivh FirebirdSS-1.5.1.4481-0.i686.rpm

Deinstallation

Determine the exact package names with:

 rpm -qa Fire*

Deinstall using:

 rpm -e <Package-Name>

For example:

 rpm -e FirebirdSS-1.5.1.4481-0

Database administrator SYSDBA

Whenservice is newly installed there is just one user: the SYSDBA. This has a password allocated by the installation, whichcan be found in the SYSDBA.password
file, found in the Firebird root directory(usually /opt/firebird). To change this automatically generated password, which is difficult to memorize and type, use
the bin/changeDBAPassword.sh script.

Write permission

Important: the user account firebird requires write permission on all directories, in whichdatabases are to be stored!

Firebird Manager fbmgr

The Firebird server process canbe started and stopped using the Firebird Manager fbmgr. fbmgr canbe found in the bin subdirectory. It can only be started
by an administrator.

Starting up

The service process can be started using the –start option:

 ./fbmgr -start

A further optionmay be specified to determine whether the Guardianshould also run or not:

–once Starts Firebird without the Guardian. –forever Starts Firebird with the Guardian. This is the default parameter.

 ./fbmgr -start -forever

Shutting down

850

Using the option–shut all transactions are rolled back (ROLLBACK), all client connections disconnected and the service process shut down. The SYSDBA
password has to be specified:

 ./fbmgr -shut -password masterkey

See also:
Using IBExpert and Delphi applications in a Linux environment: accessing Firebird

Windows client installation
The client installationcan install either a minimal client, that canbe used to start Firebird applications, or a client together with the administration tools.

Start the same setup program that was used to install the services. Under Select components select the option Install client tools for developers and
database administrators.

You should carryout this installationon all computers, where administrative tasks are to be done. Tools such as GBAK, GFIX, GSEC etc. are installed here.

There are some applications that have their ownclient, in this case a separate installation is not necessarily required.

See also:
Download und Install Firebird
Firebird Administration

851

Service Configuration
1. The installation

1. Firebird root directory
2. Windows bin subdirectory
3. Linux bin subdirectory
4. Other subdirectories (both platforms)

2. firebird.conf
3. Database System Administrator SYSDBA

Linux server
4. Network integration TCP/IP
5. Security

Service Configuration
The installation
The complete Firebird installationhas a Firebird root directory with a number of subdirectories. The directorystructure in Windows and Linux is identical.

Firebird root directory

Files (important files in bold):

aliases.conf Configurationfile for database aliases.
firebird.conf Configurationfile for the server.

firebird.log Error protocol.

firebird.msg Server messages.

<rechnername>.lck Lock file.

readme.txt Service readme file.

security.fbk Data backup of the securitydatabase.
security.fdb Security database: comprises user names and passwords.

IDPLicence.txt
IPLicence.txt

License regulations for Firebird (Firebird is opensource, the license allows free
circulation and use, evenfor commercial purposes).

Windows bin subdirectory

fbclient.dll Client access library.
fbguard.exe The Firebird Guardian service.
fbserver.exe The actual Firebird database service.
gbak.exe GBAK tool for backup and restore.
gdef.exe GDML tool (outdated, no longer used).
gfix.exe GFIX tool: settings, repair, administration.
gpre.exe GPRE-Tool: C preprocessor.
gsec.exe GSEC tool: user administration.
gsplit.exe GSPLIT tool.

gstat.exe GSTAT tool: statistics.
ib_util.dll Utilities.

icu*.dll Different libraries for the support of international character sets.
instclient.exe Client library installation as gds32.dll in Windows System directory (usually not necessary).

instreg.exe Registration of an installation in the registry (only necessary when installing manually).

instsvc.exe Tool for installing/deinstalling the service and for the start and shutdown pf the service (only necessary when installing by
Hand).

isql.exe ISQL tool: Interactive execution of DDL and DML commands, execution of SQL scripts.
msvcp71.dll System DLL.
msvcr71.dll System DLL.
qli.exe Interactive GDML tool (out of date, no longer used).

nbackup.exe Tool for incremental backups.

Linux bin subdirectory

SSchangeRunUser.sh Shell script for alterating the SuperServer user.

SSrestoreRootRunUser.sh Shell script for restoring the SuperServer user.
changeDBAPassword.sh Shell script for altering the SYSDBA password.

createAliasDB.sh Shell script for creating a new alias.
Invoke: ./createAliasDB.sh <aliasname> <datenbankname>

852

fb_config

Shell script containing sundry information.
Invoke: ./fb_config [options]
Options:
--cflags
--libs
--embedlibs
--bindir
--version

fb_lock_print Shell script for the output of locking information.
fbguard Firebird Guardian demon.
fbmgr Firebird Manager for starting and shutting down the Firebird demon.
fbmgr.bin Firebird Manager.
fbserver Firebird server demon.
gbak GBAK tool: backup, restore.

gdef GDML tool (out of date, no longer used).
gfix GFIX tool: settings, repair, adminstration.

gpre GPRE tool: C preprocessor.
gsec GSEC tool: user administration.

gstat GSTAT tool: statistics.
isql ISQL tool: interactive execution of DDL and DML commands, execution of SQL scripts.

qli Interactive GDML tool (out of date, no longer used).
nbackup Tool for incremental backups.

Other subdirectories (both platforms)

doc Documentation, release notes, readmes, etc.

examples Sample programs and databases.
help Online help (currently practically empty).)

include Include files for the development of C-based client applications and UDFs.
intl International support.

lib Library files for the development of C-based client applications and UDFs.
UDF User-defined functions.

firebird.conf
The firebird.conf file, found in the Firebird root directory, can be edited in anyText Editor. Key parameters include:

DefaultDbCachePages =
2048 Number of cached database pages per database.

RemoteServiceName =
gds_db
RemoteServicePort =
3050

Name of the service in the services file and/or TCP port number for the service. This only needs to be altered if a
Borland InterBase™ service is already running or potential confusion with InterBase is to be avoided.

DatabaseAccess = Full

Only accepts one of the following values:
* None: only databases listed in aliases.conf maybe used.
* Full (Default): all databases may be used.
* Restrict: only databases found in the specified paths maybe used. These paths must be specified in a
semicolon-separated list (on Windows e.g. C:\DataBase;D:\Mirror, on Unix e.g. /db;/mnt/mirrordb).

Recommendation: We stronglyrecommend this parameter be used to restrict backdoor access to the system. Uncontrolled access to all databases can
seriously endanger your system security.

See also:
firebird.conf

Database System Administrator SYSDBA
The user, SYSDBA (System Database Administrator) has Database Administrator status. He has all permissions.

The standard password for SYSDBA is: masterkey

The SYSDBA password should be changed immediately following installationof a productive system.

Linux server

When installing on Linux systems a random password is generated. This canbe found in the SYSDBA.password file in the Firebird root directory.

853

A newSYSDBA password can be assigned in the shell script bin/changeDBAPassword.sh.

Network integration TCP/IP
Following a standard installation, the Firebird service listens to port 3050/tcp. This can be altered if wished in the firebird.conf. It is also usual procedure to
add the following entry in the services file:

 gds_db 3050/tcp

This specificationalso needs to be adjusted accordingly.

As the service name, gsd_db, is for InterBase databases, another service name needs to be defined if InterBase and Firebird installations are to run in parallel.
This service name also needs to be specified correspondingly in the firebird.conf and the services file (our proposal: firebirdsql).

Locationof the services file in Windows: \Windows\system32\drivers\etc\services
Locationof the services file in Linux: /etc/services

The service or demonneeds to be restarted following anyalterations to firebird.conf.

Security
The security.fdb database, stored in the Firebird root directory, is responsible for user administration.

SYSDBA always has all permissions and rights. The user who created the database is the database owner and also has all permissions and rights for that
database.

Users canbe administrated using the GSEC tool (refer to Administration tools)

854

Administration tools
1. ISQL

1. Create a database
2. Connect to a database
3. Closing ISQL
4. Executing an SQL script file
5. Starting ISQL with a direct

database connection
6. Determining the database SQL

dialect
2. GSEC: user administration

1. Starting GSEC
2. Commands
3. Options
4. Examples

Administration tools
Firebird comes with a number of administration command-line tools:

isql Command-line interactive tool for the execution of DDL and DML commands and scripts.

gbak Backup, restore.
gfix Various parameters, repair.

gsec User administration.
gstat Statistics.

fbmgr Linux only: starts and shuts down the Firebird demon.
nbackup Incremental backups.

instsvc Service setup.
instreg Registry parameters setup.

We recommend the comprehensive tool, IBExpert (http://www.ibexpert.com), whichalso offers a free Personal Edition, for working with Firebird. This tool is
however only available for Windows.

You can also download the free "FbAdmin" from the Consic homepage. This is a simple, German-language administrationprogram, that covers the most
important administrative tasks: http://www.consic.de/firebird.

ISQL
The ISQL utility ("Interactive SQL") can be found in the Firebird installation's bin directory. When started it reports back with an SQL prompt:

 SQL> _

Each command must end with a semicolon to be executed. Commands can also extend over several lines, from the second line onwards theymust be
preceded with CON> (Continue) as a prompt.

Create a database

Use the following command to create a new, empty database:

 SQL> create database 'c:\test.fdb'
 CON> user 'SYSDBA'
 CON> password 'masterkey'
 CON> page_size 4096
 CON> default character set iso8859_1 ;

A page size of 4096 bytes is considered optimal for up-to-date server operating systems. The page size hast to be a multiple of 1024.

Following the database creation, youshould convert to SQL Dialect 3. This canbe done using the GFIX utility (detailed in a separate chapter):

 gfix c:\test.fdb -user SYSDBA -password masterkey -sql_dialect 3

Connect to a database

 SQL> connect 'c:\test.fdb' user 'SYSDBA' password 'masterkey';

Use this command to test to connect to a database.

Closing ISQL

ISQL can be closed using the commands, QUIT or EXIT. EXIT commits the current transaction first, QUIT rolls the current transaction back.

Executing an SQL script file

855

http://www.ibexpert.com
http://www.consic.de/firebird

 isql -i C:\DB\myscript.sql

The script file should include a CONNECT command for the database connection. Alternatively the database can be named, along with the user name and
password, directly:

Starting ISQL with a direct database connection

 isql c:\test.fdb -user SYSDBA -password masterkey

Determining the database SQL dialect

 SQL> show sql dialect;
 Client SQL dialect is set to: 3 and database SQL dialect is: 3.

See also:
ISQL

GSEC: user administration
The users of all databases run by one service are stored in the securitydatabase, security.fdb. There is alwayat least one user, the Database Administrator,
SYSDBA.

Following the installationof a new service, the SYSDBA's password is set to masterkey. (Exception: Firebird for Linux, see Installing on Linux).

Only the first 8 characters of a Firebird password are significant. A password maynot contain anyspaces.

Starting GSEC

GSEC can only be started by the SYSDBA.

To start GSEC on the local server, enter:

 gsec -user sysdba -password <password> [options]

To start GSEC for a server in the network, enter:

 gsec -user sysdba -password <password> -database <databasename>

where <databasename> is the name of the security.fdb database on the server.

GSEC can be used as an interactive command-line tool. Alternatively the commands can also be input directlyon a command line.

Commands

di[splay] Displays all users.

di[splay] <username> Displays all information for the specified user (excepting
the password).

a[dd] <username> -pw <password>
[options] Insert a new user.

mo[dify] <username> [options] Alters the user.

de[lete] <username> Deletes the user.

h[elp] oder ? Displays the help.

q[uit] Ends the interactive mode.
z Displays the GSEC versionnumber.

If youdo not wish to start the interactive mode, all commands may be entered directly in the command line. Each command then need to be preceded by a
hyphen("-").

Options

-pa[ssword] <password> The password of the user carrying out the alterations.

-user <username> The user name of the user carrying out the alterations.

-pw <password> Password of the user being altered or new password.

-fname <first name> First name of the user being altered.

-mname <middle name> Middle name of the user being altered.

-lname <last name> Last name of the user being altered.

Examples

Add the user Elvis Presley as user name, ELVIS, the password is Aaron:

856

 gsec -user SYSDBA -password masterkey
 GSEC> add elvis -pw Aaron -fname Elvis -lname Presley
 GSEC> quit

Change user ELVIS's password to chuck:

 gsec -user SYSDBA -password masterkey
 GSEC> modify elvis -pw chuck
 GSEC> quit

On Linux, change the SYSDBA password from harry to hamburg:

 gsec -user SYSDBA -password masterkey -database
 -> harry:/opt/firebird/security.fdb -modify sysdba -pw hamburg

On Windows, change SYSDBA's password from Sally to hannover:

 gsec -user SYSDBA -password masterkey -database
 -> sally:"C:\Program Files\Firebird\security.fdb"
 -> -modify sysdba -pw hannover

Change SYSDBA's password on server, jake, on TCP port 3051 to london:

 gsec -user SYSDBA -password masterkey -database
 -> jake/3051:/opt/firebird/security.fdb" -modify sysdba -pw london

Delete user JOE on the local server:

 gsec -user SYSDBA -password masterkey -delete joe

See also:
ISQL
Security in Firebird 2
IBExpert Grant Manager
IBExpert User Manager

857

Databases
1. Database string

1. Example Windows server
2. Example Linux server
3. Example port number 3051

2. Alias names
Example

3. Owner, permissions

Databases
A database consists of a file (distribution across several files is possible). This file contains all tables, indices, user rights (Grants), foreignkeys, stored
procedures, triggers, etc.

Usual suffix: .fdb

This file must be stored on the same computer as the Firebird service itself. Access to a file server is technically impossible (regardless of whether via UNC
names or a hard drive letter).

A database file will always get bigger, never smaller. The only possibility to reduce the size of a database file, is to performa a backup and restore.

Database string
In order to connect to a certain Firebird database, the client must enter the database string. This is composed of the following:

 <servername> [/<port>] ":" <datenbank>

servername Name of the database server in the TCP/IP network.

port Port number or IP service name, if the standard port 3050 is not to be used (see also
firebird.conf).

datenbank

Either the file name of the database. Important: This name must always be entered from
the viewpoint of the database server's local file system (no clearance directory names
or similar). The directory in which the database is stored must not require clearance in
order to use it.
or
The name of the database alias, as defined in aliases.conf.

The DatabaseAccess parameter in firebird.conf determines whether file names, aliases or bothmay be used.

The rules regarding case sensitivity conform to the server operating system. Ona Linux server case sensitivity needs to be taken in consideration, on
Windows it doesn't.

Example Windows server

The database server name is dbserver. The default port is used. The database file is stored on C:\DB\pmm.fdb:

 dbserver:C:\DB\pmm.fdb

Example Linux server

The database server name is dbserver. The default port is used. The database file is stored on /db/pmm.fdb:

 dbserver:/db/pmm.fdb

Example port number 3051

The database server name is dbserver. Port 3051 is to be used. The database file is stored on C:\DB\pmm.fdb:

 dbserver/3051:C:\DB\pmm.fdb

If the port number is to a service name in the services file:

 firebirdsql 3051/tcp

then the service name can be used instead of the port number:

 dbserver/firebirdsql:C:\DB\pmm.fdb

See also:
Configuring Firebird

Alias names

858

Entering the full database connectionstring with directory and file name is cumbersome and a potential security risk. For this reasons alias names can be
defined on the server.

These can be defined in the aliases.conf file.

Here youcan find alias specifications:

 <aliasname> = <pfad- und dateiname>

Example

The database server name is dbserver. The default port is used. The database file is stored on /db/pmm.fdb, an alias name pmm is to be specified for the
database.

aliases.conf definition:

 pmm = /db/pmm.fdb

The database connection string is now:

 dbserver:pmm

A combination with the syntaxfor port number or service name specification is also possible:

 dbserver/3051:pmm

See also:
Configuring Firebird

Owner, permissions
The database "owner" is the user that created the database (i.e. executed the CREATE DATABASE command). He kann grant permissions (read, write, execute)
to other users (GRANT). If he does not GRANT anyother users permissions, only the owner can perform DDL und DML operations.

In addition the SYSDBA user always has all permissions on all databases.

Only the SYSDBA or database owner can perform a backup or replace an existing database by a restore.

859

Database configuration
1. Editing mode

1. GFIX: general syntax
2. Enable forced writes (no buffering)
3. Disable forced writes (Buffering)

2. Database sweeps
1. Specifying the sweep interval
2. Deactivating the automatic sweep
3. Forcing a sweep

3. SQL dialect
4. Multi-file databases
5. Database shutdown

1. Shutdown
2. Shutdown from NORMAL to SINGLE
3. Restart

Database configuration
Editing mode
Editing operations on the database file canbe buffered. Buffering is quicker, but can be unreliable in the case of a crash. This should therefore be disabled on
productive systems.

Buffering is specified in GFIX or using an administration tool such an IBExpert. The user must be SYSDBA or the database owner.

GFIX: general syntax

 gfix <datenbank> -user <benutzername> -password <passwort>
 -write {sync|async}

Enable forced writes (no buffering)

 gfix c:\mydb.fdb -user SYSDBA -password masterkey -write sync

Disable forced writes (Buffering)

 gfix c:\mydb.fdb -user SYSDBA -password masterkey -write async

Database sweeps
Firebird performs a garbage collection("sweep") at irregular intervals, cleaning up open transactions. This is necessary due to Firebird and InterBase's multi-
generational architecture. This stores certain data sets in a series of generations, to allow all open transactions a consistent data view.

Anautomatic sweep is executed when a certain number of incomplete transactions has been reached. This number in the "sweep interval". The sweep
interval can be specified at anywished number.

A sweep interval of 0 (zero) switches off automatic sweeping.

A sweep canalso be executed at a specified time (e.g. at night).

Only the SYSDBA or the database owner may specify the sweep interval.

Specifying the sweep interval

Specification of the sweep interval at 20,000 transactions:

 gfix c:\test.fdb -user SYSDBA -password masterkey -housekeeping 20000

Deactivating the automatic sweep

 gfix c:\test.fdb -user SYSDBA -password masterkey -housekeeping 0

Forcing a sweep

 gfix c:\test.fdb -user SYSDBA -password masterkey -sweep

See also:
Firebird for the database expert: Episode 4 - OAT, OIT and Sweep

SQL dialect
Firebird emanates from Borland InterBase. For legacyreasons two SQL dialects, with marginal differences, are supported (Dialect 1, Dialect 3).

860

Dialect 3 is the preferred choice for new databases. This offers separate datatypes for DATE, TIME and TIMESTAMP (only TIMESTAMP is a combination
comprising date and time).

Databases created by the CREATE DATABASE statement however have a default dialect 1. Theyneed to be subsequently altered to dialect 3:

 gfix c:\test.fdb -user SYSDBA -password masterkey -sql_dialect 3

The current specified SQL dialect for a database can be determined using ISQL:

 isql
 SQL> connect mydb.fdb user SYSDBA password masterkey;
 SQL> show sql dialect;
 Client SQL dialect is set to: 3 and database SQL dialect is: 3

Multi-file databases
A database can be split across multiple files. However it is not possible to specify whichparts of the database are stored in which file. As the old 4 GB limit (up
to and including version InterBase 6.0), we do not consider a distribution across multiple files recommendable. Therefore this is not documented here any
further.

Please refer to the InterBase 6.0 Operations Guide or the relevant Firebird documentation.

See also:
Multi-file database

Database shutdown
A database can be in a variety of states:

NORMAL: The database is active and online: the normal state, allowing youto work with the database.
MULTI: Only connections from the SYSDBA and the database owner are allowed.
SINGLE: Only one single connection by the SYSDBA is allowed.
FULL: Exclusive shutdown: the database is completely offline, no connections are allowed. In this state the database file (.fdb file) canbe accessed
(e.g. copied).

GFIX can be used to start or shutdown a database to these levels. So that connected users are not simply"thrown out" for the shutdown, there are various
options to specify a certain shutdowntime.

Shutdown

To shut down to the next level use the GFIX option –shut, followed by the name of the level.

Using the option–force the number of seconds can be specified, that the service should wait, until all other users have disconnected. If any connections still
exist following this period, theyare automaticallydisconnected. Open transactions are rolled back.

Alternatively the options –attach can be used to specifya certain number of seconds that should be waited until all users have disconnected. Following this
period if there are any users that have still not disconnected, the shutdown is aborted and an error message published.

Shutdown from NORMAL to SINGLE

 gfix-user sysdba -password masterkey localhost:mydb -shut single -force 0

The –force 0 option ensures here that all users except the SYSDBA are disconnected immediately(0 seconds waiting period).

Restart

To boot up use the –online option instead of –shut. The level name needs to be specified here as well. The options –force or –attach cannot be used here,
as the restart begins immediately.

 gfix -user sysdba -password masterkey localhost:mydb -online normal

861

Backup
1. Backup in productive environments

Windows
2. GBAK utility
3. Backup

1. Options
2. Typical backup example
3. Metadata backup

4. Restore
1. Options
2. Typical restore example
3. Restore to an existing database

5. User database security2.fdb

Backup
Firebird database backups should be performed for the following reasons:

The database file (.fdb file) should not be backed up directlyas a file, as it is not compatible with other platforms and InterBase/Firebird versions.
Moreover the .fdb file is in an instable condition if one or more users are connected to the database (openedit access etc.). This is also an argument
against backing up the database file at file level.
No empty page areas or indices need to be stored in the backup. The backup file is therefore (usually much) smaller.
Databases can also be repaired or reduced in size by performing a backup and restore.
If a database needs to be ported to another platform (e.g. from a Windows server to a Linux server), it is not the database file that is ported but the
backup. This is then imported to the destination server by performing a restore of the backup file.

A backup generates a backup file. This has its ownfile format and contains a consistent data view, because the backup extract the data as an independent
transaction.

A backup canbe carried out during runtime. During this time database performance maydegrade, particularly if the backup runs for some time.

The usual suffix for backup files is: .fbk

Backup in productive environments
Productive systems should be backed up regularly. The .fdb backup file canbe backed up using conventional file backup methods.

If the server runs through the night, the backup canbe started by a scheduler (Windows: AT service, Linux: cron).

Windows

The ATcommand can be used to issue tasks to a Winedows NT server (NT4, 2000, XP, 2003), whichshould be performed at a certain specified time.

Example: A database should be backed up nightly at 4 am. Enter the following command in the Windows prompt:

 at 04:00 /every:mo,di,mi,do,fr,sa,so /interactive

 -> c:\Programme\Firebird\bin\gbak -t -user SYSDBA -password masterkey
 -> harry:c:\DB\pmm.fdb k:\Backups\pmm.fbk

Tip: Do not run such tasks nightlybetween 02:00 and 03:00. Whenclocks are put forward to summer time in the Spring this hour does not exist at all, when
changing back in the Fall, this hour occurs twice.

See also:
Backup Database
Firebird Administration

GBAK utility
Backup and restore are executed by Firebird using the GBAK utility. The GBAK utilitymay be installed on any computer, even on the database server itself. It can
be found in the Firebird bin directory.

GBAK is a command-line tool, which means it can be easily called from batch files, shell scripts or scheduler services.

General syntax

 GBAK <optionen> -user <benutzer> -password <passwort> <quelle> <ziel>

The most important general options:

–b Backup (default; does not need to be specified explicitly).

–c Restore (Create).

–r Replace: an existing database is overwrittenby the restore.

–user <benutzername> Specification of the user name.

–password <passwort> Specification of the password.

862

–v Verbose: detailed log of the action currently being conducted.
–y <dateiname> Exports all log messages into the specified file. The file may not already exist at the time GBAK starts!

–y suppress_output No log output.
–z Display the GBAK version number.

See also:
GBAK

Backup
The database must be named as source and the backup file named as the target. The target must be a file name in the computer file system which is
executing GBAK. If no directory is explicitlynamed, the current directory is used.

A backup may only be performed by the SYSDBA or the database owner.

Options

–t
Transportable Backup: A backup is generated, which canbe read by all InterBase/Firebird database,
independent of version and platform.
Recommended for all backups.

–g Prevents garbage collectionbeing performed during the backup.

–ignore Checksum errors are ignored during the backup.

–m Metadata only: Only the metadata are backed up, not the table contents.

–nt Non-transportable format: The opposite of –t. Not recommended.

–se <hostname>:service_
mgr

Uses the Service Manager.
Backup: the backup file is created on the database server.
Restore: the restore is made from a file which is on the database server.
This optionmust be specified if the security2.fdb is to be backed up.

Typical backup example

 gbak -v -t -user SYSDBA -password masterkey dbserver:pmm c:\Backup\pmm.fbk

–v Verbose output.

–t Transportable format.
–user SYSDBA User name.

–password
masterkey

Password (the password can be entered in quotes if it contains empty
spaces).

dbserver:pmm Database name (pmm is obviously an alias registered on dbserver).

Another example:

 gbak -v -t -user SYSDBA -password masterkey joe:/db/pmm.fdb c:\backup.fbk

Metadata backup

 gbak -v -t -m -user SYSDBA -password masterkey dbserver:pmm c:\backup.fbk

See also:
Backup Database

Restore
A restore converts a backup file into a database. The source is the backup file (.fbk file) and the target is the database name. It is possible to overwrite an
existing database.

Options

–c Restore in a new database. I.e. the database file of the new database MUST NOT exist, otherwise the restore is aborted and
an error message appears. Mutuallyexclusive with –rep.

–rep Replaces an existing database. This database may not be in use at the time of the restore! It can only be performed by the
SYSDBA or the database owner. Mutually exclusive with –c.

–i Sets all indices to inactive when restoring. The restore is quicker and indices can be activated singly or together, and
recomputed by the activation.

–n Removes all validity constraints from the metadata. This enables data to be restored whichviolates these constraints and
otherwise could not be restored.

–o Restores one table at a time. This can be uses to partially restore databases with corrupt table data.

863

–p <bytes> Sets a different page size for the new database. The page size must be a multiple of 1024. Values > 16984 cannot be used,
values < 4096 are not recommended (and not allowed in Firebird 2.1).

–use_all_
space Fills all database pages to 100% instead of the usual 80%.

Typical restore example

 gbak -c -v -user SYSDBA -password masterkey c:\backup\pmm.fbk dbserver:pmm

Restore to an existing database

 gbak -rep -v -user SYSDBA -password masterkey c:\backups\pmm.fbk
 dbserver:/db/pmm2.fdb

See also:
Restore Database

User database security2.fdb
All Firebird service users are stored in the user database, security2.fdb in the Firebird root directory. For a complete data backup a backup of this
database should also be made. GBAK can be used for this.

The securitydatabase can however not be backed up remotely. The Service Manager has to be used. The backup file is generated physically on the
database server. If it is created in a released directory, it can thenbe moved to another location.

For security reasons the security database and any backups of it should not be accessible to non-administrators.

A direct backup of the security2.fdb is however possible, as the Firebird service always has it open. So should you ever need to recover the security2.fdb
youwill need to follow the following procedure:

You need a functional user database, so that the service can run. If necessary carryout a new installation. (Here the SYSDBA user is already set up with a
password that is known.)
Perform a restore using GBAK, however not directly overwriting the existing security2.fdb in the Firebird root directory, but somewhere else.
Shut down the Firebird service. In Windows using the Services Manager, in Linux with the fbmgr utility.
Replace the security2.fdb in the Firebird root directory with the file just created by the restore.
Restart the Firebird service.

See also:
Security in Firebird 2

Links, Literature
http://www.firebirdsql.org Home page of the Firebird project. Containing news and links to the downloads.

http://www.ibphoenix.com Home page of a team, that is involved in the Firebird development, and provides additional information.

http://www.destructor.de/
firebird Firebird information and documentation.

http://www.ibexpert.com IBExpert information and downloads.

http://www.consic.de/
firebird This handbook and further Firebird information and downloads.

The Firebird Book The Firebird Book, A Reference for Database Developers: An essential guide for developers and
administrators working with the Firebird open source relational database management system.
Helen Borrie, 2004, 1092 Seiten, ISBN 1590592794

864

http://www.firebirdsql.orgHomepageoftheFirebirdproject.Containingnewsandlinkstothedownloads
http://www.ibphoenix.comHomepageofateam,thatisinvolvedintheFirebirddevelopment,andprovidesadditionalinformation
http://www.destructor.de/
http://www.ibexpert.comIBExpertinformationanddownloads
http://www.consic.de/

Firebird 2 Cheat Sheet
Author: Lorenzo Alberton, http://www.alberton.info

Firebird SQL Cheat Sheet - Details
The cheat sheet is organized in 5 sections. The first section contains a list of the available datatypes, their description and the range of values that eachof
them supports.

The second section contains a list of the internal functions. The ones listed here are the Firebird 2 built-in functions; they're grouped by field of interest
(aggregate, conditional, string functions).

The third section contains a list of the Default UDF functions. Firebird bundles an UDF library with some useful functions not included in the core. These
functions are listed here, grouped by field of interest (mathematical and string functions).

The fourthsection contains some useful queries, like the most useful queries to manage TRANSACTIONs, SAVEPOINTs, SEQUENCEs, a sample query with a LIMIT /
OFFSET clause, and some queries against the System Tables to retrieve a list of the tables, fields, indices and constraints.

The last sectionholds a list of the PHP ibase_* functions. PHP has a Firebird/Interbase module and this is used by PHP developers to connect to, and query,
a Firebird database. This section lists the functions available in PHP for connecting to and managing a Firebird database.

865

http://www.alberton.info

You candownload the cheat sheet here or view at Lorenzo's website: http://www.alberton.info/firebird_cheat_sheet.html

866

http://www.alberton.info/firebird_cheat_sheet.html

Firebird 2 SQL Reference Guide (Preview)
The complete reference of all SQL keywords and commands supported by Firebird
Members of the Firebird Documentationproject
December 2007

Introduction
DSQL
ESQL
ISQL
PSQL

Alphabetical keyword and function index
ABS() [2.1]
ACOS() [2.1]
ALTER DATABASE
ALTER DATABASE BEGIN/END BACKUP [2.0]
ALTER DOMAIN
ALTER EXCEPTION
ALTER EXTERNAL FUNCTION[2.0]
ALTER INDEX
ALTER PROCEDURE
ALTER SEQUENCE .. RESTARTWITH [2.0]
ALTER TABLE
ALTER TRIGGER
ASCII_CHAR() [2.1]
ASCII_VAL() [2.1]
ASIN() [2.1]
ATAN() [2.1]
ATAN2() [2.1]
AVG()
BASED ON
BEGIN DECLARE SECTION
BIN_AND() [2.1]
BIN_OR() [2.1]
BIN_SHL() [2.1]
BIN_SHR() [2.1]
BIN_XOR() [2.1]
BIT_LENGTH / CHAR_LENGTH / CHARACTER_LENGTH / OCTET_LENGTH [2.0]
CASE [1.5]
CAST()
CEIL() / CEILING() [2.1]
CLOSE
CLOSE (BLOB)
COALESCE [1.5]
COLLATE (BLOB) [2.0]
COLLATE [PSQL] [2.1]
COMMENT [2.0]
COMMIT
CONNECT
COS() [2.1]
COSH() [2.1]
COT() [2.1]
COUNT()
CREATE COLLATION[2.1]
CREATE DATABASE
CREATE DOMAIN
CREATE EXCEPTION
CREATE GENERATOR
CREATE GLOBAL TEMPORARYTABLE [2.1]
CREATE INDEX
CREATE INDEX COMPUTED BY[2.0]
CREATE OR ALTER EXCEPTION [2.0]
CREATE OR ALTER {TRIGGER |PROCEDURE } [1.5]
CREATE PROCEDURE
CREATE ROLE
CREATE SEQUENCE [2.0]
CREATE SHADOW
CREATE TABLE
CREATE TRIGGER
CREATE TRIGGER ON CONNECT[2.1]
CREATE TRIGGER ON DISCONNECT[2.1]
CREATE TRIGGER ON TRANSACTION COMMIT [2.1]
CREATE TRIGGER ON TRANSACTION ROLLBACK [2.1]
CREATE TRIGGER ON TRANSACTION START [2.1]
CREATE VIEW
CREATE VIEW [with columnalias] [2.1]
CROSS JOIN [2.0]

867

CURRENT_CONNECTION[1.5]
CURRENT_ROLE [1.5]
CURRENT_TRANSACTION [1.5]
CURRENT_USER[1.5]
CURSORFOR [2.0]
DATEADD() [2.1]
DATEDIFF() [2.1]
DECLARE CURSOR
DECLARE CURSOR(BLOB)
DECLARE EXTERNAL FUNCTION
DECLARE FILTER
DECLARE STATEMENT
DECLARE TABLE
DECODE() [2.1]
DELETE
DESCRIBE
DISCONNECT
DROP DATABASE
DROP DEFAULT[2.0]
DROP DOMAIN
DROP EXCEPTION
DROP EXTERNAL FUNCTION
DROP FILTER
DROP GENERATOR
DROP GENERATORrevisited [1.5]
DROP INDEX
DROP PROCEDURE
DROP ROLE
DROP SEQUENCE [2.0]
DROP SHADOW
DROP TABLE
DROP TRIGGER
DROP VIEW
END DECLARE SECTION
EVENTINIT
EVENTWAIT
EXECUTE
EXECUTE BLOCK [2.0]
EXECUTE IMMEDIATE
EXECUTE PROCEDURE
EXECUTE STATEMENT[1.5]
EXP() [2.1]
EXTRACT()
FETCH
FETCH (BLOB)
FIRST(m) SKIP(n)
FLOOR() [2.1]
FOR UPDATE [WITH LOCK] [1.5]
GDSCODE [1.5]
GEN_ID()
GEN_UUID() [2.1]
GRANT
HASH() [2.1]
IIF [2.0]
INSERT
INSERT CURSOR(BLOB)
INSERT INTO ... DEFAULT VALUES [2.1]
INSERTING, UPDATING, DELETING [1.5]
LEAVE / BREAK [1.5]
LEAVE [<label_name>] [2.0]
LEFT() [2.1]
LIKE ... ESCAPE?? [1.5]
LIST() [2.1]
LN() [2.1]
LOG() [2.1]
LOG10() [2.1]
LOWER() [2.0]
LPAD() [2.1]
MAX()
MAXVALUE() [2.1]
MIN()
MINVALUE() [2.1]
MOD() [2.1]
MON$ Tables [2.1]
NATURAL JOIN [2.1]
NEXT VALUE FOR [2.0]
NULLIF [1.5]
OPEN
OPEN (BLOB)
OVERLAY() [2.1]
PI() [2.1]

868

POSITION() [2.1]
POWER() [2.1]
PREPARE
RAND() [2.1]
RDB$GET_CONTEXT [2.0]
RDB$SET_CONTEXT[2.0]
RECREATE EXCEPTION [2.0]
RECREATE PROCEDURE
RECREATE TABLE
RECREATE TRIGGER [2.0]
RECREATE VIEW
RELEASE SAVEPOINT [1.5]
REPLACE() [2.1]
RETURNING [2.1]
REVERSE() [2.1]
REVOKE
REVOKE ADMIN OPTIONFROM [2.0]
RIGHT() [2.1]
ROLLBACK
ROLLBACK RETAIN [2.0]
ROLLBACK [WORK] TO [SAVEPOINT] [1.5]
ROUND() [2.1]
ROWS [2.0]
ROW_COUNT [1.5]
RPAD() [2.1]
SAVEPOINT [1.5]
SELECT
SET DATABASE
SET DEFAULT[2.0]
SET GENERATOR
SET HEAD[ing] toggle [2.0]
SET NAMES
SET SQL DIALECT
SET SQLDA_DISPLAYON/OFF [2.0]
SET STATISTICS
SET TRANSACTION
SHOW SQL DIALECT
SIGN() [2.1]
SIN() [2.1]
SINH() [2.1]
SQL Commands
SQLCODE [1.5]
SQRT() [2.1]
SUBSTRING()
SUM()
TAN() [2.1]
TANH() [2.1]
TRIM() [2.0]
TRUNC() [2.1]
TYPE OF [domains in PSQL] [2.1]
UNIONDISTINCT [2.0]
UPDATE
UPDATE OR INSERT [2.1]
UPPER()
WHENEVER
WITH [RECURSIVE] (CTE) [2.1]

A Document history
FB2 SQL Ref - B License note

869

Firebird 2 SQL Reference Guide

Introduction
1. DSQL
2. ESQL
3. ISQL
4. PSQL

Firebird 2 SQL Reference Guide

Introduction
The Firebird SQL Reference Guide contains an alphabetical index of all keywords and built-in functions available in a Firebird database.

Note that not all terms are available everywhere. At the start of every entry there is an item Availability that tells in what context(s) a keyword or functioncan be
used. The terms used there are described in the following.

DSQL
Dynamic SQL is the context of a SQL client (application) sending SQL commands to the server.

ESQL
Embedded SQL is the context of a SQL command embedded in an application. This is in essence the same as DSQL, except that every ESQL statement
must be preceeded with the EXEC SQL keyword.

ISQL
ISQL (or Interactive SQL) is a command line tool that is included in the Firebird distribution. It allows access to (almost) the full feature set available in Firebird,
and is the recommended tool to narrow down the source of a potential problem with a SQL command should you find one. Unlike most other connectivity
components and tools, ISQL shows also warning messages that maynot be shown.

PSQL
PSQL (or Procedural SQL) is the SQL context used in Stored Procedures and Triggers. There are some special commands and keywords only available in
PSQL, like the NEW and OLD context variables in triggers. But there are also some limitations against D/E/ISQL: as a rule of thumb, PSQL is limited to DML
(Data ManipulationLanguage), while the other flavours also allow DDL (Data Definition Language) statements.

870

Firebird 2 SQL Reference Guide

Introduction
1. DSQL
2. ESQL
3. ISQL
4. PSQL

Firebird 2 SQL Reference Guide

Introduction
The Firebird SQL Reference Guide contains an alphabetical index of all keywords and built-in functions available in a Firebird database.

Note that not all terms are available everywhere. At the start of every entry there is an item Availability that tells in what context(s) a keyword or function canbe
used. The terms used there are described in the following.

DSQL
Dynamic SQL is the context of a SQL client (application) sending SQL commands to the server.

ESQL
Embedded SQL is the context of a SQL command embedded in an application. This is in essence the same as DSQL, except that every ESQL statement
must be preceeded with the EXEC SQL keyword.

ISQL
ISQL (or Interactive SQL) is a command line tool that is included in the Firebird distribution. It allows access to (almost) the full feature set available in Firebird,
and is the recommended tool to narrow down the source of a potential problem with a SQL command should youfind one. Unlike most other connectivity
components and tools, ISQL shows also warning messages that may not be shown.

PSQL
PSQL (or Procedural SQL) is the SQL context used in Stored Procedures and Triggers. There are some special commands and keywords only available in
PSQL, like the NEW and OLD context variables in triggers. But there are also some limitations against D/E/ISQL: as a rule of thumb, PSQL is limited to DML
(Data ManipulationLanguage), while the other flavours also allow DDL (Data Definition Language) statements.

871

Firebird 2 SQL Reference Guide

Introduction
1. DSQL
2. ESQL
3. ISQL
4. PSQL

Firebird 2 SQL Reference Guide

Introduction
The Firebird SQL Reference Guide contains an alphabetical index of all keywords and built-in functions available in a Firebird database.

Note that not all terms are available everywhere. At the start of every entry there is an item Availability that tells in what context(s) a keyword or functioncan be
used. The terms used there are described in the following.

DSQL
Dynamic SQL is the context of a SQL client (application) sending SQL commands to the server.

ESQL
Embedded SQL is the context of a SQL command embedded in an application. This is in essence the same as DSQL, except that every ESQL statement
must be preceeded with the EXEC SQL keyword.

ISQL
ISQL (or Interactive SQL) is a command line tool that is included in the Firebird distribution. It allows access to (almost) the full feature set available in Firebird,
and is the recommended tool to narrow down the source of a potential problem with a SQL command should you find one. Unlike most other connectivity
components and tools, ISQL shows also warning messages that maynot be shown.

PSQL
PSQL (or Procedural SQL) is the SQL context used in Stored Procedures and Triggers. There are some special commands and keywords only available in
PSQL, like the NEW and OLD context variables in triggers. But there are also some limitations against D/E/ISQL: as a rule of thumb, PSQL is limited to DML
(Data ManipulationLanguage), while the other flavours also allow DDL (Data Definition Language) statements.

872

Firebird 2 SQL Reference Guide

Introduction
1. DSQL
2. ESQL
3. ISQL
4. PSQL

Firebird 2 SQL Reference Guide

Introduction
The Firebird SQL Reference Guide contains an alphabetical index of all keywords and built-in functions available in a Firebird database.

Note that not all terms are available everywhere. At the start of every entry there is an item Availability that tells in what context(s) a keyword or function canbe
used. The terms used there are described in the following.

DSQL
Dynamic SQL is the context of a SQL client (application) sending SQL commands to the server.

ESQL
Embedded SQL is the context of a SQL command embedded in an application. This is in essence the same as DSQL, except that every ESQL statement
must be preceeded with the EXEC SQL keyword.

ISQL
ISQL (or Interactive SQL) is a command line tool that is included in the Firebird distribution. It allows access to (almost) the full feature set available in Firebird,
and is the recommended tool to narrow down the source of a potential problem with a SQL command should youfind one. Unlike most other connectivity
components and tools, ISQL shows also warning messages that may not be shown.

PSQL
PSQL (or Procedural SQL) is the SQL context used in Stored Procedures and Triggers. There are some special commands and keywords only available in
PSQL, like the NEW and OLD context variables in triggers. But there are also some limitations against D/E/ISQL: as a rule of thumb, PSQL is limited to DML
(Data ManipulationLanguage), while the other flavours also allow DDL (Data Definition Language) statements.

873

Firebird 2 SQL Reference Guide

Introduction
1. DSQL
2. ESQL
3. ISQL
4. PSQL

Firebird 2 SQL Reference Guide

Introduction
The Firebird SQL Reference Guide contains an alphabetical index of all keywords and built-in functions available in a Firebird database.

Note that not all terms are available everywhere. At the start of every entry there is an item Availability that tells in what context(s) a keyword or functioncan be
used. The terms used there are described in the following.

DSQL
Dynamic SQL is the context of a SQL client (application) sending SQL commands to the server.

ESQL
Embedded SQL is the context of a SQL command embedded in an application. This is in essence the same as DSQL, except that every ESQL statement
must be preceeded with the EXEC SQL keyword.

ISQL
ISQL (or Interactive SQL) is a command line tool that is included in the Firebird distribution. It allows access to (almost) the full feature set available in Firebird,
and is the recommended tool to narrow down the source of a potential problem with a SQL command should you find one. Unlike most other connectivity
components and tools, ISQL shows also warning messages that maynot be shown.

PSQL
PSQL (or Procedural SQL) is the SQL context used in Stored Procedures and Triggers. There are some special commands and keywords only available in
PSQL, like the NEW and OLD context variables in triggers. But there are also some limitations against D/E/ISQL: as a rule of thumb, PSQL is limited to DML
(Data ManipulationLanguage), while the other flavours also allow DDL (Data Definition Language) statements.

874

ABS() [2.1]
Returns the absolute value of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ABS(<numeric expression>)

Argument Description
<number expression> The numeric expression whose absolute value is returned.

Description

Returns the absolute value of a number. The result is always >= 0.

Examples

 select abs(amount) from transactions
 select abs(4-7) from rdb$database
 (returns 3)
 select abs(NULL) from rdb$database
 (returns NULL)

See also:
SIGN()

875

ABS() [2.1]
Returns the absolute value of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ABS(<numeric expression>)

Argument Description
<number expression> The numeric expression whose absolute value is returned.

Description

Returns the absolute value of a number. The result is always >= 0.

Examples

 select abs(amount) from transactions
 select abs(4-7) from rdb$database
 (returns 3)
 select abs(NULL) from rdb$database
 (returns NULL)

See also:
SIGN()

876

ACOS() [2.1]
Returns the arc cosine of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ACOS(<numeric expression>)

Important: The argument to ACOS must be in the range -1 to 1.

Argument Description
<number expression> The numeric expression whose arc cosine is returned.

Description

Returns the arc cosine of a number. Argument to ACOS must be in the range -1 to 1. Returns a value in the range 0 to PI.

Examples

 select acos(x) from y

See also:
COS()
SIN()

ALTER DATABASE
Adds secondary files to the current database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also: the Data Definition Guide for more information about multifile databases and the Operations Guide for more information about exclusive database
access.

See also:
CREATE DATABASE
DROP DATABASE

ALTER DATABASE BEGIN/END BACKUP [2.0]
(no contents yet)

ALTER DOMAIN
Changes a domain definition.

(Syntax currently not included because of possible copyright issues.)

For a complete discussionof creating domains, and using them to create column definitions, refer to Firebird domains in Using Firebird-Domains and
Generators (ch. 15 p. 285).

See also:
CREATE DOMAIN
CREATE TABLE
DROP DOMAIN

877

ALTER EXCEPTION
Changes the message associated with an existing exception.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ALTER EXCEPTION name 'message'

Argument Description
Description name Name of an existing exception message.

'message' Quoted string containing ASCII values.

For more information on creating, raising, and handling exceptions, refer to Using Firebird- Error trapping and handling. (ch. 25 p. 549).

See also:
ALTER PROCEDURE
ALTER TRIGGER
CREATE EXCEPTION
CREATE PROCEDURE
CREATE TRIGGER
DROP EXCEPTION

ALTER EXTERNAL FUNCTION [2.0]
(no contents yet)

ALTER INDEX
Activates or deactivates an index.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER TABLE
CREATE INDEX
DROP INDEX
SET STATISTICS

878

ALTER PROCEDURE
Changes the definition of an existing stored procedure.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also: CREATE PROCEDURE for a complete description.

Terminator

Argument Description

terminator Terminator - defined by the ISQL SET TERM command to signify the end of the procedure
body; required by ISQL.

Syntax

 SET TERM <new terminator> <old terminator>

The <old terminator> is not part of the command, but the command terminator. Because SET TERM is exclusivelyan ISQL command, the command
terminator is always required. A procedure can be altered by its creator, the SYSDBA user and, on Linux/UNIX, the root user and any user with root privileges.

Procedures in use are not altered until theyare no longer in use.

ALTER PROCEDURE changes take effect when they are committed. Changes are then reflected in all applications that use the procedure without recompiling or
relinking.

For more information on creating and using procedures, see Using Firebird- Programming on Firebird Server (ch. 25 p. 494). For a complete description of
the statements in procedure and trigger language, refer to PSQL-Firebird Procedural Language.

See also:
CREATE PROCEDURE
DROP PROCEDURE
EXECUTE PROCEDURE

879

ALTER SEQUENCE .. RESTART WITH [2.0]
Sets the current value of a sequence / generator.

Availability: +DSQL +ESQL +ISQL -PSQL

Syntax

 ALTER SEQUENCE <name> RESTART WITH <start_value>

Important: ALTER SEQUENCE, like SET GENERATOR, is a good way to screw up the generationof key values! It is important to know that sequences and
generators are outside of anytransaction control.

Argument Description
<name> Name of the sequence / generator to be set.

<start_value> New starting value for the sequence / generator.

Description

This is the SQL-99-compliant (and therefor recommended) syntaxfor the SET GENERATOR command. It directly sets a sequence / generator to the given value.

The command is not available in -PSQL since it is a DDL and not a DML statement (this can, however, be surpassed by the use of EXECUTE STATEMENT).

This command is useful to reset e.g. an ID-generating sequence after a DELETE FROM <table>, but in almost all other circumstances it is a dangerous thing to
do.

Read the Generator Guide which is available as part of the Firebird documentation set for an in-depthdiscussion of the use of sequences / generators, and
esp. why it is dangerous and not recommended to use this statement in live databases.

Examples

 ALTER SEQUENCE SEQ_ID_EMPLOYEE RESTART WITH 1;

(equivalent to SET GENERATOR SEQ_ID_EMPLOYEE TO 1)

See also:
SET GENERATOR
CREATE SEQUENCE
DROP SEQUENCE
NEXT VALUE FOR

ALTER TABLE
Changes a table by adding, dropping, or modifying columns or integrity constraints.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about altering tables, see Using Firebird- Altering tables (ch. 17 p. 340).

See also:
ALTER DOMAIN
CREATE DOMAIN
CREATE TABLE

ALTER TRIGGER
Changes an existing trigger.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For a complete description of the statements in procedure and trigger language, PSQL-Firebird Procedural Language. For more information, see Using
Firebird- Triggers (ch. 25 p. 532).

See also:
CREATE TRIGGER
DROP TRIGGER

880

ASCII_CHAR() [2.1]
Returns the ASCII character with the specified code.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ASCII_CHAR(<numeric expression>)

Important: The argument to ASCII_CHAR must be in the range 0 to 255.

Argument Description
<numeric expression> The code for the ASCII character to be returned.

Description

Returns the ASCII character with the specified code. The argument to ASCII_CHAR must be in the range 0 to 255. The result is returned in character set NONE.

Examples

1. DSQL

 select ascii_char(65) from rdb$database
(returns 'A')

2. PSQL

 mystr = mystr || ascii_char(13) || ascii_char(10);
(adds a Carriage Return+ Line Feed to mystr)

3. PSQL

The following selectable procedure returns the alphabet in upper and lower case:

 CREATE PROCEDURE ALPHABET
 returns (ALPHA_UPPER char(26), ALPHA_LOWER char(26))
 AS
 declare variable i integer;
 begin
 ALPHA_UPPER = '';
 ALPHA_LOWER = ''; i = 0;

 while (i < 26) do
 begin
 ALPHA_UPPER = TRIM(ALPHA_UPPER) || ASCII_CHAR(i + 65);
 ALPHA_LOWER = TRIM(ALPHA_LOWER) || ASCII_CHAR(i + 65 + (ASCII_VAL('a')-
 ASCII_VAL('A')));

 i = i + 1;
 end

 suspend;
 end

See also:
ASCII_VAL()

881

ASCII_VAL() [2.1]
Returns the ASCII code of the first character of the specified string.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ASCII_VAL(<val>)

Important: if <val> is (or evaluates to) NULL, the result is NULL.

Argument Description

<val> A column, constant, host-language variable, expression, function, or UDF that evaluates
to a character datatype.

Description

Returns the ASCII code of the first character of the specified string.

Rules

1. Returns 0 if the string is empty.
2. Throws an error if the first character is multi-byte.
3. Returns NULL if <val> is (or evaluates to) NULL.

Examples

 select ascii_val(x) from y

 select ascii_val('A') from rdb$database (returns 65)

See also:
ASCII_CHAR()

882

ASIN() [2.1]
Returns the arc sine of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ASIN(<number>)

Important: The argument to ASIN must be in the range -1 to 1.

Argument Description
<number> The number or numeric expression whose arc sine is returned.

Description

Returns the arc sine of a number. Argument to ASIN must be in the range -1 to 1. Returns a value in the range -PI/2 to PI/2.

Examples

 select asin(-1) from rdb$database
 (returns 1,5707963267949 = -PI/2)

 select asin(0) from rdb$database
 (returns 0)

 select asin(1) from rdb$database
 (returns 1,5707963267949 = PI/2)

See also:
COS()
SIN()

883

ATAN() [2.1]
Returns the arc tangent of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ATAN(<number>)

Important: The argument to ATAN must be in the range -1 to 1.

Argument Description
<number> The number or numeric expression whose arc tangent is returned.

Description

Returns the arc sine of a number. Argument to ATAN must be in the range -1 to 1. Returns a value in the range -PI/2 to PI/2.

Examples

 select atan(-1) from rdb$database
 (returns -0,7853981633974 = -PI/4)

 select atan(0) from rdb$database
 (returns 0)

 select atan(1) from rdb$database
 (returns 0,7853981633974 = PI/4)

See also:
COS()
SIN()

884

ATAN2() [2.1]
Returns the arc tangent of the first number / the second number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ATAN2(<number1>,<number2>)

Important: The arguments to ATAN2must be in the range -1 to 1.

Argument Description
<number1> The first numeric expression whose arc tangent is returned.

<number2> The second numeric expression whose arc tangent is returned.

Description

Returns the arc tangent of the first number / the second number. Returns a value in the range -PI to PI.

Examples

 select atan2(1,1) from rdb$database
 (returns 0,7853981633974 = PI/4)

 select atan2(0,0) from rdb$database
 (returns 0)

See also:
COS()
SIN()

AVG()
Calculates the average of numeric values in a specified column or expression.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
COUNT()
MAX()
MIN()
SUM()

BASED ON
Declares a host-language variable based on a column.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
BEGIN DECLARE SECTION
CREATE TABLE
END DECLARE SECTION

BEGIN DECLARE SECTION
Identifies the start of a host-language variable declaration section.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
BASED ON
END DECLARE SECTION

885

BIN_AND() [2.1]
Returns the result of a binary and operation performed on all arguments.

Availability: DSQL ESQL ISQL PSQL

Syntax

 BIN_AND(<number>[, <number> ...])

Argument Description
<number> The numbers that the binary AND operation is executed on.

Examples

 SELECT bin_and(1,3,7) from rdb$database
(returns 1)

 SELECT bin_and(2,6,10) from rdb$database
(returns 2)

See also:
BIN_OR()
BIN_XOR()

886

BIN_OR() [2.1]
Returns the result of a binary or operation performed on all arguments.

Availability: DSQL ESQL ISQL PSQL

Syntax

 BIN_OR(<number>[, <number> ...])

Argument Description
<number> The numbers that the binary OR operation is executed on.

Description

Examples

 SELECT bin_and(1,3,7) from rdb$database
(returns 7)

 SELECT bin_or(2,6,10) from rdb$database
(returns 14)

See also:
BIN_AND()
BIN_XOR()

887

BIN_SHL() [2.1]
Returns the result of a binary shift left operation performed on the arguments (first << second).

Availability: DSQL ESQL ISQL PSQL

Syntax

 BIN_SHL(<number1>,<number2>)

Important: <number2>must be >= 0.

Argument Description
<number1> The number that gets binary shifted left.

<number2> How many bits to shift <number1> left.

Examples

 SELECT bin_shl(16,1) from rdb$database
(returns 32)

 SELECT bin_shl(16,4) from rdb$database
(returns 256)

See also:
BIN_SHR()

888

BIN_SHR() [2.1]
Returns the result of a binary shift right operation performed on the arguments (first >> second).

Availability: DSQL ESQL ISQL PSQL

Syntax

 BIN_SHL(<number1>,<number2>)

Important: <number2>must be >= 0.

Argument Description
<number1> The number that gets binary shifted right.

<number2> How many bits to shift <number1> right.

Description

Examples

 SELECT bin_shr(16,1) from rdb$database
(returns 8)

 SELECT bin_shr(16,4) from rdb$database
(returns 1)

 SELECT bin_shr(16,8) from rdb$database
(returns 0)

See also:
BIN_SHL()

889

BIN_XOR() [2.1]
Returns the result of a binary XOR operation performed on all arguments.

Availability: DSQL ESQL ISQL PSQL

Syntax

 BIN_OR(<number>[, <number> ...])

Argument Description
<number> The numbers that the binary XOR operation is executed on.

Examples

 SELECT bin_xor(1,3,7) from rdb$database
 (returns 5)
 SELECT bin_xor(2,6,10) from rdb$database
 (returns 14)

See also:
BIN_AND()
BIN_OR()

890

BIT_LENGTH / CHAR_LENGTH / CHARACTER_LENGTH / OCTET_LENGTH [2.0]
These functions will return information about the size of strings.

Availability: DSQL ESQL ISQL PSQL

Syntax

 BIT_LENGTH(<val>)
 CHAR_LENGTH(<val>)
 CHARACTER_LENGTH(<val>)
 OCTET_LENGTH(<val>)

Important

If no TRIM() is applied to <val>, trailing blanks in <val> will add to the result (see example).

Argument Description

<val> A column, constant, host-language variable, expression, function, or UDF that evaluates
to a character datatype.

Description

These three new functions will return information about the size of strings:

1. BIT_LENGTH returns the length of a string in bits.
2. CHAR_LENGTH/CHARACTER_LENGTH returns the length of a string in characters.
3. OCTET_LENGTH returns the length of a string in bytes.

Examples

 select
 rdb$relation_name,
 char_length(rdb$relation_name),
 bit_length(trim(rdb$relation_name)),
 char_length(trim(rdb$relation_name))
 octet_length(trim(rdb$relation_name))
 from rdb$relations;

891

CASE [1.5]
Allows the result of a column to be determined by the outcome of a group of exclusive conditions.

Availability: DSQL ESQL ISQL PSQL

Syntax

simple CASE:

 CASE <search expression>
 WHEN <value expression> THEN <result expression>
 { WHEN <value expression> THEN <result expression> }
 [ELSE <result expression>]

searched CASE:

 CASE
 WHEN <search condition> THEN <result expression>
 { WHEN <search condition> THEN <result expression> }
 [ELSE <result expression>]

Argument Description
<search expression> The expression to be examined by the CASE construct.

<value expression> a constant for this CASE branch.

<search condition> an expression that, if it evaluates to TRUE, gives the result in this WHEN branch.

<result expression> the result returned when this WHEN or ELSE branch matches.

Description

Allow the result of a columnto be determined by the outcome of a group of exclusive conditions. There are two variations of the CASE construct: simple and
searched.

In the simple CASE, an expression following the keyword CASE is evaluated and compared against the various values in the simple WHEN clauses. The result
given after THEN in the first matching WHEN argument is returned.

In the searched CASE, every WHEN clause holds an expression that gets evaluated. The result will be the argument following the WHEN clause for the first WHEN
clause that evaluates to true.

There are three more variations to CASE:

NULLIF is equivalent to CASE WHEN V1 = V2 THEN NULL ELSE V1 END.
COALESCE is equivalent to CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END.
DECODE is an inline version of CASE implemented as a functioncall.

Examples

Simple example:

 SELECT
 o.ID,
 o.Description,
 CASE o.Status
 WHEN 1 THEN 'confirmed'
 WHEN 2 THEN 'in production'
 WHEN 3 THEN 'ready'
 WHEN 4 THEN 'shipped'
 ELSE 'unknown status || o.Status || '
 END
 FROM Orders o;
 Searched example:
 SELECT
 o.ID,
 o.Description,
 CASE
 WHEN (o.Status IS NULL) THEN 'new'
 WHEN (o.Status = 1) THEN 'confirmed'
 WHEN (o.Status = 3) THEN 'in production'
 WHEN (o.Status = 4) THEN 'ready'
 WHEN (o.Status = 5) THEN 'shipped'
 ELSE 'unknown status || o.Status || '
 END
 FROM Orders o;

See also:
COALESCE()
NULLIF()
DECODE()
IF()

892

CAST()
Converts a columnfrom one datatype to another.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
UPPER()
Firebird 2.0.4. Release Notes: CAST() behaviour improved
ibec_Cast

893

CEIL() / CEILING() [2.1]
Returns a value representing the smallest integer that is greater thanor equal to the input argument.

Availability: DSQL ESQL ISQL PSQL

Syntax

 { CEIL | CEILING }(<number>)

Argument Description
<number> The number whose next-greater integer value is returned.

Description

Returns a value representing the smallest integer that is greater thanor equal to the input argument.

Examples

 select ceil(1.0) from rdb$database
(returns 1)

 select ceil(1.1) from rdb$database
(returns 2)

 select ceil(-1.1) from rdb$database
(returns -1)

See also:
FLOOR()
ROUND()

CLOSE
Closes an open cursor.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CLOSE (BLOB)
COMMIT
DECLARE CURSOR
FETCH
OPEN
ROLLBACK

CLOSE (BLOB)
Terminates a specified blob cursor and releases associated system resources.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
DECLARE CURSOR (BLOB)
FETCH (BLOB)
INSERT CURSOR (BLOB)
OPEN (BLOB)

894

COALESCE [1.5]
a shortcut for a CASE construct returning the first non-NULL value.

Availability: DSQL ESQL ISQL PSQL

Syntax

 COALESCE (<value expression> { , <value expression> })

Argument Description
<value expression> an expression to be evaluated.

Description

Allows a column value to be calculated by a number of expressions, from which the first expression to returna non-NULL value is returned as the output value.

COALESCE (V1, V2) is equivalent to the following case specification: CASE WHEN V1 IS NOT NULL THEN V1 ELSE V2 END
COALESCE (V1, V2,..., Vn), for n >= 3, is equivalent to the following case specification: CASE WHEN V1 IS NOT NULL THEN V1 ELSE COALESCE
(V2,...,Vn) END

Examples

 SELECT
 PROJ_NAME AS Projectname,
 COALESCE(e.FULL_NAME,'[< not assigned >]') AS Employeename
 FROM
 PROJECT p
 LEFT JOIN EMPLOYEE e
 ON (e.EMP_NO = p.TEAM_LEADER);
 SELECT
 COALESCE(Phone,MobilePhone,'Unknown') AS "Phonenumber"
 FROM
 Relations;

See also:
CASE
NULLIF()
DECODE()
IIF()

COLLATE (BLOB) [2.0]
(no contents yet)

COLLATE [PSQL] [2.1]
(no contents yet)

895

COMMENT [2.0]
Allows specification of comments on database metadata.

Availability: +DSQL +ESQL +ISQL -PSQL

Syntax

 COMMENT ON DATABASE IS (<comment> | NULL)
 COMMENT ON COLUMN <tblviewname>.<fieldname> IS (<comment> | NULL)
 COMMENT ON PARAMETER <procname>.<paramname> IS (<comment> | NULL)
 COMMENT ON <basic_type> <name> IS (<comment> | NULL)

Important

Anempty literal string '' will act as NULL.

Argument Description
<comment> the comment: a literal string constant (not an expression!).
<tblviewname> name of a table or view.

<fieldname> name of a column in a table or view.
<procname> name of a stored procedure.

<paramname> name of a parameter of a stored procedure.

<basic_type> canbe DOMAIN, TABLE, VIEW, PROCEDURE, TRIGGER, EXTERNAL FUNCTION, FILTER,
EXCEPTION, GENERATOR, SEQUENCE, INDEX, ROLE, CHARACTER SET or COLLATION.

<name> name of a metadata object of type <basic_type>.

Description

This command provides a way to set the RDB$DESCRIPTION field in all of the RDB$ system tables using a SQL command - that is, without the need to directly
update the RDB$ tables (which is not recommended). It allows you to comment or document any metadata object in a database.

Examples

 COMMENT ON DATABASE IS 'This is a Firebird database';
 SELECT RDB$DESCRIPTION FROM RDB$DATABASE;

 COMMENT ON SEQUENCE SEQ_ID_LOG IS 'generates new IDs for the LOG table';
 SELECT RDB$DESCRIPTION FROM RDB$GENERATORS
 WHERE RDB$GENERATOR_NAME='SEQ_ID_LOG';

 COMMENT ON COLUMN LOG.ID IS 'primary key of the LOG table';
 SELECT RDB$DESCRIPTION FROM RDB$RELATION_FIELDS
 WHERE RDB$RELATION_NAME='LOG' AND RDB$FIELD_NAME='ID';

See also:
RDB$ system tables

COMMIT
Makes a transaction's changes to the database permanent, and ends the transaction.

Availability: DSQL ESQL ISQL PSQL

(Syntax is currently not included because of possible copyright issues.)

For more information about handling transactions, see Using Firebird - Transactions in Firebird (ch. 8 p. 90).

See also:
Data transaction COMMIT
DISCONNECT
ROLLBACK

CONNECT
Attaches to one or more databases.

Availability: DSQL ESQL ISQL* PSQL
. *A subset of CONNECT options is available in ISQL.

(Syntax currently not included because of possible copyright issues.)

?

896

Also refer to Using Firebird - Configuring the database cache (ch. 5 p. 67) for more information about cache buffers and Managing Security in ch. 22 of the
same volume for more information about database security.

See also:
DISCONNECT
SET DATABASE
SET NAMES

897

COS() [2.1]
Returns the cosine of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 COS(<number>)

Important

If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose cosine is returned.

Description

Returns the cosine of a number. The angle is specified in radians and returns a value in the range -1 to 1.

Examples

 select cos(0) from rdb$database
 (returns 1)

 select cos(-1) from rdb$database
 (returns 0,5403023058681)

 select cos(1) from rdb$database
 (returns 0,5403023058681)

See also:
SIN()

898

COSH() [2.1]
Returns the hyperbolic cosine of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 COSH(<number>)

Important

If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose hyperbolic cosine is returned.

Description

Returns the hyperbolic cosine of a number. The angle is specified in radians and returns a value in the range -1 to 1.

Examples

 select cosh(0) from rdb$database
 (returns 1)

 select cosh(-1) from rdb$database
 (returns 1,5430806348152)

 select cosh(1) from rdb$database
 (returns 1,5430806348152)

See also:
SIN()
COS()

899

COT() [2.1]
Returns Returns 1 / tan(argument).

Availability: DSQL ESQL ISQL PSQL

Syntax

 COT(<number>)

Important

If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose cotangent is returned.

Description

Returns the cotangent of a number. The angle is specified in radians and returns a value in the range -1 to 1.

Examples

 select cot (0) from rdb$database
 (returns INF)

 select cot(-1) from rdb$database
 (returns -0,6420926159343)

 select cot(1) from rdb$database
 (returns 0,6420926159343)

See also:
SIN()

COUNT()
Calculates the number of rows that satisfy a query's search condition.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
AVG()
MAX()
MIN()
SUM()

CREATE COLLATION [2.1]
(no contents yet)

900

CREATE DATABASE
Creates a new database.

Availability: DSQL ESQL ISQL PSQL

Syntax

Important

In SQL statements passed to DSQL, omit the terminating semicolon. In embedded applications written in C and C++, and in ISQL, the semicolon is a
terminating symbol for the statement, so it must be included.

Argument Description

'filespec' A new database file specification; file naming conventions are platformspecific. See Creating a database for
details about database file specification.

USER 'username'

Checks the username against valid user name and password combinations in the security database on the server
where the database will reside.
* Windows client applications must provide a user name on attachment to a server.
* Any client application attaching to a database on NTor NetWare must provide a user name on attachment.

PASSWORD 'password'

Checks the password against valid user name and password combinations in the securitydatabase on the server
where the database will reside; can be up to 8 characters.
* Windows client applications must provide a user name and password on attachment to a server.
* Any client application attaching to a database on NTor NetWare must provide a password on attachment.

PAGE_SIZE [=] int Size, in bytes, for database pages. int can be 1024, 2048, 4096 (default), 8192 or 16384. From Firebird 2.1
onward, 1024 and 2048 can not be used anymore.

DEFAULT CHARACTER
SET charset

Sets the default character set for a database charset is the name of a character set; if omitted, character set
defaults to NONE.

FILE 'filespec' Names one or more secondary files to hold database pages after the primary file is filled. For databases created
on remote servers, secondary file specifications cannot include a node name.

STARTING [AT [PAGE]]
int Specifies the starting page number for a secondary file.

LENGTH [=] int [PAGE
[S]]

Specifies the length of a primary or secondary database file. Use for primary file only if defining a secondary file in
the same statement.

Description

CREATE DATABASE creates a new, empty database and establishes the following characteristics for it:

The name of the primary file that identifies the database for users. Bydefault, databases are contained in single files.
The name of any in which the database is stored. A database canreside in more than one disk file if additional file names are specified as secondary
files. If a database is created on a remote server, secondary file specifications cannot include a node name.
The size of database pages. Increasing page size can improve performance for the following reasons:

Indexes work faster because the depthof the index is kept to a minimum.
Keeping large rows on a single page is more efficient.
Blob data is stored and retrieved more efficiently when it fits on a single page.

If most transactions involve only a few rows of data, a smaller page size might be appropriate, since less data needs to be passed back and forth and less
memory is used by the disk cache.

The number of pages in each database file.
The dialect of the database.The initial dialect of the database is the dialect of the client that creates it. For example, if you are using ISQL, either start it
with the -sql_dialect n switchor issue the SET SQL DIALECT n command before issuing the CREATE DATABASE command. Typically, you would create
all databases in dialect 3. Dialect 1 exists to ease the migrationof legacydatabases.

Note: To change the dialect of a database, use the gfix tool.

The character set used by the database.

For a list of the character sets recognized by Firebird, see Character sets and collations available in Firebird. Choice of DEFAULT CHARACTER SET limits
possible collation orders to a subset of all available collation orders. Given a specific character set, a specific collation order can be specified when data is
selected, inserted, or updated in a column.

If you do not specify a default character set, the character set defaults to NONE. Using character set NONE means that there is no character set assumption for
columns; data is stored and retrieved just as you originally entered it.

901

You can load any character set into a columndefined with NONE, but youcannot load that same data into another column that has been defined with a different
character set. In that case, no transliteration is performed between the source and destination character sets, and transliterationerrors may occur during
assignment.

System tables that describe the structure of the database. After creating the database, you define its tables, views, indexes, and system views as well
as anytriggers, generators, stored procedures, and UDFs that you need.

Important

In DSQL, youmust execute CREATE DATABASE EXECUTE IMMEDIATE. The database handle and transaction name, if present, must be initialized to zero prior to
use.

Read-only databases: Databases are always created in read-write mode. You can change a database to read-only mode in either of two ways: You can
specifymode -read_only when yourestore a backup or youcan use gfix-mode read_only to change the mode of a read-write database to read-only.

About file sizes: Firebird dynamicallyexpands the last file in a database as needed until it reaches the filesystem limit for shared access files. This applies to
single-file database as well as to the last file of multifile databases. It is important to be aware of the maximum size allowed for shared access files in the
filesystem environment where your databases live. Firebird database files are limited to 2GB in many environments. The total file size is the product of the
number of database pages times the page size. The default page size is 4KB and the maximum page size is 16KB. However, Firebird files are small at
creation time and increase in size as needed. The product of number of pages times page size represents a potential maximum size, not the size at creation.

Examples

The following ISQL statement creates a database in the default directory using ISQL:

 CREATE DATABASE 'employee.gdb';

The next ESQL statement creates a database with a page size of 2048 bytes rather than the default of 4096:

 EXEC SQL
 CREATE DATABASE 'employee.gdb' PAGE_SIZE 2048;

The following ESQL statement creates a database stored in two files and specifies its default character set:

 EXEC SQL
 CREATE DATABASE 'employee.gdb'
 DEFAULT CHARACTER SET ISO8859_1
 FILE 'employee2.gdb' STARTING AT PAGE 10001;

See also:
ALTER DATABASE
DROP DATABASE

902

CREATE DOMAIN
Creates a columndefinition that is global to the database.

Availability: DSQL ESQL ISQL PSQL

(The syntax is currently not included because of possible copyright issues.)

Note 1: Be careful not to create a domain with contradictory constraints, such as declaring a domain NOT NULL and assigning it a DEFAULT value of NULL. The
datatype specification for a CHAR or VARCHAR text domain definition can include a CHARACTER SET clause to specifya character set for the domain. Otherwise,
the domain uses the default database character set.

For a complete list of character sets recognized by Firebird, see chapter 4, Character Sets and Collation Orders (p. 249). If you do not specify a default
character set, the character set defaults to NONE. Using character set NONE means that there is no character set assumption for columns; data is stored and
retrieved just as youoriginally entered it. You can load anycharacter set into a column defined with NONE, but you cannot load that same data into another
column that has been defined with a different character set. In these cases, no transliteration is performed betweenthe source and destination character sets,
so errors can occur during assignment.

The COLLATE clause enables specificationof a particular collation order for CHAR, VARCHAR, and NCHAR text datatypes. Choice of collation order is restricted to
those supported for the domain's given character set, which is either the default character set for the entire database, or a different set defined in the
CHARACTER SET clause as part of the datatype definition. For a complete list of collation orders recognized by Firebird, see chapter 4, Character Sets and
Collation Orders (p. 249).

Columns based on a domain definition inherit all characteristics of the domain. The domain default, collation clause, and NOT NULL setting can be overridden
when defining a column based on a domain. A column based on a domain can add additionalCHECK constraints to the domain CHECK constraint.

See also:
ALTER DOMAIN
ALTER TABLE
CREATE TABLE
DROP DOMAIN

903

CREATE EXCEPTION
Creates a used-defined error and associated message for use in stored procedures and triggers.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information on creating, raising, and handling exceptions, see the Using Firebird- Error trapping and handling (ch. 25 p. 549).

See also:
ALTER EXCEPTION
ALTER PROCEDURE
ALTER TRIGGER
CREATE PROCEDURE
CREATE TRIGGER
DROP EXCEPTION

CREATE GENERATOR
Declares a generator to the database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
GEN_ID()
SET GENERATOR
DROP GENERATOR

CREATE GLOBAL TEMPORARY TABLE [2.1]

(no contents yet)

CREATE INDEX
Creates an index on one or more columns in a table.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER INDEX
DROP INDEX
SELECT
SET STATISTICS

CREATE INDEX COMPUTED BY [2.0]

(no contents yet)

CREATE OR ALTER EXCEPTION [2.0]

(no contents yet)

CREATE OR ALTER {TRIGGER | PROCEDURE } [1.5]

(no contents yet)

904

CREATE PROCEDURE
Creates a stored procedure, its input and output parameters, and its actions.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information on creating and using procedures, see Using Firebird- Programming on Firebird Server (ch. 25 p. 494). For a complete description of
the statements in procedure and trigger language, see chapter 3, PSQL-Firebird Procedural Language (p. 222).

See also:
ALTER EXCEPTION
ALTER PROCEDURE
CREATE EXCEPTION
DROP EXCEPTION
DROP PROCEDURE
EXECUTE PROCEDURE
SELECT

CREATE ROLE
Creates a role.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
GRANT
REVOKE
DROP ROLE

905

CREATE SEQUENCE [2.0]
Creates an integer number generator using SQL-99-compliant syntax.

Availability: +DSQL -ESQL +ISQL -PSQL

Syntax

 CREATE (SEQUENCE | GENERATOR) <name>

Argument Description
<name> The name for the new generator / sequence.

Description

SEQUENCE is the SQL-99-compliant synonym for GENERATOR. SEQUENCE is a syntaxterm described in the SQL specification, whereas GENERATOR is a legacy
InterBase syntaxterm.

It is recommended to use the standard SEQUENCE syntax.

A sequence generator is a mechanism for generating successive exact numeric values, one at a time. A sequence generator is a named schema object. In
dialect 3 it is a BIGINT, in dialect 1 it is an INTEGER. It is oftenused to implement guaranteed unique IDs for records, to construct columns that behave like
AUTOINC fields found in other RDBMSs.

Examples

 CREATE SEQUENCE SEQ_ID_EMPLOYEE;

For a complete discussion on the concept and useage of sequences / generators, see the Generator Guide that is available as part of the Firebird
documentation set.

See also:
CREATE GENERATOR
NEXT VALUE FOR
DROP SEQUENCE
ALTER SEQUENCE
CREATE TRIGGER

CREATE SHADOW
Creates one or more duplicate, in-sync copies of a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

Please also refer to Using Firebird- Database shadows (ch. 20 p. 379).

See also:
DROP SHADOW

906

CREATE TABLE
Creates a new table in an existing database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

Note 1: Constraints are not enforced on expressions.

Please also refer to Using Firebird Tables (ch. 17 p. 313) and Managing Security in ch. 22 of the same volume.

See also:
CREATE DOMAIN
DECLARE TABLE
GRANT
REVOKE

907

CREATE TRIGGER
Creates a trigger, including when it fires, and what actions it performs.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For a complete description of eachstatement, see chapter 3, PSQL-Firebird Procedural Language (p. 222). For discussion of programming triggers, see
Triggers, Coding the body of the code module and Implementing stored procedures and triggers in Using Firebird- Programming on Firebird Server (ch.
25 p. 494).

See also:
ALTER EXCEPTION
ALTER TRIGGER
CREATE EXCEPTION
CREATE PROCEDURE
DROP EXCEPTION
DROP TRIGGER
EXECUTE PROCEDURE

CREATE TRIGGER ON CONNECT [2.1]
(no contents yet)

CREATE TRIGGER ON DISCONNECT [2.1]
(no contents yet)

CREATE TRIGGER ON TRANSACTION COMMIT [2.1]
(no contents yet)

CREATE TRIGGER ON TRANSACTION ROLLBACK [2.1]
(no contents yet)

CREATE TRIGGER ON TRANSACTION START [2.1]
(no contents yet)

908

CREATE VIEW
Creates a new view of data from one or more tables.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

Note 1: Although it is possible to create a view based on the output of a selectable stored procedure, it adds an unnecessary layer of dependency to do so.
Using the output set of a stored procedure joined to a table, another view or another stored procedure is also theoretically possible but, in practice, it causes
more trouble than it saves. With such complexrequirements, it is almost invariablybest to define the entire output within a selectable stored procedure.

A view is updatable if:

It is a subset of a single table or another updatable view.
All base table columns excluded from the view definitionallow NULL values.
The view's SELECT statement does not contain subqueries, a DISTINCT predicate, a HAVING clause, aggregate functions, joined tables, user-defined
functions, or stored procedures.

If the view definition does not meet these conditions, it is considered read-only.

Note 2: Read-only views can be updated by using a combination of user-defined referential constraints, triggers, and unique indexes.

For a complete discussion, see Using Firebird- Views (ch. 19 p. 363).

See also:
CREATE TABLE
DROP VIEW
GRANT
INSERT
REVOKE
SELECT
UPDATE

CREATE VIEW [with column alias] [2.1]

(no contents yet)

CROSS JOIN [2.0]

(no contents yet)

See also:
CROSS JOIN

909

CURRENT_CONNECTION [1.5]
Context variable that holds the system ID of the current connection.

Availability: +DSQL +ESQL +ISQL +PSQL

Syntax

 CURRENT_TRANSACTION

Important: Because the counter for this value is stored on the database header page, it will be reset after a database restore.

Argument Description
CURRENT_CONNECTION Returns the system identifier of the current connection.

Description

This context variable holds the current connection's system ID (data type INTEGER). It can be used for e.g. logging purposes. Every new connection that is made
will receive a new, unique connection ID. In the monitoring tables (V2.1 and up), the value of CURRENT_CONNECTION corresponds to the field MON$ATTACHMENT_ID
in MON$ATTACHMENTS, MON$TRANSACTIONS and MON$STATEMENTS.

Note: Anactive connection with a specific CURRENT_CONNECTION number will always correspond with one record in the MON$ATTACHMENTS table (but can have
several associated transaction records in MON$TRANSACTIONS).

Examples

Obtain the current connection ID in a trigger:

 NEW.CON_ID = CURRENT_CONNECTION;

List all transactions that are bound to the current connection (V2.1 and up):

 SELECT * FROM MON$TRANSACTIONS WHERE MON$ATTACHMENT_ID=CURRENT_CONNECTION

List all statements that are executed within the current connection context, even if theyuse different transactions (V2.1 and up):

 SELECT * FROM MON$STATEMENTS WHERE MON$ATTACHMENT_ID=CURRENT_CONNECTION

See also:
CURRENT_TRANSACTION
CURRENT_USER
CURRENT_ROLE

910

CURRENT_ROLE [1.5]
Context variable returning the current SQL user's role.

Availability: +DSQL +ESQL +ISQL +PSQL

Syntax

 CURRENT_ROLE

Argument Description
CURRENT_ROLE Returns the name of the role of the current SQL user (if any).

Description

Returns the name of the role the current user logged in with (see also CURRENT_USER). If no role was specified, it returns "NONE".

1. If you insist on using an InterBase v.4.x or 5.1 database with Firebird, ROLE is not supported, so current_role will be NONE (as mandated by the SQL
standard in absence of an explicit role) even if the user passed a role name.

2. If you use InterBase 5.5, IB 6 or Firebird, the ROLE passed is verified. If the role does not exist, it is reset to NONE without returning an error.

This means that in Firebird youcan never get an invalid ROLE returned by CURRENT_ROLE, because it will be reset to NONE. This is in contrast with InterBase,
where the bogus value is carried internally, although it is not visible to SQL.

Examples

 SELECT CURRENT_ROLE FROM RDB$DATABASE
 INSERT INTO RoleLog (ID, USERNAME)
 VALUES (NEXT VALUE FOR SEQ_ID_ROLELOG, CURRENT_ROLE)

See also:
CURRENT_USER
CURRENT_TRANSACTION
CURRENT_CONNECTION

911

CURRENT_TRANSACTION [1.5]
Context variable that holds the system ID of the current transaction.

Availability: +DSQL +ESQL +ISQL +PSQL

Syntax

 CURRENT_TRANSACTION

Important: Because the counter for this value is stored on the database header page, it will be reset after a database restore.

Argument Description
CURRENT_TRANSACTION Returns the system identifier of the current transaction.

Description

This context variable holds the current transaction's system ID (data type INTEGER). It canbe used for e.g. logging purposes.

Everynew transaction that is started will receive a new, unique transaction ID.

In the monitoring tables (V2.1 and up), the value of CURRENT_TRANSACTION corresponds to the fields MON$TRANSACTIONS.MON$TRANSACTION_ID and MON$
STATEMENTS.MON$TRANSACTION_ID.

Examples

Obtain the current transaction ID in a trigger:

 NEW.TXN_ID = CURRENT_TRANSACTION;

List all statements that are executed within the current transaction (V2.1 and up):

 SELECT * FROM MON$STATEMENTS WHERE MON$TRANSACTION_ID=CURRENT_TRANSACTION

See also:
CURRENT_CONNECTION
CURRENT_USER
CURRENT_ROLE

912

CURRENT_USER [1.5]
Context variable returning the SQL user name.

Availability: +DSQL +ESQL +ISQL +PSQL

Syntax

 CURRENT_USER

Argument Description
CURRENT_USER Returns the name of the current SQL user.

Description

CURRENT_USER is a DSQL synonym for USER that appears in the SQL standard. Theyare identical. There is no advantage of CURRENT_USER over USER.

Examples

 SELECT CURRENT_USER FROM RDB$DATABASE
 INSERT INTO UserLog (ID, USERNAME)
 VALUES (NEXT VALUE FOR SEQ_ID_USERLOG, CURRENT_USER)

See also:
CURRENT_ROLE
CURRENT_TRANSACTION
CURRENT_CONNECTION

CURSOR FOR [2.0]
(no contents yet)

913

DATEADD() [2.1]
Returns a date/time/timestamp value increased (or decreased, when negative) by the specified amount of time.

Availability: DSQL ESQL ISQL PSQL

Syntax

 DATEADD(<number> <timestamp_part> FOR <date_time>)
 DATEADD(<timestamp_part>, <number>, <date_time>)
 timestamp_part ::= { YEAR | MONTH | DAY | WEEKDAY | HOUR | MINUTE | SECOND}

Important: If anyof the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<date_time> The starting date, time or timestamp for the calculation.

<number> The offset to be added to <date_time>.

<timestamp_part> The unit for <number>.

Description

Returns a date/time/timestamp value increased (or decreased, when negative) by the specified amount of time.

Examples

 select dateadd(1 day for current_date) from rdb$database
(returns tomorrow's date)

 select dateadd(-1 day for current_date) from rdb$database
(returns yesterday's date)

 select dateadd(weekday,1,current_date) from rdb$database
(returns the date of today's weekday in the next week)

 select dateadd(weekday,1,current_timestamp) from rdb$database
(returns the timestamp of today's weekday in the next week with the current time)

See also:
DATEDIFF()

914

DATEDIFF() [2.1]
Returns the interval betweentwo dates/times/timestamps.

Availability: DSQL ESQL ISQL PSQL

Syntax

 DATEDIFF(<timestamp_part> FROM <date_time1> FOR <date_time2>)
 DATEDIFF(<timestamp_part>, <date_time1>, <date_time2>)
 timestamp_part ::= { YEAR | MONTH | DAY | WEEKDAY | HOUR | MINUTE | SECOND}

Important: If any of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<date_time1> The first date, time or timestamp for the calculation.

<date_time2> The second date, time or timestamp for the calculation.

<timestamp_part> The unit for <number>.

Description

Returns an exact numeric value representing the interval of time from the first date/time/timestamp value to the second one.

Rules:
1. Returns a positive value if the second value is greater thanthe first one, negative when the first one is greater, or zero when theyare equal.
2. Comparison of date with time values is invalid.
3. YEAR, MONTH, DAY and WEEKDAY cannot be used with time values.
4. HOUR, MINUTE and SECOND cannot be used with date values.
5. All timestamp_part values can be used with timestamp values.

Examples

 select datediff(SECOND,cast(current_date as timestamp),current_timestamp)
 from rdb$database

(returns the number of seconds elapsed since midnight. The CAST is necessary because of Rule 2)

 select datediff(DAY,dateadd(1 weekday for current_date),current_date) from
 rdb$database

(returns -7)

 select datediff(SECOND,current_time,current_time) from rdb$database

(returns 0)

 select datediff(SECOND,current_date,current_date) from rdb$database

(throws an error because of Rule 5, returns NULL)

See also:
DATEADD()

915

DECLARE CURSOR
Defines a cursor for a table by associating a name with the set of rows specified in a SELECT statement.

Availability: +DSQL +ESQL +ISQL +PSQL

Blob form: See DECLARE CURSOR (BLOB)

(Syntax currently not included because of possible copyright issues.)

See also:
CLOSE
DECLARE CURSOR (BLOB)
FETCH
OPEN
PREPARE
SELECT

DECLARE CURSOR (BLOB)
Declares a blob cursor for read or insert.

Availability: +DSQL +ESQL +ISQL +PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CLOSE (BLOB)
FETCH (BLOB)
INSERT CURSOR (BLOB)
OPEN (BLOB)

DECLARE EXTERNAL FUNCTION
Declares an existing user-defined function(UDF) to a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

Note: that beginning with Firebird 1, you must list the path in the Firebird configuration file if it is other thanib_install_dir/UDF. A path name is no longer
useful in the DECLARE EXTERNAL FUNCTION statement. The Firebird configuration file is called ibconfig on Windows machines, isc_config on Linux/UNIX
machines.

For more information about writing and using UDFs, see Using Firebird Working with UDFs and Blob Filters (ch. 26 p. 572). For declarations of the UDFs in
the ib_udf and fbudf libraries, see User-defined Functions on page 257 in chapter 6.

See also:
DROP EXTERNAL FUNCTION

DECLARE FILTER
Declares an existing blob filter to a database.

Availability: DSQL ESQL ISQL PSQL

Syntax

(Syntax currently not included because of possible copyright issues.)

For more information about Blob subtypes and instructions on writing blob filters, see Using Firebird - BLOB filters (ch. 26 p. 596) and associated topics in
that section.

See also:
DROP FILTER

DECLARE STATEMENT
Identifies dynamic SQL statements before theyare prepared and executed in an embedded program.

916

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
EXECUTE
EXECUTE IMMEDIATE
PREPARE

DECLARE TABLE
Describes the structure of a table to the preprocessor, gpre, before it is created with CREATE TABLE.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CREATE DOMAIN
CREATE TABLE

917

DECODE() [2.1]
A shortcut for a CASE ... WHEN ... ELSE expression.

Availability: DSQL ESQL ISQL PSQL

Syntax

 DECODE(<expression>, <search>, <result>[, <search>, <result> ...] [, <default>])

Argument Description
<expression> The expression to decode.
<search> A possible match for <expression>.
<result> The value returned when <expression>matches the preceeding <search> value.
<default> The value returned when none of the <search> values matched <expression>.

Description

DECODE is an inline version of a CASE ... WHEN ... ELSE construct.

Examples

 select decode(state, 0, 'deleted', 1, 'active', 'unknown') from x
(Returns 'deleted'when state equals 0, 'active' when state equals 1 and otherwise returns 'unknown')

 select decode(rdb$system_flag,1,'SYSTEM',0,'USER','unknown') from rdb$ triggers
(Returns 'SYSTEM' for system triggers and 'USER' for user-defined ones.)

Note: the output column's name is 'CASE'.

See also:
CASE

918

DELETE
Removes rows in a table or in the active set of a cursor.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about using cursors, see the Embedded SQL Guide (EmbedSQL.pdf) of the InterBase® 6 documentation set, obtainable from Borland.

See also:
DECLARE CURSOR
FETCH
GRANT
OPEN
REVOKE
SELECT

DESCRIBE
Provides information about columns that are retrieved by a dynamic SQL (DSQL) statement, or information about dynamic parameters that statement passes.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about ESQL programming and the XSQLDA descriptor, see the Embedded SQL Guide of the InterBase® 6 documentation set,
available from Borland.

See also:
EXECUTE
EXECUTE IMMEDIATE
PREPARE,

DISCONNECT
Detaches an application from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
COMMIT
CONNECT
ROLLBACK
SET DATABASE

DROP DATABASE
Deletes the currently attached database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER DATABASE
CREATE DATABASE

DROP DEFAULT [2.0]
(no contents yet)

DROP DOMAIN
Deletes a domain from a database.

919

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER DOMAIN
ALTER TABLE
CREATE DOMAIN

DROP EXCEPTION
Deletes an exception from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER EXCEPTION
ALTER PROCEDURE
ALTER TRIGGER
CREATE EXCEPTION
CREATE PROCEDURE
CREATE TRIGGER

DROP EXTERNAL FUNCTION
Removes a user-defined function (UDF) declaration from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
DECLARE EXTERNAL FUNCTION

DROP FILTER
Removes a blob filter declaration from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
DECLARE FILTER

DROP GENERATOR
Removes a generator from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CREATE GENERATOR

DROP GENERATOR revisited [1.5]
(no contents yet)

DROP INDEX
Removes an index from a database.

920

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about integrity constraints and system-defined indexes, see Using Firebird - Tables (ch. 17 p. 313). For a discussion of indexing and
related issues, see Indexes in ch. 18 of the same volume.

See also:
ALTER INDEX
CREATE INDEX

DROP PROCEDURE
Deletes an existing stored procedure from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER PROCEDURE
CREATE PROCEDURE
EXECUTE PROCEDURE

DROP ROLE
Deletes a role from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CREATE ROLE
GRANT
REVOKE

921

DROP SEQUENCE [2.0]
Removes a sequence or generator from a database.

Availability: +DSQL +ESQL +ISQL -PSQL

Syntax

 DROP SEQUENCE <name>

Important: It is not possible to drop a sequence when it is used by e.g. a trigger. You canquery the RDB$DEPENCIES table, column RDB$DEPENDED_ON_NAME, to
find out what triggers and/or stored procedures use a sequence.

Argument Description
<name> Name of the sequence / generator to be dropped.

Description

To remove a sequence from a database, use DROP SEQUENCE.

This command is equivalent to DROP GENERATOR, but uses the SQL-99-compliant SEQUENCE syntax. It is therefor recommended to use this syntax instead of
DROP GENERATOR.

Examples

 DROP SEQUENCE SEQ_ID_EMPLOYEE;

See also:
DROP GENERATOR
CREATE SEQUENCE
ALTER SEQUENCE
NEXT VALUE FOR

DROP SHADOW
Deletes a shadow from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CREATE SHADOW

DROP TABLE
Removes a table from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER TABLE
CREATE TABLE

DROP TRIGGER
Deletes an existing user-defined trigger from a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER TRIGGER
CREATE TRIGGER

922

DROP VIEW
Removes a view definition from the database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CREATE VIEW

END DECLARE SECTION
Identifies the end of a host-language variable declaration section.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
BASED ON
BEGIN DECLARE SECTION

EVENT INIT
Registers interest in one or more events with the Firebird event manager.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about events, see Howevents work, Handling events on a client and related topics in Using Firebird- Programming on Firebird
Server (ch. 25 p. 494).

See also:
CREATE PROCEDURE
CREATE TRIGGER
EVENT WAIT
SET DATABASE

EVENT WAIT
Causes an application to wait until notified of an event's occurrence.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about events, see Howevents work, Handling events on a client and related topics in Using Firebird - Programming on Firebird
Server (ch. 25 p. 494).

See also:
EVENT INIT

EXECUTE
Executes a previously prepared dynamic SQL (DSQL) statement.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about ESQL programming and the XSQLDA, see the Embedded SQL Guide (EmbedSQL.pdf) available from Borland.

See also:
DESCRIBE
EXECUTE IMMEDIATE
PREPARE

923

EXECUTE BLOCK [2.0]

(no contents yet)

EXECUTE IMMEDIATE
Prepares a dynamic SQL (DSQL) statement, executes it once, and discards it.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about ESQL programming and the XSQLDA, see the Embedded SQL Guide.

See also:
DESCRIBE
PREPARE

EXECUTE PROCEDURE
Calls a stored procedure.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about indicator variables, see the Embedded SQL Guide (EmbedSQL.pdf) from the InterBase® 6 documentation set, available from
Borland.

See also:
ALTER PROCEDURE
CREATE PROCEDURE
DROP PROCEDURE

EXECUTE STATEMENT [1.5]
(no contents yet)

924

EXP() [2.1]
Returns the exponential e to the argument.

Availability: DSQL ESQL ISQL PSQL

Syntax

 EXP(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number.

Description

Returns the exponential e to the argument.

Examples

 select EXP(0) from rdb$database
(returns 1)

 select EXP(1) from rdb$database
(returns 2,718281828459 or e)

 select EXP(2) from rdb$database
(returns 7,3890560989307 or e 2̂)

See also:
POWER()

EXTRACT()
Extracts date and time information from DATE, TIME, and TIMESTAMP values.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

925

FETCH
Retrieves the next available row from the active set of an opened cursor.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about cursors and XSQLDA, see the Embedded SQL Guide (EmbedSQL.pdf) from the InterBase® 6 documentation set, available from
Borland.

See also:
CLOSE
DECLARE CURSOR
DELETE
FETCH (BLOB)
OPEN

FETCH (BLOB)
Retrieves the next available segment of a blob column and places it in the specified local buffer.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
BASED ON
CLOSE (BLOB)
DECLARE CURSOR (BLOB)
INSERT CURSOR (BLOB)
OPEN (BLOB)

FIRST(m) SKIP(n)
(Text currently not included because of possible copyright issues.)

926

FLOOR() [2.1]
Returns a value representing the greatest integer that is lesser thanor equal to the input argument.

Availability: DSQL ESQL ISQL PSQL

Syntax

 FLOOR(<number>)

Argument Description
<number> The number whose next-greater integer value is returned.

Description

Returns a value representing the greatest integer that is lesser thanor equal to the input argument.

Examples

 select floor(1.0) from rdb$database
(returns 1)

 select floor(1.9) from rdb$database
(returns 1)

 select floor(-1.1) from rdb$database
(returns -2)

See also:
CEIL()
ROUND()

FOR UPDATE [WITH LOCK] [1.5]
(no contents yet)

GDSCODE [1.5]
(no contents yet)

GEN_ID()
Produces a system-generated integer value.

Availability: DSQL ESQL ISQL PSQL

(This text is currently not included because of possible copyright issues.)

See also:
CREATE GENERATOR
SET GENERATOR

927

GEN_UUID() [2.1]
Returns a universal unique number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 GEN_UUID()

Description

Returns a universal unique number.

Example

 insert into records (id) value (gen_uuid());

See also:
GEN_ID()

GRANT
Assigns privileges to users for specified database objects.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about privileges, see Using Firebird- Database-level security (ch. 22 p. 429).

See also:
REVOKE

928

HASH() [2.1]
Returns a HASH of a value.

Availability: DSQL ESQL ISQL PSQL

Syntax

 HASH(<string>)

Important: If <string> is (or evaluates to) NULL, the result is NULL.

Argument Description
<string> The string the hash is calculated from.

Description

Returns a HASH of a value.

Examples

 select HASH('') from rdb$database
(returns 0)

 select HASH('Firebird') from rdb$database
(returns 20678676612)

 select HASH('Firebird'||NULL) from rdb$database
(returns NULL)

929

IIF [2.0]
Shortcut function for a two-branch CASE construct:

Availability: DSQL ESQL ISQL PSQL

Syntax

 IIF (<search_condition>, <value1>, <value2>)

Argument Description
<search_condition> The condition to be evaluated.
<value1> The result returned if the <search_condition> evaluates to TRUE.

<value2> The result returned if the <search_condition> evaluates to FALSE.

Description

IIF() returns the value of the first sub-expression if the given search condition evaluates to TRUE, otherwise it returns a value of the second sub-expression. It
is implemented as a shortcut function for the following CASE construct:

 CASE
 WHEN <search_condition> THEN <value1>
 ELSE <value2>
 END

Examples

 SELECT IIF(VAL > 0, VAL, -VAL) FROM OPERATION

See also:
CASE
COALESCE()
NULLIF()
DECODE()
ibec_IIF
Firebird 2.0.4. Release Notes: IIF expression syntaxadded

930

INSERT
Adds one or more new rows to a specified table.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

Argument Description

<TRANSACTION> Transaction name of the transaction that controls the execution of the INSERT
INTO object Name of an existing table or view into which to insert.

data col Name of an existing columnin a table or view into which to insert values.

VALUES (val [,
val ...])

Lists values to insert into the table or view; values must be listed in the same
order as the target columns select_expr Query that returns row values to insert
into target columns.

See also:
GRANT
REVOKE
SET TRANSACTION
UPDATE

INSERT CURSOR (BLOB)
Inserts data into a blob cursor in units of a blob segment-length or less in size.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CLOSE (BLOB)
DECLARE CURSOR (BLOB)
FETCH (BLOB)
OPEN (BLOB)

931

INSERT INTO ... DEFAULT VALUES [2.1]
Inserts a record without supplying field values.

Availability: DSQL ESQL ISQL PSQL

Syntax

 INSERT INTO <table> DEFAULT VALUES [RETURNING <values>]

Argument Description
<table> The table to insert a record into.
<values> Optional returnparameters (see RETURNING).

Description

Allows INSERT without supplying values, if Before Insert triggers and/or declared defaults are available for every columnand none is dependent on the
presence of anysupplied 'NEW' value.

Examples

 INSERT INTO TableWithDefaults DEFAULT VALUES;

See also:
INSERT
RETURNING
UPDATE OR INSERT
Firebird 2.0.4 Release Notes: RETURNING clause for insert statements
SELECT
SELECT statement

INSERTING, UPDATING, DELETING [1.5]
(no contents yet)

LEAVE / BREAK [1.5]
(no contents yet)

LEAVE [<label_name>] [2.0]
(no contents yet)

932

LEFT() [2.1]
Returns the substring of a specified length.

Availability: DSQL ESQL ISQL PSQL

Syntax

 LEFT(<string expression>, <numeric expression>)

Important: if either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<string> The string expression (e.g. a field) where the output gets copied from.

<numeric expression> Denotes how many chars the output will contain.

Description

Returns the substring of a specified length that appears at the start of a left-to-right string.

Examples

 select left('Firebird', 4) from rdb$database
returns 'Fire'

 select left('', 10) from rdb$database
returns ''

See also:
RIGHT()

LIKE ... ESCAPE?? [1.5]

(no contents yet)

933

LIST() [2.1]
Returns a string with concatenated matches.

Availability: DSQL ESQL ISQL PSQL

Syntax

 LIST '(' [{ALL | DISTINCT}] <value expression> [',' <delimiter
 value>] ')'
 <delimiter value> ::= { <string literal> | <parameter> |
 <variable> }

Argument Description
<value expression> The expression to be concatenated.

<delimiter value> The separator inserted betweenany matches.

Description

This functionreturns a string result with the concatenated non-NULL values from a group. It returns NULL if there are no non-NULL values.

Rules:

1. If neither ALL nor DISTINCT is specified, ALL is implied.
2. If <delimiter value> is omitted, a comma is used to separate the concatenated values.

Other Notes:

1. Numeric and date/time values are implicitly converted to strings during evaluation.
2. The result value is a BLOB with SUB_TYPE TEXT for all cases except list of BLOB with different subtype.
3. Ordering of values within a group is implementation-defined.

Examples

 /* A */
 SELECT LIST(ID, ':')
 FROM MY_TABLE
 /* B */
 SELECT TAG_TYPE, LIST(TAG_VALUE)
 FROM TAGS
 GROUP BY TAG_TYPE

934

LN() [2.1]
Returns the natural logarithm of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 LN(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number whose natural logarithm is returned.

Description

Returns the natural logarithm of a number.

Examples

 select ln(0) from rdb$database
(throws the error 'expression evaluation not supported' and returns NULL)

 select ln(1) from rdb$database
(returns 0)

 select ln(10) from rdb$database
(returns 2,302585092994)

 select ln(exp(1)) from rdb$database
(returns 1)

See also:
EXP()

935

LOG() [2.1]
Returns the logarithm base x of y.

Availability: DSQL ESQL ISQL PSQL

Syntax

 LOG(<number1>, <number2>)

Important: If either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<number1> The logarithm base.

<number2> The number whose logarithm base <number1> is calculated.

Description

Returns the logarithm base x of y.

Examples

 select log(1,10) from rdb$database
(returns INF)

 select log(0,0) from rdb$database
(returns NAN)

 select log(exp(1),10) from rdb$database
(returns 2,302585092994)

 select log(10,10000) from rdb$database
(returns 4)

See also:
LOG10()

936

LOG10() [2.1]
Returns the logarithm base ten of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 LOG10(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number whose logarith base 10 is calculated.

Description

Returns the logarithm base ten of a number. The function is equivalent to LOG(10,<number>).

Examples

 select log10(0) from rdb$database
(returns -INF)

 select log10(1) from rdb$database
(returns 0)

 select log10(10) from rdb$database
(returns 1)

 select log10(10000) from rdb$database
(returns 4)

See also:
LOG()

937

LOWER() [2.0]
Converts a string to all lower case.

Availability: DSQL ESQL ISQL PSQL

Syntax

 LOWER (<val>)

Argument Description

val A column, constant, host-language variable, expression, function, or UDF that evaluates
to a character datatype.

Description

LOWER() converts a specified string to all lower case characters. If applied to character sets that have no case differentiation, LOWER() has no effect.

Examples

The following ISQL statement changes the name, BMatthews, to bmatthews:

 UPDATE EMPLOYEE
 SET EMP_NAME = LOWER ('BMatthews')
 WHERE EMP_NAME = 'BMatthews';

The next ISQL statement creates a domain called PROJNOwith a CHECK constraint that requires the value of the column to be all lower case:

 CREATE DOMAIN PROJNO
 AS CHAR(5)
 CHECK (VALUE = LOWER (VALUE));

See also:
CAST()
UPPER()
Firebird 2.0.4 Release Notes: New features for text data

938

LPAD() [2.1]
Prepends string2 to the beginning of string1.

Availability: DSQL ESQL ISQL PSQL

Syntax

 LPAD(<string1>, <number> [, <string2>])

Important: If either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<string1> The string expression to be padded.

<number> The length of the output string.

<string2> The string to be prepended (default is a blank or space).

Description

LPAD(string1, length, string2) prepends string2 to the beginning of string1 until the length of the result string becomes equal to length.

Rules:

1. If the second string is omitted the default value is one space.
2. If the result string would exceed the length, the second string is truncated.

Examples

 select LPAD('TEST',10) from rdb$database
(returns ' TEST', see Rule 1)

 select LPAD('TEST',10,'x') from rdb$database
(returns 'xxxxxxTEST')

 select LPAD('TEST',10,'1234') from rdb$database
(returns '123412TEST', see Rule 2)

 select LPAD('1234567890',5,'x') from rdb$database
(returns '12345', that is: the output string is limited in length to <number>)

MAX()
Retrieves the maximum value in a column.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
AVG()
COUNT()
CREATE DATABASE
CREATE TABLE
MIN()
SUM()

939

MAXVALUE() [2.1]
Returns the maximum value of a list of values.

Availability: DSQL ESQL ISQL PSQL

Syntax

 MAXVALUE(<number> [,<number>])

Important: If anyof the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> A number or numeric expression).

Description

Returns the maximum value of a list of values.

Examples

 select MAXVALUE(1,5,3) from rdb$database
(returns 5)

 select MAXVALUE(1,5,NULL) from rdb$database
(returns NULL)

See also:
MAX()
MIN()
MINVALUE()

MIN()
Retrieves the minimum value in a column.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
AVG()
COUNT()
CREATE DATABASE
CREATE TABLE
MAX()
SUM()

940

MINVALUE() [2.1]
Returns the minimum value of a list of values.

Availability: DSQL ESQL ISQL PSQL

Syntax

 MINVALUE(<number> [,<number>])

Important: If any of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> A number or numeric expression.

Description

Returns the minimum value of a list of values.

Examples

 select MINVALUE(1,5,3) from rdb$database
(returns 1)

 select MINVALUE(1,5,NULL) from rdb$database
(returns NULL)

See also:
MAX()
MIN()
MAXVALUE()

941

MOD() [2.1]
Returns the remainder part of the division of X by Y.

Availability: DSQL ESQL ISQL PSQL

Syntax

 MOD(<number1>, <number2>)

Argument Description
<number1> The number or numeric expression the modulo is calculated from.
<number2> The number or numeric expression that <number1> is divided by to calculate the modulo.

Description

Modulo: MOD(X, Y) returns the remainder part of the divisionof X by Y.

Examples

 select MOD(10,3) from rdb$database
(returns 1)

 select MOD(10,5) from rdb$database
(returns 0)

 select MOD(-10,3) from rdb$database
(returns -1)

See also:
TRUNC()

MON$ Tables [2.1]
(no contents yet)

NATURAL JOIN [2.1]
(no contents yet)

942

NEXT VALUE FOR [2.0]
Generates the next value for a sequence / generator.

Availability: DSQL ESQL ISQL PSQL

Syntax

 NEXT VALUE FOR <name>

Argument Description
<name> Name of the sequence / generator whose next value is returned.

Description

Generates and returns the next value for a sequence.

The NEXT VALUE FOR <name> expression is a synonym for GEN_ID(<name>, 1), using the SQL-99-compliant SEQUENCE syntax.

While the GEN_ID() functionallows an optional step or increment value to be supplied in the function call, the increment is implicitly set to 1when using NEXT
VALUE FOR.

Examples

This example generates a new value for the ID columnusing a sequence, and returns that new value to the caller:

 INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (NEXT VALUE FOR SEQ_ID_EMPLOYEE, 'John Smith')
 RETURNING ID;

For more information about the use of sequences, refer to the Generator Guide that is available as part of the Firebird documentation set.

See also:
GEN_ID()
CREATE SEQUENCE
ALTER SEQUENCE
DROP SEQUENCE

943

NULLIF [1.5]
Returns NULL for a subexpression if it has a specific value, otherwise returns the value of the subexpression.

Availability: DSQL ESQL ISQL PSQL

Syntax

 NULLIF (<value expression1> , <value expression2>)

Argument Description
<value expression1> The value returned when it is not NULL.
<value expression2> The value returned if <value expression1> evaluates to NULL.

Description

Returns NULL for a subexpression if it has a specific value, otherwise returns the value of the subexpression.

NULLIF (V1, V2) is equivalent to the following case specification: CASE WHEN V1 = V2 THEN NULL ELSE V1 END.

Examples

 UPDATE PRODUCTS SET STOCK = NULLIF(STOCK,0)

See also:
CASE
COALESCE()
DECODE()
IIF()

OPEN
Retrieve specified rows from a cursor declaration.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CLOSE
DECLARE CURSOR
FETCH

944

OPEN (BLOB)
Opens a previouslydeclared blob cursor and prepares it for read or insert.

Availability: DSQL ESQL ISQL PSQL

Syntax

 OPEN [TRANSACTION name] cursor
 {INTO | USING} :blob_id;

Argument Description
TRANSACTION
name Specifies the transaction under which the cursor is opened .

Default The default transaction.

cursor Name of the blob cursor.

INTO | USING Depending on the blob cursor type, use one of these: INTO: For INSERT BLOB
USING: For READ BLOB.

blob_id Identifier for the blob column.

See also:
CLOSE (BLOB)
DECLARE CURSOR (BLOB)
FETCH (BLOB)
INSERT CURSOR (BLOB)

945

OVERLAY() [2.1]
Returns string1 replacing the substring from <start> for <length> by string2.

Availability: DSQL ESQL ISQL PSQL

Syntax

 OVERLAY(<string1> PLACING <string2> FROM <start> [FOR <length>])

Important:

If either of the arguments is (or evaluates to) NULL, the result is NULL. Use the FOR <length> clause with care - see the examples below!

Description

Returns string1 replacing the substring from <start> for <length> by string2.

The OVERLAY function is equivalent to:

 SUBSTRING(<string1>, 1 FOR <start> - 1) || <string2> || SUBSTRING(<string1>, <start> + <length>)

If <length> is not specified, CHAR_LENGTH(<string2>) is implied. If <length> is specified, thenthe <length> characters of <string1> starting with character
<start>will be replaced with the entire <string2>, that is <string2> will not be clipped or padded to adjust it to <length>.

Examples

 select OVERLAY('1234567890' PLACING 'ABCD' FROM 3) from rdb$database
(returns '12ABCD7890')

 select OVERLAY('1234567890' PLACING 'ABCD' FROM 9) from rdb$database
(returns '12345678ABCD' - note the output is longer than string1!)

 select OVERLAY('1234567890' PLACING 'ABCD' FROM 3 FOR 2) from rdb$database
(returns '12ABCD567890')

 select OVERLAY('1234567890' PLACING 'ABCD' FROM 3 FOR 4) from rdb$database
(returns '12ABCD7890')

 select OVERLAY('1234567890' PLACING 'ABCD' FROM 3 FOR 6) from rdb$database
(returns '12ABCD90')

See also:
SUBSTRING()

946

PI() [2.1]
Returns the number PI.

Availability: DSQL ESQL ISQL PSQL

Syntax

 PI()

Description

Returns the number PI with a precision of 13 decimals.

Examples

 select PI() from rdb$database
(returns 3,1415926535898)

See also:
SIN()
COS()

947

POSITION() [2.1]
returns the position of the substring X in the string Y.

Availability: DSQL ESQL ISQL PSQL

Syntax

 POSITION(<string1> IN <String2>)

Important: If either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<string1> The string whose position is to be found in <string2>.

<string2> The string where <string1> is searched in.

Description

Returns the position of the substring X in the string Y. Returns 0 if X is not found within Y. The character matching is case sensitive.

Examples

 select POSITION('bird' IN 'Firebird') from rdb$database
(returns 5)

 select POSITION('Bird' IN 'Firebird') from rdb$database
(returns 0 - search is case sensitive!)

See also:
SUBSTRING()

948

POWER() [2.1]
Returns X to the power of Y.

Availability: DSQL ESQL ISQL PSQL

Syntax

 POWER(<number1>, <number2>)

Important: If either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<number1> The number that is put to the power of <number2>.

Description

Returns X to the power of Y. The function is equivalent to <number1>^<number2>.

Examples

 select power(2,16) from rdb$database
(returns 65536)

 select power(10,6) from rdb$database
(returns 1000000)

 select power(10,1.5) from rdb$database
(returns 31,6227766016838)

 select power(10,-1) from rdb$database
(returns 0.1)

See also:
EXP()

PREPARE
Prepares a statement for execution in embedded SQL.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

Note: This statement could also be prepared and described in the following manner:
 EXEC SQL PREPARE Q FROM :buf; EXEC SQL DESCRIBE Q INTO SQL DESCRIPTOR xsqlda;

See also:
DESCRIBE
EXECUTE
EXECUTE IMMEDIATE

949

RAND() [2.1]
Returns a random value in the range between0 and 1.

Availability: DSQL ESQL ISQL PSQL

Syntax

 RAND()

Description

Returns a random value in the range between0 and 1.

Examples

 select rand() from rdb$database
(returns a random double precisionvalue with up to 13 decimals)

RDB$GET_CONTEXT [2.0]
(no contents yet)

RDB$SET_CONTEXT [2.0]
(no contents yet)

RECREATE EXCEPTION [2.0]
(no contents yet)

RECREATE PROCEDURE
RECREATE PROCEDURE redefines an existing stored procedure to a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
DROP PROCEDURE
CREATE PROCEDURE
ALTER PROCEDURE

RECREATE TABLE
RECREATE TABLE redefines an existing table to a database.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
DROP TABLE
CREATE TABLE
ALTER TABLE

RECREATE TRIGGER [2.0]

(no contents yet)

950

RECREATE VIEW
(Syntax currently not included because of possible copyright issues.)

RELEASE SAVEPOINT [1.5]

(no contents yet)

951

REPLACE() [2.1]
Replaces all occurrences of <findstring> in <stringtosearch> with <replstring>.

Availability: DSQL ESQL ISQL PSQL

Syntax

 REPLACE(<stringtosearch>, <findstring>, <replstring>)

Important: If either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<stringtosearch> The string to be searched and replaced in <findstring>.

<findstring> The string where <stringtosearch> is searched in.

<replstring> The string to replace <findstring>.

Description

Replaces all occurrences of <findstring> in <stringtosearch> with <replstring>. Search is NOT case sensitive.

Examples

 select REPLACE('Firebird','i','1') from rdb$database
(returns 'F1reb1rd')

 select REPLACE('Firefox','f','b') from rdb$database
(returns 'Firebox' - search is not case sensitive)

 select REPLACE('123123','2','two') from rdb$database
(returns '1two31two3')

 select REPLACE('ABCDE','B','BCB') from rdb$database
(returns 'ABCBCDE' - replacement is not recursive)

See also:
POSITION()
SUBSTRING()

952

RETURNING [2.1]
Returns columns from an INSERT, UPDATE or DELETE operation to the caller.

Availability: +DSQL +ESQL +ISQL +PSQL

Syntax

 INSERT INTO ... VALUES (...)
 [RETURNING <column_list> [INTO <variable_list>]]
 INSERT INTO ... SELECT ...
 [RETURNING <column_list> [INTO <variable_list>]]
 UPDATE OR INSERT INTO ... VALUES (...) ...
 [RETURNING <column_list> [INTO <variable_list>]]
 UPDATE ...
 [RETURNING <column_list> [INTO <variable_list>]]
 DELETE FROM ...
 [RETURNING <column_list> [INTO <variable_list>]]

Important: In DSQL, the statement always returns the set, even if the operation had no effect on any record. Hence, at this stage of implementation, the
potential exists to returnan "empty" set. (This may be changed in a future version.)

Argument Description
<column_list> The list of columns to be returned as a result of the respective operation.

<variable_list> Optional list of result variables to take the returned values (PSQL only).

Description

The purpose of the RETURNING clause is to enable the column values stored into a table as a result of the INSERT, UPDATE OR INSERT, UPDATE and DELETE
statements to be returned to the client. The most likely usage is for retrieving the value generated for a primary key inside a BEFORE-trigger.

The RETURNING clause is optional and is available in both DSQL and PSQL, althoughthe rules differ slightly. In DSQL, the execution of the operation itself and
the return of the set occur in a single protocol round trip.

Because the RETURNING clause is designed to returna singleton set in response to completing an operation on a single record, it is not valid to specify the
clause in a statement that inserts, updates or deletes multiple records.

Rules for using a RETURNING clause:

1. The INTO part (i.e. the variable list) is allowed in PSQL only, for assigning the output set to local variables. It is rejected in DSQL. 2. The presence of the
RETURNING clause causes an INSERT statement to be described by the API as isc_info_sql_stmt_exec_procedure rather than isc_info_sql_stmt_insert.
Existing connectivity drivers should already be capable of supporting this feature without special alterations. 3. The RETURNING clause ignores anyexplicit
record change (update or delete) that occurs as a result of the execution of an AFTER trigger. 4. OLD and NEW context variables canbe used in the RETURNING
clause of UPDATE and UPDATE OR INSERT statements. 5. In UPDATE and UPDATE OR INSERT statements, field references that are unqualified or qualified by table
name or relation alias are resolved to the value of the corresponding NEW context variable.

Examples

1.
 INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 RETURNING F1, F2 INTO :V1, :V2;

2.
 INSERT INTO T2 (F1, F2)
 VALUES (1, 2)
 RETURNING ID INTO :PK;

3.
 DELETE FROM T1
 WHERE F1 = 1
 RETURNING F2;

4.
 UPDATE T1
 SET F2 = F2 * 10
 RETURNING OLD.F2, NEW.F2;

See also:
INSERT
UPDATE
DELETE
UPDATE OR INSERT
Firebird 2.0.4 Release Notes: RETURNING clause for insert statements
INSERT INTO ... DEFAULT VALUES
SELECT
SELECT statement

953

REVERSE() [2.1]
Returns a string in reverse order.

Availability: DSQL ESQL ISQL PSQL

Syntax

 REVERSE(<string expression>)

Important: if <string expression> is (or evaluates to) NULL, the result is NULL.

Argument Description
<string expression> The string to be returned in reverse order.

Description

Returns a string in reverse order. Useful function for creating an expression index that indexes strings from right to left.

Examples

 create index people_email on people
 computed by (reverse(email));

 select * from people
 where reverse(email) starting with reverse('.br');

 select reverse('Firebird') from rdb$database;
(returns 'driberiF')

 select reverse('reliefpfeiler') from rdb$database;
(returns 'reliefpfeiler', which is an existing German word!)

REVOKE
Withdraws privileges from users for specified database objects.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
GRANT

REVOKE ADMIN OPTION FROM [2.0]
(no contents yet)

954

RIGHT() [2.1]
Returns the rightmost part of a string.

Availability: DSQL ESQL ISQL PSQL

Syntax

 RIGHT(<string>, <numeric expression>)

Important: If either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<string> The string expression (e.g. a field) where the output gets copied from.

<numeric expression> Denotes how many chars the output will contain.

Description

Returns a substring, of the specified length, from the right-hand end of a string.

Examples

 select right('Firebird',4) from rdb$database
(returns 'bird')

 select right('Firebird',10) from rdb$database
(returns 'Firebird', that is the output is not padded if <string> is shorter than10)

See also:
LEFT()
SUBSTRING()

ROLLBACK
Restores the database to its state prior to the start of the current transaction.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about controlling transactions, see Using Firebird- Transactions in Firebird (ch. 8 p. 90).

See also:
COMMIT
DISCONNECT

ROLLBACK RETAIN [2.0]

(no contents yet)

ROLLBACK [WORK] TO [SAVEPOINT] [1.5]

(no contents yet)

955

ROUND() [2.1]
Returns a number rounded to the specified scale.

Availability: DSQL ESQL ISQL PSQL

Syntax

 ROUND(<number1>,<number2>)

Important: If anyof the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<number1> The number or numeric expression to be rounded.

<number2> The scale (number of decimal places) <number1> is rounded to.

Description

Returns a number rounded to the specified scale. If the scale (<number2>) is negative, the integer part of the value is rounded.

Examples

 select round(0.123456789,6) from rdb$database
(returns 0.123457)

 select round(0.123456789,3) from rdb$database
(returns 0.123)

 select round(12345.6789,0) from rdb$database
(returns 12346.0)

 select round(12345.6789,-3) from rdb$database
(returns 12000.0)

See also:
TRUNC()

ROWS [2.0]
(no contents yet)

ROW_COUNT [1.5]
(no contents yet)

956

RPAD() [2.1]
Appends string2 to the end of string1.

Availability: DSQL ESQL ISQL PSQL

Syntax

 RPAD(<string1>, <number> [, <string2>])

Important: If either of the arguments is (or evaluates to) NULL, the result is NULL.

Argument Description
<string1> The string expression to be padded.

<number> The length of the output string.

<string2> The string to be appended (default is a blank or space).

Description

RPAD(string1, length, string2) appends string2 to the end of string1 until the length of the result string becomes equal to length.

Rules:

1. If the second string is omitted the default value is one space.
2. If the result string would exceed the length, the second string is truncated.

Examples

 select RPAD('TEST',10) from rdb$database
(returns 'TEST ', see Rule 1)

 select RPAD('TEST',10,'x') from rdb$database
(returns 'TESTxxxxxx')

 select RPAD('TEST',10,'1234') from rdb$database
(returns 'TEST123412', see Rule 2)

 select RPAD('1234567890',5,'x') from rdb$database
(returns '12345', that is: the output string is limited in length to <number>)

See also:
LPAD()

SAVEPOINT [1.5]
(no contents yet)

957

SELECT
Retrieves data from one or more tables.

Availability: DSQL ESQL ISQL PSQL*
*In PSQL, a variant syntaxfor SELECT is available. For details, refer to notes on SELECT and FOR SELECT...INTO...DO in the chapter PSQL-Firebird
Procedural Language.

(Syntax currently not included because of possible copyright issues.)

Argument Description
TRANSACTION
Transaction

Name of the transaction under control of which the statement is executed;
ESQL only.

SELECT [DISTINCT |
ALL] Specifies data to retrieve.

DISTINCT Prevents duplicate values from being returned. ALL, the default, retrieves every
value.

SELECT {[FIRST m]
| [SKIP n]} ...
ORDER BY ...

FIRST m returns an output set consisting of m rows, optionallySKIPping n rows
and returning a set beginning (n+1) rows from the "top" of the set specified by
the rest of the SELECT specification. If SKIP n is used and the [FIRST m]
parameter is omitted, the output set returns all rows in the SELECT specification
except the "top" n rows. These parameters generally make sense only if
applied to a sorted set.

{*|val [, val ...]
} The asterisk (*) retrieves all columns for the specified tables.

val [, val ...] Retrieves a list of specified columns, values and expressions.

INTO :var [,
var ...]

Singleton select in ESQL only; specifies a list of host-language variables into
which to retrieve values.

FROM tableref [,
tableref ...]

List of tables, views, and stored procedures from which to retrieve data; list
can include joins and joins canbe nested.

table Name of an existing table in a database.

view Name of an existing view in a database.

procedure Name of an existing stored procedure that functions like a SELECT statement.

alias Brief, alternate name for a table, view, or column; after declaration in tableref,
alias can stand in for subsequent references to a table or view.

joined_table A table reference consisting of a JOIN.

join_type Type of join to perform.
Default: INNER
WHERE search_
condition

Specifies a condition that limits rows retrieved to a subset of all available rows.

GROUP BY col [,
col ...]

Partitions the results of a query, assembling the output into groups formed on
the basis of common values in all of the output columns named in the grouping
list. Precedence of grouping columns is left=high. Aggregations apply to the
grouping columnhaving the lowest precedence.

COLLATE collation Specifies the collation order for the data retrieved by the queryHAVING.

search_condition Used with GROUP BY; specifies a condition that limits grouped rows returned
UNION.

[ALL]
Combines two or more tables that are fully or partially identical in structure; the
ALL option keeps identical rows separate instead of folding them together into
one.

PLAN plan_expr Specifies the access plan for the Firebird optimizer to use during retrieval.

plan_item Specifies a table and index method for a plan ORDER BY.

order_list Specifies columns to order, either by columnname or ordinal number in the
query, and the order (ASC or DESC) in whichrows to return the rows.

For discussions of topics related to query specifications and SQL, see Using Firebird- Firebird SQL & Queries (ch. 9 p. 110)., For a full discussion of data
retrieval in embedded programming using DECLARE CURSOR and SELECT, see the Embedded SQL Guide (EmbedSQL) of the InterBase® 6 documentation
set, available from Borland.

See also:
DECLARE CURSOR
DELETE
INSERT
UPDATE
UPDATE OR INSERT
Firebird 2.0.4 Release Notes: RETURNING clause for insert statements
INSERT INTO ... DEFAULT VALUES
SELECT statement
RETURNING

958

SET DATABASE
Declares a database handle for database access.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information on the securitydatabase, see Using Firebird- Managing Security (ch. 22 p. 414).

See also:
COMMIT
CONNECT
ROLLBACK
SELECT

SET DEFAULT [2.0]

(no contents yet)

SET GENERATOR
Sets a new value for an existing generator.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CREATE GENERATOR
CREATE PROCEDURE
CREATE TRIGGER
GEN_ID()

SET HEAD[ing] toggle [2.0]
(no contents yet)

SET NAMES
Specifies an active character set to use for subsequent database attachments.

Availability: DSQL ESQL ISQL PSQL

(This text is currently not included because of possible copyright issues.)

For more information about character sets and collation orders, see Using Firebird- Character Sets and Collation Orders (ch. 16 p. 301).

See also:
CONNECT
SET DATABASE

SET SQL DIALECT
Declares the SQL Dialect for database access.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
SHOW SQL DIALECT

SET SQLDA_DISPLAY ON/OFF [2.0]

959

(no contents yet)

SET STATISTICS
Recomputes the selectivity of a specified index.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
ALTER INDEX
CREATE INDEX
DROP INDEX

SET TRANSACTION
Starts a transaction and optionally specifies its behavior.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

For more information about transactions, see Using Firebird- Transactions in Firebird (ch. 8 p. 90).

See also:
COMMIT
ROLLBACK
SET NAMES

SHOW SQL DIALECT
Returns the current client SQL dialect setting and the database SQL dialect value.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
SET SQL DIALECT

960

SIGN() [2.1]
Returns the sign of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 SIGN(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose sign is returned.

Description

Returns 1, 0, or -1 depending on whether the input value is positive, zero or negative, respectively.

Examples

 select SIGN(-99) from rdb$database
(returns -1)

 select SIGN(0) from rdb$database
(returns 0)

 select SIGN(99) from rdb$database
(returns 1)

See also:
ABS()

961

SIN() [2.1]
Returns the sine of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 SIN(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose sine is returned.

Description

Returns the sine of a number. The angle is specified in radians and returns a value in the range -1 to 1.

Examples

 select sin(0) from rdb$database
(returns 0)

 select sin(-1) from rdb$database
(returns -0,8414709848079)

 select sin(1) from rdb$database
(returns 0,8414709848079)

 select sin(PI()) from rdb$database
(returns 0)

 select sin(PI()/2) from rdb$database
(returns 1)

See also:
COS()
SINH()

962

SINH() [2.1]
Returns the hyperbolic sine of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 SINH(<number>)

Important:

If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose sine is returned.

Description

Returns the hyperbolic sine of a number. The angle is specified in radians and returns a value in the range -1 to 1.

Examples

 select sinh(0) from rdb$database
(returns 0)

 select sinh(-1) from rdb$database
(returns -1,1752011936438)

 select sinh(1) from rdb$database
(returns 1,1752011936438)

See also:
COS()
SIN()

SQL Commands
(no contents yet)

SQLCODE [1.5]
(no contents yet)

963

SQRT() [2.1]
Returns the square root of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 SQRT(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose square root is returned.

Description

Returns the square root of a number.

Examples

 select sqrt(0) from rdb$database
(returns 0)

 select sqrt(9) from rdb$database
(returns 3)

 select sqrt(-1) from rdb$database
(throws the error 'expression evaluation not supported', returns NULL)

See also:
POWER()

SUBSTRING()
Returns a string of specified length from within an input string, starting from a specified position in the input string.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also: The user-defined (external) functions substr and substrlen.

See also:
Firebird 2.0.4 Release Notes: Built-in functionSUBSTRING() enhanced

SUM()
Totals the numeric values in a specified column.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
AVG()
COUNT()
MAX()
MIN()

964

TAN() [2.1]
Returns the tangent of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 TAN(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number whose tangent is returned.

Description

Returns the tangent of an input number that is expressed in radians.

Examples

 select tan(0) from rdb$database
(returns 0)

 select tan(-1) from rdb$database
(returns -1,5574077246549)

 select tan(1) from rdb$database
(returns 1,5574077246549)

See also:
COT()
TANH()

965

TANH() [2.1]
Returns the hyperbolic tangent of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 TANH(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number whose hyperbolic tangent is returned.

Description

Returns the hyperbolic tangent of an input number that is expressed in radians.

Examples

 select tanh(0) from rdb$database
(returns 0)

 select tan(-1) from rdb$database
(returns -0,7615941559558)

 select tanh(1) from rdb$database
(returns 0,7615941559558)

See also:
COT() TAN()

966

TRIM() [2.0]
Trims characters (default: blanks) from the left and/or right of a string.

Availability: DSQL ESQL ISQL PSQL

Syntax

Simple:

 TRIM (<val>)

Complete:

 TRIM <left paren> [[<trim specification>] [<trim character>]
 FROM] <value expression> <right paren>
 <trim specification> ::= LEADING | TRAILING | BOTH
 <trim character> ::= <value expression>

Argument Description

val A column, constant, host-language variable, expression, function, or UDF that evaluates
to a character datatype.

Description

TRIM() trims characters (default: blanks) from the left and/or right of a string.

Rules:

1. If <trim specification> is not specified, BOTH is assumed.
2. If <trim character> is not specified, ' ' is assumed.
3. If <trim specification> and/or <trim character> is specified, FROM should be specified.
4. If <trim specification> and <trim character> is not specified, FROM should not be specified.

See also:
RPAD()
LPAD()
Firebird 2.0.4 Release Notes: New features for text data

967

TRUNC() [2.1]
Returns the integral part of a number.

Availability: DSQL ESQL ISQL PSQL

Syntax

 TRUNC(<number>)

Important: If <number> is (or evaluates to) NULL, the result is NULL.

Argument Description
<number> The number or numeric expression whose integral part is returned.

Description

Returns the integral part of a number. The function is equal to FLOOR() for positive numbers.

Examples

 select trunc(1.1) from rdb$database
(returns 1)

 select trunc(-1.1) from rdb$database
(returns -1, note FLOOR() would return-2 here.)

See also:
FLOOR()
CEIL()

TYPE OF [domains in PSQL] [2.1]

(no contents yet)

UNION DISTINCT [2.0]

(no contents yet)

UPDATE
Changes the data in all or part of an existing row in a table, view, or active set of a cursor.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
DELETE
GRANT
INSERT
REVOKE
SELECT

968

UPDATE OR INSERT [2.1]
Updates or inserts a record depending on whether it is already present.

Availability: +DSQL +ESQL +ISQL +PSQL

Syntax

 UPDATE OR INSERT INTO <table or view> [(<column_list1>)]
 VALUES (<value_list>)
 [MATCHING <column_list2>]
 [RETURNING <column_list3> [INTO <variable_list>]]

Important: INSERT and UPDATE permissions are needed on <table or view>. A "multiple rows in singleton select" error will be raised if the RETURNING clause
is present and more thanone record matches the search condition.

Argument Description
<table or view> The table or view where the update or insert takes place.

<column_list1> Optional list of fields to update or insert.

<value_list> List of field values to update or insert.

<column_list2> List of fields that determine whether or not the record already exists.

<column_list3> Optional list of returned values (see RETURNING).

<variable_list> Optional list of variables where the RETURNING values are returned into.

Description

This syntaxhas been introduced to enable a record to be either updated or inserted, according to whether or not it already exists (checked with IS NOT
DISTINCT).

When MATCHING is omitted, the existence of a primary key is required.

If the RETURNING clause is present, thenthe statement is described as isc_info_sql_stmt_exec_procedure by the API; otherwise, it is described as isc_
info_sql_stmt_insert.

Examples

In the first example it is assumed that T1 has a primary key (e.g. on F1):

1.
 UPDATE OR INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2);

The second example returns the updated or inserted ID: 2.
 UPDATE OR INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING ID;

Here the decision to INSERT or to UPDATE is based on F1, be it the primary keyor not: 3.
 UPDATE OR INSERT INTO T1 (F1, F2)
 VALUES (:F1, :F2)
 MATCHING (F1);

In this example, in case ID already existed, the OLD contents of field NAME is returned: 4.
 UPDATE OR INSERT INTO EMPLOYEE (ID, NAME)
 VALUES (:ID, :NAME)
 RETURNING OLD.NAME;

See also:
INSERT
UPDATE
RETURNING

UPPER()
Converts a string to all uppercase.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

See also:
CAST()
and the user-defined (external) functionlower()

969

WHENEVER
Traps SQLCODE errors and warnings.

Availability: DSQL ESQL ISQL PSQL

(Syntax currently not included because of possible copyright issues.)

WITH [RECURSIVE] (CTE) [2.1]
(no contents yet)

Document history

Revision History

0.1 FI First Beta

License note
The contents of this Documentationare subject to the Public DocumentationLicense Version 1.0 (the "License"); youmay only use this Documentation if you
complywith the terms of this License. Copies of the License are available at http://www.firebirdsql.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsql.org/
manual/pdl.html (HTML).

Copyright© 2007. All Rights Reserved. Initial Writers contact: firebird-docs at lists dot sourceforge dot net.

970

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/

Glossary

The majority of definitions can be found in the relevant IBExpert subject areas. This glossary includes a number of miscellaneous definitions that could not be
allotted to individual IBExpert subjects.

If you are looking for a specific definition in the online documentation, please use the search function. Should you not be able to find the definitionyouare
looking for, please contact documentation@ibexpert.com.

.NET
*/Wildcard
Aggregate functions
Alias
API (ApplicationProgram Interface)Application
Application
ASCII
BDE (Borland Database Engine)
Benchmark
BLR (Binary Language Representation)
CGI (Common Gateway Interface)
Client/Server
CLSID
Comdiag
Comments
Compile and Commit / Rollback
Conditional Test
Constant
Conversion functions
DBMS (Database Management System)
DDE (Dynamic Data Exchange)
Default
DLL (Dynamic Link Library)
Event
Expression
FBK Files
FDB Files
FTP (File Transfer Protocol)
GBK Files
GDB Files
GRC Files
GUID (Globally Unique Identifier)
Hashing / Hash Values
HTML (HyperText Markup Language)
HTTP (HyperText Transfer Protocol)
Hyperlink
IDE (Integrated Development Environment)
ISAPI (Internet Server Application Programming Interface)
LIP (Log Information Page)
NSAPI (Netscape Server ApplicationProgramming Interface)
OAT (Oldest Active Transaction)
ODBC (Open DataBase Connectivity)
ODS Version
OIT (Oldest Interesting Transaction)
OLAP (Online Analytical Processing)
OLE (Object Linking and Embedding)
Operand
Operator
Orphan pages
Parameter
PHP
PIP (Page Inventory Page)
RDBMS (Relational Database Management System)
Regular Expression
SMP (Symmetric Multi-Processing)
SMTP (Simple Mail Transfer Protocol)
Statement
String
TID (Transaction ID)
TIP (Transaction Inventory Page)
Transaction
Two-Phase Commit
Variable
WAL (Write Ahead Log)

971

mailto:pleasecontactdocumentation@ibexpert.com.

.NET
Microsoft's framework for Web services and component software was introduced in 2000 and is pronounced "dot-net."

.NET supports all the web-based features and functions, including XML and the web services protocols such as SOAP and UDDI. .NET applications run on
intranets as well as public Internet sites, thus .NET is an all-inclusive web-oriented software architecture for internal and external use.

The .NET Framework created by Microsoft is a software development platform focused on rapid application development (RAD), platform independence and
network transparency. It has introduced a new programming language environment that compiles all source code into an intermediate language. .NET
languages are compiled into the Microsoft Intermediate Language (MSIL), which is executed by the Common Language Runtime (CLR) software in the
Windows computer. The MSIL is similar to Java's bytecode, except that whereas Java is one language, .NET supports multiple programming languages such
as Microsoft's C# and VB.NET. A subset of the CLR has beenstandardized by ECMA so that third parties can port non-Microsoft programming languages
and create runtime environments for operating systems other thanWindows.

It erases the boundaries between applications and the Internet. Instead of interacting with an application or a single web site, .NET will connect the user to an
arrayof computers and services that will exchange and combine objects and data.

.NET has brought new functionalities and tools to the application programming interface (API). These innovations allow programmers to develop applications
for both Windows and the web as well as components and services (web services).

* / Wildcard
The asterisk (*) or so-called wildcard is used, for example, when selecting all or any data (or data sets) meeting a certain condition.

Example

 SELECT * FROM EMPLOYEE
 WHERE EMPLOYEE.PHONE_EXT='250';

All data sets containing the value 250 in the PHONE_EXT column in the EMPLOYEE table are fetched.

Aggregate functions
A function that performs a computation on a set of values rather than on a single value, to calculate group-level totals and statistics. For example, finding the
average or mean of a list of numbers is an aggregate function.

All database management and spreadsheet systems support a set of aggregate functions that can operate on a set of selected records or cells.

Aggregate functions perform calculations over a series of values, such as the columns retrieved with a SELECT statement. These include AVG(), COUNT(), MAX
(), MIN(), SUM().

See also:
ConversionFunctions

Alias
Analias is a pseudonym. A database alias is a name chosen by the developer for day-to-day use, as a logical and preferable alternative to the usually formally
named gdb or fdb file, which is oftennamed in accordance to internal companynorms.

The alias indicates the location of the database tables. If the database is stored on a server, the alias also specifies the necessary connectionparameters.

It is also used in SQL language to simplify input (saves repeatedly typing the same long database object and field names).

972

Please refer to the Configuring Firebird chapter, Alias, files and paths for detailed information about Firebird database aliases.

See also:
Firebird 2.x AdministrationHandbook, Alias names

API (Application Program Interface)
API is the abbreviation for Application Program Interface, which is a set of routines, protocols, and tools for building software applications. A good API makes
it easier to develop a program by providing all the building blocks. A programmer puts the blocks together.

Most operating environments, such as MS Windows, provide an API so that programmers canwrite applications consistent with the operating environment.
Although APIs are designed for programmers, theyare ultimately of advantage to users because they guarantee that all programs using a common APIwill
have similar interfaces. This makes it easier for users to learnnew programs.

Source: http://www.webopedia.com/

See also:
ISAPI
NSAPI

Application
An application is a program or group of programs designed for end users. Software can be divided into two general classes: systems software and
applications software. Systems software consists of low-level programs that interact with the computer at a verybasic level. This includes operating systems,
compilers, and utilities for managing computer resources.

In contrast, applications software (also called end-user programs) includes database programs, word processors, and spreadsheets. Figurativelyspeaking,
applications software sits on top of systems software because it is unable to run without the operating system and system utilities.

An application comprises the executing file, along with anyother files, that a program needs to function fully. The word application is oftenused synonymously
with the word program.

Source: http://www.webopedia.com/

ASCII
ASCII is an acronym for the American Standard Code for Information Interchange. Pronounced ask-ee, ASCII is a code for representing English characters as
numbers, with each letter assigned a number from 0 to 127. For example, the ASCIIcode for uppercase M is 77. Most computers use ASCIIcodes to represent
text, which makes it possible to transfer data from one computer to another.

Text files stored in ASCIIformat are sometimes called ASCII files. Text editors and word processors are usually capable of storing data in ASCIIformat,
althoughASCII format is not always the default storage format. Most data files, particularly if theycontain numeric data, are not stored in ASCII format.
Executable programs are never stored in ASCII format.

973

http://www.webopedia.com/
http://www.webopedia.com/

The standard ASCIIcharacter set uses just 7 bits for each character. There are several larger character sets that use 8 bits, which gives them 128 additional
characters. The extra characters are used to represent non-English characters, graphics symbols, and mathematical symbols. Several companies and
organizations have proposed extensions for these 128 characters. The DOS operating system uses a superset of ASCIIcalled extended ASCII or high ASCII.
A more universal standard is the ISO Latin1 set of characters, which is used by many operating systems, as well as web browsers.

Source: http://www.webopedia.com/

BDE (Borland Database Engine)
BDE is the abbreviation for the Borland Database Engine, the heart of Firebird/InterBase. IBExpert uses this database engine to access and retrieve data. It
allows multiple sessions, each one being treated as a "virtual" user.

Benchmark
Benchmarks are normed testing techniques, used to evaluate and compare the performance of IT systems, according to certain predefined criteria. Theyare a
vital tool when the performance of databases and/or hardware needs to be assessed objectively.

Many hardware manufacturers and also trade magazines have developed their ownbenchmark tests, which theyuse when reviewing a class of products.
Whencomparing benchmark results, it is important to know exactly what the benchmarks are designed to test.

See also:
IBExpert Benchmarks

BLR (Binary Language Representation)
As Firebird/InterBase internally does not understand SQL, all statements (queries, updates, metadata manipulation) are internallyrepresented in a binary
notation. When stored procedure or trigger code is compiled, it is translated into BLR and the BLR representation is kept in a Blob subtype field. This
translation is performed only once, which is why stored procedures are good for efficiency. The command-line tool isql shows the BLR representation of
stored procedures (and triggers, constraints and table definitions) after issuing a SET BLOB ALL command and then using a SELECT statement to get the
appropriate BLR fields from the system tables whichare accessed as RDB$RELATIONS.

CGI (Common Gateway Interface)
Abbreviationof Common Gateway Interface, a specification for transferring information between a World Wide Web server and a CGI program. A CGI
program is any program designed to accept and returndata that conforms to the CGI specification. The program could be written in anyprogramming
language, including C, Perl, Java, or Visual Basic.

CGI programs are the most common way for web servers to interact dynamically with users. Many HTML pages that contain forms, for example, use a CGI
program to process the form's data once it's submitted. Another increasingly common way to provide dynamic feedback for web users is to include scripts or
programs that run on the user's machine rather thanthe web server. These programs can be Java applets, Java scripts, or ActiveX controls. These
technologies are known collectivelyas client-side solutions, while the use of CGI is a server-side solutionbecause the processing occurs on the web server.

One problem with CGI is that eachtime a CGI script is executed, a new process is started. For busy web sites, this can slow down the server noticeably. A
more efficient solution, but one that it is also more difficult to implement, is to use the server's API, such as ISAPIor NSAPI. Another increasingly popular
solution is to use Java servlets.

Source: http://www.webopedia.com/

Client/Server
The mainpart of the database intelligence is contained in a server program (e.g. InterBase/Firebird). The operation is sent from the client to the server and is
processed there, and the resulting data transferred back to the client.

Client-server architecture is a network architecture in which eachcomputer or process on the network is either a client or a server. Servers are powerful
computers or processes dedicated to managing disk drives (file servers), printers (print servers), or network traffic (network servers).

Clients are PCs or workstations on which users run applications. Clients rely on servers for resources, such as files, devices, and even processing power.

Another type of network architecture is knownas a peer-to-peer architecture because eachnode has equivalent responsibilities. Both client/server and peer-
to-peer architectures are widelyused, and eachhas unique advantages and disadvantages.

Client-server architectures are also sometimes called two-tier architectures.

CLSID
A CLSID is the abbreviation for class identifier. It is a globally unique identifier that identifies a COM class object. The CLSID structure wraps the COM class
identifier structure, whichserves as a unique identifier for a specific COM class. If your server or container allows linking to its embedded objects, you need to
register a CLSID for eachsupported class of objects.

Comdiag
Comdiag is an InterBase/Firebird windows-based program to aid diagnosis of problems that may arise when connecting to InterBase/Firebird servers and
the databases managed by those servers.

974

http://www.webopedia.com/
http://www.webopedia.com/

It validates all InterBase DLLs when connecting the server to the database and checks that the various protocol stacks are correctly installed and loaded.

Further information can be found under the IBExpert Services menu item, CommunicationDiagnostics.

Comments
Comments can be incorporated anywhere in an InterBase/Firebird ISQL script, as well as in the procedure body of a stored procedure. The following
character sequences are used to determine a comment.

/* Comment */

Comments can spanmultiple lines, but a comment cannot be embedded in another comment. Theycan also be incorporated in a Firebird script, determined
by the following character sequence:

-- Comment

Comments introduced in this way in Firebird can only cover a single line, i.e. each new line must beginwith --. Firebird however also understands the
InterBase syntax.

See also:
Comment Selected/Uncomment Selected

Compile and Commit / Rollback
A transaction is committed, if all statements in the transactions were performed successfully and the whole transaction was completed without error. By
committing a transaction, the instructions entered are interpreted and saved permanently to disk or cancelled. In IBExpert the

975

iconor [Ctrl + F9] canbe used to perform this task. The Compile dialog shows whether the modifications, insertions or deletions are correct; the Commit
button finallywrites the alterations permanently to the database.

A transaction is rolled back, if the alterations are cancelled or revoked by the operator, or if an active transaction is perceived by another transaction to be
"dead" and so set in a rolled-back condition. Rollback also aborts the compile actions, should errors have been reported or modifications be necessary.

See also:
Data Transaction: COMMIT and ROLLBACK
COMMIT
ROLLBACK RETAIN syntax

Conditional Test
Conditional test is an expression that evaluates to logical TRUE or FALSE. If the statement TRUE, the statements in the THEN clause are executed; if FALSE, the
statements in the optional ELSE clause are executed. Parentheses around the conditional test are required.

Please also refer to IF ... THEN ... ELSE.

See also:
Comparison Operators

Constant
In programming, a constant is a value that never changes. The other type of values that programs use is variables, symbols that can represent different values
throughout the course of a program.

A constant can be

a number, such as 25 or 3.6
a character, such as a or $
a character string, such as "this is a string"

Source: http://www.webopedia.com/

Conversion functions
Conversionfunctions transform datatypes, either converting them from one type to another, or by changing the scale or precision of numeric values, or by
converting CHARACTER datatypes to all uppercase. These include CAST(), EXTRACT()], UPPER().

976

http://www.webopedia.com/

DBMS (Database Management System)
A collection of programs that enables youto store, modify, and extract information from a database. There are many different types of DBMSs, ranging from
small systems that run on personal computers to huge systems that run on mainframes. The following are examples of database applications:

computerized library systems
automated teller machines
flight reservation systems
computerized parts inventory systems

From a technical standpoint, DBMSs candiffer widely. The terms relational, network, flat, and hierarchical all refer to the way a DBMS organizes information
internally. The internal organization can affect how quickly and flexibly youcan extract information.

Requests for information from a database are made in the form of a query, which is a stylized question. For example, the query

 SELECT ALL WHERE NAME = "SMITH" AND AGE > 35

requests all records in which the NAME field is SMITH and the AGE field is greater than 35. The set of rules for constructing queries is known as a query language.
Different DBMSs support different query languages, althoughthere is a semi-standardized query language called SQL (Structured Query Language).
Sophisticated languages for managing database systems are called fourth-generation languages, or 4GLs for short.

The information from a database can be presented in a variety of formats. Most DBMSs include a report writer program that enables youto output data in the
form of a report. Many DBMSs also include a graphics component that enables youto output information in the form of graphs and charts.

Source: http://www.webopedia.com/

DDE (Dynamic Data Exchange)
DDE is an acronym for Dynamic Data Exchange, an interprocess communication (IPC) system built into the Macintosh, Windows, and OS/2 operating
systems. DDE enables two running applications to share the same data.

Although the DDE mechanism is still used by many applications, it is being supplanted by OLE, whichprovides greater control over shared data.

Source: http://www.webopedia.com/

Default
The DEFAULT parameter allows a standard value to be defined, should the user not enter a specific value. A DEFAULT value canbe defined for a domain or a
field. The default value predefined in the domain, can be overridden by the default value entry in the column/field definition following this domain.

In IBExpert it can be specified when creating a new table and fields or when creating a domain.

DLL (Dynamic Link Library)

977

http://www.webopedia.com/
http://www.webopedia.com/

DLL is the abbreviation for Dynamic Link Library. DLLs are library files with the suffixDLL. These are executable modules, containing source code or
resources, whichcan access other DLLs or applications. DLLs enable multiple applications, source code and resource to be used collectively in a Windows
environment.

See also:
User-Defined Function(UDF)
DECLARE EXTERNAL FUNCTION

Event
Anaction or occurrence detected by a program. Events can be user actions, such as clicking a mouse button or pressing a key, or system occurrences, such
as running out of memory. Most modernapplications, particularly those that run in Macintosh and Windows environments, are said to be event-driven, because
theyare designed to respond to events.

A database event can be anything relative to the rows in a table or values in fields. Coordinated and monitored by the Firebird/InterBase Event Manager.

978

Expression
An expression is a group of symbols that represent a value.

In programming, an expression is any legal combination of symbols that represents a value. Each programming language and application has its ownrules for
what is legal and illegal. For example, in the C language x+5 is an expression, as is the character string "MONKEYS".

Every expression consists of at least one operand and can have one or more operators. Operands are values, whereas operators are symbols that represent
particular actions. In the expression

 x + 5

x and 5 are operands, and + is an operator.

Expressions are used in programming languages, database systems, and spreadsheet applications. For example, in database systems, youuse
expressions to specifywhich information you want to see. These types of expressions are called queries.

Expressions are often classified by the type of value that they represent. For example:

Boolean expressions: Evaluate to either TRUE or FALSE
Integer expressions: Evaluate to whole numbers, like 3 or 100
Floating-point expressions: Evaluate to real numbers, like 3.141 or -0.005
String expressions: Evaluate to character strings

Source: http://www.webopedia.com/

See also:
Datatypes

FBK Files
FBK is the standard suffixused for Firebird backup database file names.

This is not compulsory, in fact a Firebird or InterBase backup database maybe named with any suffix. This standardization does however provide a certain
conformity, of particular importance if a database is to be administrated long term by numerous people.

FDB Files
FDB is the standard suffixused for Firebird database file names. It is derived from the InterBase standard, .GDB.

This is not compulsory, in fact an Firebird or InterBase database maybe named with anysuffix. This standardization does however provide a certain
conformity, of particular importance if a database is to be administrated long term by numerous people.

FTP (File Transfer Protocol)
FTP is an abbreviation of File Transfer Protocol, the protocol for exchanging files over the Internet. FTP works in the same way as HTTP for transferring web
pages from a server to a user's browser and SMTP for transferring electronic mail across the internet in that, like these technologies, FTP uses the internet's
TCP/IP protocols to enable data transfer.

FTP is most commonlyused to download a file from a server using the internet or to upload a file to a server (e.g., uploading a web page file to a server).

Source: http://www.webopedia.com/

GBK Files
.GBK is the standard suffix used for Borland InterBase backup database file names.

This is not compulsory, in fact an InterBase or Firebird backup database maybe named with anysuffix. This standardization does however provide a certain
conformity, of particular importance if a database is to be administrated long term by numerous people.

GDB Files
.GDB is the standard suffix used for Borland InterBase database file names. It originates back to the days when the Interbase Corporation was still called
Groton Database Systems.

This is not compulsory, in fact an InterBase or Firebird database maybe named with anysuffix. This standardization does however provide a certain
conformity, of particular importance if a database is to be administrated long term by numerous people.

See also:
.FDB files

979

http://www.webopedia.com/
http://www.webopedia.com/

GRC Files
.GRC files are IBExpert Database Designer files.

GUID (Globally Unique Identifier)
Short for Globally Unique Identifier, a unique 128-bit number that is produced by the Windows OS or by some Windows applications to identify a particular
component, application, file, database entry, and/or user. For instance, a website may generate a GUID and assign it to a user's browser to record and track
the session. A GUID is also used in a Windows registry to identifyCOM DLLs. Knowing where to look in the registry and having the correct GUID yields a lot
information about a COM object (i.e., information in the type library, its physical location, etc.). Windows also identifies user accounts by a username
(computer/domain and username) and assigns it a GUID. Some database administrators evenwill use GUIDs as primary keyvalues in databases.

GUIDs canbe created in a number of ways, but usually theyare a combinationof a few unique settings based on specific point in time (e.g., an IP address,
network MAC address, clock date/time, etc.).

Source: http://www.webopedia.com/

See also:
CLSID

980

http://www.webopedia.com/

Hashing / Hash Values
Producing hashvalues for accessing data or for security. A hashvalue (or simplyhash), also called a message digest, is a number generated from a string of
text. The hash is substantiallysmaller than the text itself, and is generated by a formula in such a way that it is extremely unlikely that some other text will
produce the same hashvalue.

Hashes play a role in security systems where they're used to ensure that transmitted messages have not been tampered with. The sender generates a hashof
the message, encrypts it, and sends it with the message itself. The recipient then decrypts both the message and the hash, produces another hash from the
received message, and compares the two hashes. If they're the same, there is a veryhighprobability that the message was transmitted intact.

Hashing is also a commonmethod of accessing data records. Consider, for example, a list of names:

JohnSmith
Sarah Jones
Roger Adams

To create an index, called a hash table, for these records, youwould apply a formula to eachname to produce a unique numeric value. So you might get
something like:

1345873 John Smith
3097905 Sarah Jones
4060964 Roger Adams

Then to search for the record containing Sarah Jones, you just need to reapply the formula, whichdirectly yields the index keyto the record. This is much more
efficient thansearching through all the records till the matching record is found.

Source: http://www.webopedia.com/

HTML (HyperText Markup Language)
Short for HyperText Markup Language, the authoring language used to create documents on the World Wide Web. HTML is similar to SGML (Standard
Generalized Markup Language), although it is not a strict subset. HTML defines the structure and layout of a web document by using a variety of tags and
attributes. The correct structure for an HTML document starts with <HTML><HEAD> (enter here what document is about), <BODY> and ends with </BODY></HTML>.
All the information you'd like to include in your web page fits in betweenthe <BODY> and </BODY> tags.

There are hundreds of other tags used to format and layout the information in a web page. Tags are also used to specifyhypertext links. These allow web
developers to direct users to other web pages with only a click of the mouse on either an image or word(s).

Source: http://www.webopedia.com/

See also:
Declaring character sets in XML and HTML
Generate HTML documentation in IBExpert

HTTP (HyperText Transfer Protocol)
Short for HyperText Transfer Protocol, the underlying protocol used by the World Wide Web. HTTP defines how messages are formatted and transmitted, and
what actions web servers and browsers should take in response to various commands. For example, when you enter a URL in your browser, this actually
sends an HTTP command to the web server directing it to fetchand transmit the requested web page.

The other mainstandard that controls how the World Wide Web works is HTML, whichcovers how web pages are formatted and displayed.

HTTP is called a stateless protocol because eachcommand is executed independently, without any knowledge of the commands that came before it. This is
the main reasonthat it is difficult to implement web sites that react intelligently to user input. This shortcoming of HTTP is being addressed in a number of new
technologies, including ActiveX, Java, JavaScript and cookies.

Source: http://www.webopedia.com/

Hyperlink
A hyperlink is an element in an electronic application or document that links to another place in the same application/editor/text or to an entirely different
editor/text. Typically, you click on the hyperlink to follow the link. Hyperlinks are the most essential ingredient of all hypertext systems, including the World Wide
Web.

IDE (Integrated Development Environment)
Abbreviated as IDE, a programming environment integrated into a software application that provides a GUI builder, a text or code editor, a compiler and/or
interpreter and a debugger. Visual Studio, Delphi, JBuilder, FrontPage and DreamWeaver are all examples of IDEs.

ISAPI (Internet Server Application Programming Interface)
The Internet Server ApplicationProgramming Interface (ISAPI) is the API of Internet Information Services (IIS), Microsoft's collection of Windows-based
network services. ISAPIwas designed to model N-tier architecture. ISAPIenables programmers to develop web-based applications that run much faster than

981

http://www.webopedia.com/
http://www.webopedia.com/
http://www.webopedia.com/

conventional CGI programs because they're more tightly integrated with the web server. In addition to IIS, several web servers from companies other than
Microsoft support ISAPI.

See also:
NSAPI

LIP (Log Information Page)
The log information pages (LIP) for the write-ahead log (WAL) are not currently used, though code to use them is included conditionally in Firebird.

NSAPI (Netscape Server Application Programming Interface)
Short for Netscape Server Application Programming Interface, an API for Netscape's Web servers. NSAPI enables programmers to create web-based
applications that are more sophisticated and run much faster than applications based on CGI scripts.

See also:
ISAPI

OAT (Oldest Active Transaction)
The Oldest Active Transaction (OAT) is the earliest transaction in the database, recorded by the versioning engine in the TIP (Transaction Inventory Page)
that is currently active or open.

See also:
Oldest Active Transaction (OAT)
OIT

ODBC (Open DataBase Connectivity)
ODBC (pronounced as separate letters) is short for OpenDataBase Connectivity, a standard database access method developed by the SQL Access group
in 1992. The goal of ODBC is to make it possible to access anydata from any application, regardless of which database management system (DBMS) is
handling the data. ODBC manages this by inserting a middle layer, called a database driver, between an application and the DBMS. The purpose of this layer
is to translate the application's data queries into commands that the DBMS understands. For this to work, both the application and the DBMS must be ODBC-
compliant - that is, the application must be capable of issuing ODBC commands and the DBMS must be capable of responding to them. Since version2.0,
the standard supports SAG SQL.

Source: http://www.webopedia.com/

ODS Version
ODS = On-Disk Structure.

The ODS version shows with whichdatabase version the database was created, e.g. InterBase 5 = 9, InterBase 6 = 10.0, InterBase 6.5 = 10.1, InterBase 7 =
11.

For more information about the InterBase On-Disk Structure, please refer to Ann Harrison's article, Space Management in InterBase.

See also:
SQL Assistant

OIT (Oldest Interesting Transaction)

982

http://www.webopedia.com/

The Oldest Interesting Transaction (OIT) is the earliest transaction in the database, recorded by the versioning engine in the TIP (Transaction InventoryPage)
with a status other thancommitted. Every transaction prior to that one represents an unbrokenchain of insertions and updates into the database.

See also:
OAT
Oldest Interesting Transaction (OIT)

OLAP (Online Analytical Processing)
Short for Online Analytical Processing, a category of software tools that provides analysis of data stored in a database. OLAP tools enable users to analyze
different dimensions of multidimensional data. For example, it provides time series and trend analysis views. OLAP often is used in data mining.

The chief component of OLAP is the OLAP server, whichsits betweena client and a database management system (DBMS). The OLAP server understands
how data is organized in the database and has special functions for analyzing the data. There are OLAP servers available for nearly all the major database
systems.

Source: http://www.webopedia.com/

See also:
Data Analysis

OLE (Object Linking and Embedding)
OLE is an abbreviation of Object Linking and Embedding, pronounced as separate letters or as oh-leh. OLE is a compound document standard developed
by the Microsoft Corporation. It enables youto create objects with one application and then link or embed them in a second application. Embedded objects
retain their original format and links to the application that created them.

Support for OLE is built into the Windows and Macintosh operating systems. A competing compound document standard developed jointlyby IBM, Apple
Computer, and other computer firms is called OpenDoc.

Source: http://www.webopedia.com/

Operand
In all computer languages, expressions consist of two types of components: operands and operators. Operands are the objects that are manipulated and
operators are the symbols that represent specific actions. For example, in the expression

 5 + x

x and 5 are operands and + is an operator. All expressions have at least one operand.

Source: http://www.webopedia.com/

See also:
Comparison Operators

Operator
An operator is a symbol that represents a specific action. For example, a plus sign (+) is an operator that represents addition. The basic mathematic
operators are + addition, - subtraction, *multiplication, / division.

In addition to these operators, many programs and programming languages recognize other operators that allow you to manipulate numbers and text in more
sophisticated ways. For example, Booleanoperators enable you to test the truthor falsityof conditions, and relational operators let youcompare one value to
another. For example, the expression

 x < 5

means x is less than 5. This expression will have a value of TRUE if the variable x is less than 5; otherwise the value of the expression will be FALSE.

Relational operators are sometimes called comparison operators. Expressions that contain relational operators are called relational expressions.

Source: http://www.webopedia.com/

Orphan pages
Orphan pages are unassigned disk space that should be returned to free space. Theyare physically allocated and registered on the page inventory page
(PIP).

GFIX, the repair and modification tool is able to combat orphanpages in the database file.

Parameter
1. Characteristic. For example, specifying parameters means defining the characteristics of something. In general, parameters are used to customize a

program. For example, filenames, page lengths, and font specifications could all be considered parameters.

983

http://www.webopedia.com/
http://www.webopedia.com/
http://www.webopedia.com/
http://www.webopedia.com/

2. In programming, the term parameter is synonymous with argument, a value that is passed to a routine.

Source: http://www.webopedia.com/

PHP
Self-referentially short for PHP: Hypertext Preprocessor, an open source, server-side, HTML embedded scripting language used to create dynamic Web
pages.

In an HTML document, PHP script (similar syntaxto that of Perl or C) is enclosed within special PHP tags. Because PHP is embedded within tags, the author
can jump betweenHTML and PHP (similar to ASP and Cold Fusion) instead of having to relyon heavyamounts of code to output HTML. And, because PHP is
executed on the server, the client cannot view the PHP code.

PHP can perform any task that anyCGI program can do, but its strength lies in its compatibility with many types of databases. Also, PHP can talk across
networks using IMAP, SNMP, NNTP, POP3, or HTTP.

PHP was created sometime in 1994 by Rasmus Lerdorf. During mid 1997, PHP development entered the hands of other contributors.

Source: http://www.webopedia.com/

PIP (Page Inventory Page)
The Page Inventory Page (PIP) is one of the ten page types defined in InterBase/Firebird. The PIP is used along with the pointer page for space
management.

Everypage in the database is represented by one bit in the PIP, this bit indicating whether the page is currently in use. PIPs occur at fixed intervals in the
database, the interval being determined by the database page size. PIPs are never released.

For those interested in more detailed information, Ann Harrison's article, Space Management in InterBase, provides an in-depth insight into page types and
their roles.

See also:
Firebird for the Database Expert: Episode 2 - Page Types
TID
TIP

RDBMS (Relational Database Management System)
RDBMS is the abbreviation for Relational Database Management System and is pronounced as separate letters, a type of database management system
(DBMS) that stores data in the form of related tables. Relational databases are powerful because theyrequire few assumptions about how data is related or
how it will be extracted from the database. As a result, the same database can be viewed in many different ways.

An important feature of relational systems is that a single database can be spread across several tables. This differs from flat-file databases, in whicheach
database is self-contained in a single table. Almost all full-scale database systems are RDBMS's. Small database systems however, use other designs that
provide less flexibility in posing queries.

From a technical standpoint, DBMSs can differ widely. In addition to the relational DBMS, there are also network, flat, and hierarchical DBMS's. These all refer
to the way a DBMS organizes information internally. The internal organizationcan affect how quickly and flexibly youcan extract information.

Source: http://www.webopedia.com/

984

http://www.webopedia.com/
http://www.webopedia.com/
http://www.webopedia.com/

Regular Expression
Regular expressions explained

Regular Expression
In computing, a regular expression (abbreviated as regexp or regex, with plural forms regexps, regexes, or regexen) is a string that describes or matches a
set of strings, according to certain syntaxrules. Regular expressions are used by many text editors and utilities to search and manipulate bodies of text based
on certain patterns. Many programming languages support regular expressions for string manipulation. For example, Perl and Tcl have a powerful regular
expression engine built directly into their syntax. The set of utilities (including the editor ed and the filter grep) provided by Unix distributions were the first to
popularize the concept of regular expressions.

Many modern computing systems provide wildcard characters in matching filenames from a file system. This is a core capability of many command-line shells
and is known as globbing. Wildcards differ from regular expressions in that theycan only express veryrestrictive forms of alternation.

Source: http://en.wikipedia.org/

Regular expressions explained
Regular expressions look ugly for novices, but really it's a verysimple (well, usually simple!), easyto handle and a powerful tool.

Some examples

Real number (e.g.'13.88e-4', '-7E2'):

 ([+\-]?\d+(\.\d+)?([eE][+\-]?\d+)?)

Phone number (e.g. '+7(812) 555-5555', '(20)555-55-55', '555-5555'):

 ((\+\d *)?(\(\d{2,4}\) *)?\d{3}(-\d*)*)

E-mail address (e.g. 'anso@mail.ru', 'anso@mailbox.alkor.ru'):

 ([_a-zA-Z\d\-\.]+@[_a-zA-Z\d\-]+(\.[_a-zA-Z\d\-]+)+)

Internet URL (e.g. 'http://www.paycash.ru', 'ftp://195.5.138.172/default.htm'):

 ([Ff][Tt][Pp]|[Hh][Tt][Tt][Pp])://([_a-zA-Z\d\-]+(\.[_a-zA-Z\d\-]+))((/[_a-zA-Z\d\-\\\.]+)+)*

Detailed explanation

Any single character matches itself, unless it is a metacharacter with a special meaning described below.

A series of characters matches that series of characters in the target string, so the patternbluh would match bluh in the target string. Quite simple eh ?

You can cause characters that normally function as metacharacters to be interpreted literally by prefixing them with a \. For example, ^match beginning of
string, but \^ match character ^, \\match \ and so on.

You can specifya character class, by enclosing a list of characters in [], whichwill match anyone character from the list. If the first character after the [is ^,
the class matches anycharacter not in the list.

Withina list, the - character is used to specify a range, so that a-z represents all characters between a and z, inclusive. If youwant - itself to be a member of a
class, put it at the start or end of the list, or escape it with a backslash.

The following all specify the same class of three characters: az] , [az, and [a\-z]. All are different from [a-z], whichspecifies a class containing twenty-six
characters. If you want ']' youmay place it at the start of list or escape it with a backslash.

Examples of queer ranges: [\n-\x0D]match any of #10,#11,#12,#13.

[\d-t]match any digit, '-' or 't'. []-a] match anychar from ']'..'a'.

Characters may be specified using a metacharacter syntaxmuch like that used in C: \nmatches a newline, \t a tab, \r a carriage return, "\f" a form feed,
etc. More generally, \xnn, where nn is a string of hexadecimal digits, matches the character whose ASCII value is nn.

Finally, the . metacharacter matches anycharacter except \n (unless you use the /smodifier - see below). You can specifya series of alternatives for a pattern
using | to separate them, so that fee|fie|foewill match anyof fee, fie, or foe in the target string (as would f(e|i|o)e). The first alternative includes
everything from the last pattern delimiter ((, [, or the beginning of the pattern) up to the first |, and the last alternative contains everything from the last | to the
next pattern delimiter. For this reason, it's common practice to include alternatives in parentheses, to minimize confusion about where theystart and end.

Alternatives are tried from left to right, so the first alternative found for which the entire expression matches, is the one that is chosen. This means that
alternatives are not necessarilygreedy. For example: when matching foo|foot against barefoot, only the foo part will match, as that is the first alternative
tried, and it successfully matches the target string. (This might not seem important, but it is important when youare capturing matched text using parentheses.)

Also remember that | is interpreted as a literal within square brackets, so if you write [fee|fie|foe] you're really only matching [feio|].

The bracketing construct (...)mayalso be used for define r.e. subexpressions (after parsing youmay find subexpression positions, lengths and actual
values in MatchPos, MatchLen and Match properties of TRegExpr, and substitute it in template strings by TRegExpr.Substitute).

985

http://en.wikipedia.org/
mailto:anso@mail.ru
mailto:anso@mailbox.alkor.ru
http://www.paycash.ru
ftp://195.5.138.172/default.htm

Subexpressions are numbered based on the left to right order of their opening parenthesis.

The first subexpression has the number '1' (whole r.e. match has number '0' - youmay substitute it in RegExpr.Substitute as '$0' or '$&').

Any item of a regular expression may be followed with digits in curly brackets.

A short list of metacharacters

^ Start of line

$ End of line
. Any character

\ Quote next character
* Match zero or more

+ Match one or more
{n} Match exactly n times

{n,} Match at least n times
{n,m} Match at least n but not more than m times

[aeiou0-9] Match a, e, i, o, u, and 0 thru 9;
[^aeiou0-9] Match anything but a, e, i, o, u, and 0 thru 9

\w Matches an alphanumeric character (including _)
\W A non alphanumeric

\d Matches a numeric character
\D A non-numeric

\s Matches anyspace (same as [\t\n\r\f])
\S A non space

You mayuse \w, \d and \swithincharacter classes.

Bydefault, the ^ character is only guaranteed to match at the beginning of the string, the $ character only at the end (or before the new line at the end) and perl
does certain optimizations with the assumption that the string contains only one line. Embedded newlines will not be matched by ^ or $.

You may, however, wish to treat a string as a multi-line buffer, such that the ^will match after any newline within the string, and $will match before anynewline.
At the cost of a little more overhead, you can do this by using the mmodifier on the pattern match operator.

To facilitate multi-line substitutions, the . character never matches a new line unless you use the smodifier, which in effect tells TRegExpr to pretend the string is
a single line - even if it isn't.

List of modifiers (Note: only "i", "s" and "r" implemented)

iDo case-insensitive patternmatching (using installed in your system local settings).
sTreat string as single line. That is, change . to match any character whatsoever, evena new line, which it normally would not match. The smodifier
withoutmwill force ^ to match only at the beginning of the string and $ to match only at the end (or just before a new line at the end) of the string.
Together, as ms, they let the .match any character whatsoever, while yet allowing ^ and $ to match, respectively, just after and just before new lines
within the string.
rNon-standard modifier.

Perl extensions

(?imsxr-imsxr) You mayuse it into r.e. for modifying modifiers by the fly, for example, (?i)Saint-Petersburg - will match string 'Saint-petersburg' and
'Saint-Petersburg', but (?i)Saint-(?-i)Petersburg - will match only 'Saint-Petersburg'.

If this construction is inlined into a subexpression, then it effects only into this subexpression

(?i)(Saint-)?Petersburg - will match 'Saint-petersburg' and 'saint-petersburg' , but (?i)Saint-)?Petersburg - will match 'saint-Petersburg', but not
'saint-petersburg'. (?#text) - A comment. The text is ignored.

Source: (c) 1999 Andrey V. Sorokin, anso@mail.ru

SMP (Symmetric Multi-Processing)
Short for Symmetric Multiprocessing, a computer architecture that provides fast performance by making multiple CPUs available to complete individual
processes simultaneously (multiprocessing). Unlike asymmetrical processing, any idle processor canbe assigned any task, and additional CPUs can be
added to improve performance and handle increased loads. A variety of specialized operating systems and hardware arrangements are available to support
SMP. Specific applications can benefit from SMP if the code allows multithreading.

SMP uses a single operating system and shares common memory and disk input/output resources. Both UNIX and Windows NTsupport SMP.

Source: http://www.webopedia.com/

986

mailto:anso@mail.ru
http://www.webopedia.com/

SMTP (Simple Mail Transfer Protocol)
SMTP is the de facto standard for e-mail transmissions across the Internet. SMTP is a relatively simple, text-based protocol, in whichone or more recipients
of a message are specified (and in most cases verified to exist) along with the message text and possibly other encoded objects. The message is then
transferred to a remote server using a procedure of queries and responses betweenthe client and server. Either an end-user's email client, a.k.a. MUA (Mail
User Agent), or a relaying server's MTA (Mail Transport Agents) can act as an SMTP client.

An email client knows the outgoing mail SMTP server from its configuration. A relaying server typically determines which SMTP server to connect to by looking
up the MX (Mail eXchange) DNS record for eachrecipient's domain name (the part of the email address to the right of the at (@) sign). Conformant MTAs (not
all) fall back to a simple A record in the case of no MX. Some current mail transfer agents will also use SRV records, a more general form of MX, though these
are not widely adopted. (Relaying servers can also be configured to use a smart host.)

The SMTP client initiates a TCP connection to server's port 25 (unless overridden by configuration). It is quite easyto test an SMTP server using the telnet
program.

SMTP is a "push" protocol that does not allow one to "pull" messages from a remote server on demand. To do this a mail client must use POP3 or IMAP.
Another SMTP server can trigger a delivery in SMTP using ETRN.

Source: http://en.wikipedia.org/wiki/Smtp

Statement
A statement is the smallest unit of a program. Statements are separated in InterBase/Firebird by a semicolon.

A statement is an instruction written in a high-level language. A statement directs the computer to perform a specified action. A single statement in a high-level
language canrepresent several machine-language instructions. Programs consist of statements and expressions.

Source: http://www.webopedia.com/

String
A string is a series of characters manipulated as a group. A character string differs from a name in that it does not represent anything - a name stands for
some other object.

A character string is often specified by enclosing the characters in single or double quotes. For example, WASHINGTON would be a name, but 'WASHINGTON' and
"WASHINGTON"would be character strings.

Source: http://www.webopedia.com/

TID (Transaction ID)
Each user performs transactions, and each transaction is given its own ID. The TID (Transaction IDs) are numbered sequentially, i.e. transaction ID 10 was
started before the transaction with the ID 11.

The TIPs contain all transactional information in an arrayof bits, two per transaction, which indicate the state of the transaction. The transaction ID is an index
into this array.

When the transaction number is allocated to a transaction, the user also receives a copy of the TIP (Transaction Inventory Page), whichcomprises the status of
all transactions. If a data set is inserted or modified, the TID is entered next to the alteration. These simple rules are all that is needed to implement the
InterBase/Firebird versioning.

A transaction can only see those transactions with a lower TID than its own. Furthermore, all other transactions that were still active at that point in time when
the transaction was started, are invisible to the transaction.

The TIP copy, provided when the TID number is allocated, can be used to monitor the status of all other transactions at the point in time when the transaction
was started. The only way to obtaina newer, more up-to-date TIP is to request a new TID.

For example, user A has a TID 10, user B has a TID 11 or higher. He could also have a TID 9 or lower, when his transaction was still active at the point in time
when user A beganhis transaction with the TID 10. Otherwise he would not be able to alter the data set X. User B modifies the data set with his active
transaction.

Now user A modifies data set X. When the transaction is posted, User A receives a deadlock error or an update conflict, providing the Transaction Isolation
Level is set at repeatable read. this message informs user A that his modification cannot be carried out, as another user - in this case user B - has modified
the data set. The programmer can decide at this point, how the program reacts to this situation.

987

http://en.wikipedia.org/wiki/Smtp
http://www.webopedia.com/
http://www.webopedia.com/

TIP (Transaction Inventory Page)
The Transaction InventoryPage (TIP) is one of the ten page types defined in InterBase/Firebird. Each and every user transaction is consecutively numbered,
using the InterBase/Firebird Transactions Inventory Page (TIP) (also knownas the Transaction Information Page). These transaction numbers are used by the
InterBase/Firebird versioning engine to ensure that users always receive a consistent view of the database. It shows the status of eachand every transaction
in the database, and adheres to two mainrules:

1. Only those transactions are visible, whose ID <= own ID.
2. Only those transactions are visible, whichwere already committed at the time the owntransaction was started.

Transactions are shown with one of the following four status values:

Table: Values in the Transaction Information Pages

Status
Code Description

A Transaction is active, or in process

C Transaction was committed. The changes made by this transaction can be applied if
necessary to show a consistent view of the database.

R Transaction was rolled back. The changes made by this transaction should be ignored.

L Limbo transaction. This transaction was part of an operation involving more than one
database within an embedded SQL application.

For example, 1C= first transaction committed, 2A= second transaction is active, 3C= third transaction is rolled back, 4L= Transaction is in limbo (i.e. when a
transaction is dependent upon another transaction in another database = two-phase commit). This information is important for the garbage collection.

The TIPs contain this information in an arrayof bits, two per transaction, that indicate the state of the transaction. The transaction ID (TID) is an index into this
array.

Special transactions IDs

InterBase/Firebird tracks three special positions within the transaction history:

1. The Oldest Interesting Transaction (OIT) is the earliest transaction in the database with a status other thancommitted. Every transaction prior to that
one represents an unbroken chain of insertions and updates into the database.

2. The Oldest Active Transaction (OAT) is the earliest transaction in the database that is currently active or open.
3. The Next Transaction Number is the ID that is used for the next transaction that starts.

You canfind these numbers in the IBExpert Database Statistics displaywithin the Server Manager, or using the gstat -h command in isql.

Whenyou start a transaction, InterBase/Firebird makes a copy of the TIP into the server memory cache assigned to your process, starting from the page
holding the OIT and finishing with the page holding the OAT.

Whenever the database is backed up and restored, the transaction inventory is wiped out and the next transaction number is set to 1.

There is also a mechanism in the InterBase/Firebird server TIP page, to allow a local TIP page for eachuser. The local TIP page is generated the minute a
new user presses the Execute [F9] key. Please refer to TID (Transaction ID) for further information.

The advantage of such a system is that older records are held ready. The disadvantage for users, who execute, but need a considerable time before finally
committing is that the local TIP becomes very large, as it always begins at the oldest active transaction, so that it is possible using this technique, for one
transaction to hold everything up and slow the transaction processing for everyone. If a system becomes increasingly slow with time, it is almost always due to
the fact that TIP pages are being filled further and further with transaction information, because the first transaction has not been committed. 99% of local TIPs
are held in the RAM, until there are no further pages free.

Note: If you are only doing a SELECT in your transaction, youshould always COMMIT to avoid creating an "interesting" transaction (transaction with a
status code other than committed in the TIP).

All TIPs are of the page size defined when creating the database. 16,000 transactions fit, for example, onto a 4K page.

TIPs and Server Crashes

If a server crashes or hangs during user transactions, the InterBase/Firebird server simply looks at the TIP, and rolls back all operations that were still active.
This means that an InterBase/Firebird server can be rapidly restarted. As soonas the operating system is up and running, InterBase/Firebird is also up and
running. Forced writes however influence the sequence in which is written:

1. IBExpert Database Properties / Forced Writes - when committing InterBase/Firebird saves all data sets to the hard drive and then to the TIP.
2. Without forced writes the process is minimallyquicker, but on a Windows platform, Windows decides what should be saved to file, where and when;

and the data pages are saved to file last i.e. the TIP changes are written first and then the data sets, which could possibly lead to inconsistencies.

Therefore forced writes are extremely important when working on a Windows platform. Without forced writes, the computer needs to be extremely secure.

988

Transaction
1. Transaction Mask
2. Transaction Number Column
3. Active Transactions
4. Transactions in Limbo

Transaction
A transaction is a single task with a number of specific characteristics. Anapplication can perform one or more operations, within the context of a transaction,
each of whichmust be completed in sequence.

One of the main tools used by relational databases to maintain data integrity is the transaction. A transaction is a task with a number of specific
characteristics:

1. An application canperform one or more operations within the context of a transaction, each of which must be completed in sequence. Anoperation
consists of, as a rule, one SQL statement, such as SELECT, INSERT, UPDATE, or DELETE.

2. The changes performed by the transaction can be committed if all of the operations in the transaction are completed. Until the results of the transaction
are committed, the changes made to the database are invisible to other users.

3. A transaction can also be rolled back. In this case, as far as other database users are concerned, the data never changed.

Because of these characteristics, transactions ensure that complexoperations on the database are performed completely. Transactions provide complete
protection against operations not being completelyprocessed, therefore ensuring data integrity.

A transaction can be in one of the following four states:

1. in limbo
2. Committed
3. Rolled back
4. Active

Transaction Mask
A transaction mask is an array of two bit pairs that represents the state of all transactions starting with the oldest interesting and ending with the next
transaction. The oldest interesting transaction is the first transaction in the database after transaction zero) whose state is not committed. Transaction zero is
the system transaction and is always active. The next transaction is the transaction after the one that started most recently.

In the Classic architecture, each connectionmaintains its owncopyof the transaction mask. In shared server architectures, each server maintains a single
copyof the transaction mask. In Classic, and in particular on machines with memory sizes that were typical in the early90's, you could eat up a lot of memory
describing a system that had a few hundred thousand transactions betweenthe oldest interesting and the next transaction, even if you only use two bits per
transaction.

Transaction Number Column
For every table you create, including system tables, InterBase/Firebird maintains an extra column for the transaction number. When you insert or update a
column as part of a transaction, the transaction number is written to this column, so that InterBase/Firebird knows which transaction is controlling that row of
the table. Even when you delete a row as part of the transaction, the number is written to the row until the transaction is committed or rolled back, in case there
is a problem, or in case the transaction is a lengthyone.

The InterBase/Firebird versioning engine uses this transaction number to ensure that each user receives a consistent view of the database at a moment in
time. This is known as a repeatable read.

Active Transactions
A transaction is active, if one of the following conditions is true:

The transaction has not yet started.
The transaction has started but not yet completed.
The transaction has started, could not however complete successfully, due to for example, a system crashor communication problems etc.

The actual status of each transaction is recorded in the TIP (Transaction Inventory Page). In fact, the only alteration that occurs when a transaction is
committed is the alteration to the status in the TIP from active to committed.

Transactions in Limbo
InterBase/Firebird's transaction mechanism, like most databases, canonly handle transactions within a single database. However withinan embedded SQL
application, InterBase/Firebird canperform operations on more thanone database at a time.

With a logical transaction that spans databases, InterBase/Firebird handles the operations within eachdatabase as separate transactions, and sequences
them using a two-phase commit model, to ensure that both transactions complete or that neither completes. When InterBase/Firebird is readyto commit or
rollback such a multidatabase transaction, it first changes the transaction status from active to limbo. It then performs the commit or rollback operation. Finally
the transaction status is changed from limbo to committed.

Transactions in limbo are transactions that have been started by the PREPARE command within the framework of a two-phase commit. The transaction mayor
may not still be running. This transaction may become relevant at anypoint in time and all changes made so far may be committed or rolled back. Such

989

alterations made by such transactions can neither be examined or ignored; they canneither be defined as executed or aborted. They cantherefore not simply
be removed from the database.

However for a database backup to be fully performed without aborting, such transactions in limbo need to be ignored in the backup. Only those most recent,
committed transactions are backed up. It allows a database to be backed up, before recovering corrupted transactions. Generally in limbo transactions should
be recovered before a backup is performed.

Note: BDE clients use only single-database transactions, even if the client application accesses two or more databases. Embedded SQL and InterBase/
Firebird API provide methods for programming distributed transactions.

See also:
Firebird for the database expert: Episode 4 - OAT, OIT and Sweep

Two-Phase Commit
A transaction spanning multiple InterBase/Firebird databases is automaticallycommitted in two phases. A two-phase commit guarantees that the transaction
updates either all of the databases involved or none of them - data is never partiallyupdated.

In the first phase of a two-phase commit, InterBase/Firebird prepares each database for the commit by writing the changes from each subtransaction to the
database. This subtransaction is the part of a multi-database transaction that involves only one database. In the second phase, InterBase marks each
subtransaction as committed in the order that it was prepared.

If a two-phase commit fails during the second phase, some subtransactions are committed and others are not. A two-phase commit can fail if a network
interruption or disk crashmakes one or more databases unavailable. Failure of a two-phase commit causes in limbo transactions, i.e. transactions that the
server does not know whether to commit or roll back.

It is possible that some records in a database are inaccessible due to their association with a transaction that is in a limbo state.

Note: The Borland Database Engine (BDE), as of version 4.5, does not exercise the two-phase commit or distributed transactions capabilities of InterBase/
Firebird, therefore applications using the BDE never create limbo transactions.

Variable
A symbol or name that stands for a value. For example, in the expression

 x+y

x and y are variables. Variables canrepresent numeric values, characters, character strings, or memory addresses.

Variables playan important role in computer programming because theyenable programmers to write flexible programs. Rather thanentering data directly
into a program, a programmer canuse variables to represent the data. Then, when the program is executed, the variables are replaced with real data. This
makes it possible for the same program to process different sets of data.

Everyvariable has a name, called the variable name, and a datatype. A variable's datatype indicates what sort of value the variable represents, such as
whether it is an integer, a floating-point number, or a character.

The opposite of a variable is a constant. Constants are values that never change. Because of their inflexibility, constants are used less often than variables in
programming.

Source: http://www.webopedia.com/

WAL (Write Ahead Log)
WAL (Write Ahead Log)

The Log Information Pages (LIP) for the write-ahead log are not currently used, though code to use them is included conditionally in Firebird.

?

990

http://www.webopedia.com/

