Firebird 3.0 Release Notes

Helen Borrie (Collator/Editor)
8 December 2014 - Document v.0300-18 - for Firebird 3.0 Beta 1

Firebird 3.0 Release Notes

8 December 2014 - Document v.0300-18 - for Firebird 3.0 Beta 1
Helen Borrie (Collator/Editor)

Table of Contents

T 0T = I N (o] (S TSP PPRPTI 1
210 To T (= 0] 1 (] oo SRR 1
Dol N[0 1< g1 = 1 o] o SRR RTTPRI 1

2. NEW 1N FIreDIrd 3.0 ...t 2
SUMMEANY OF FEALUMESeeeiiieie ittt e e e e e e e e e s et e e e e e e e s e ettt e e e e e aeeessssnreaaeeeaeens 2

3. Changes in the FIrebird ENQINGooo i e e e e e e e e e ennaeaes 4
REMOEN €0 ATCIITECIUNEooiiiiiii ettt e e st e e e st e e e e e s nneeeas 4

WOorking Modes (“MOEIS") ... e e e e e e r e e e e e s e eanneaees 4
L0V o (= TSP PR P PPPRR 5
1o PR PPRRPR 8
EXIENAl ENQINES ..ooiiiiiiiieee ettt ettt e e e e e s e ettt e e e e e e e s s e nntbbe e e e e e e e e sannsrbareeaaeeeaaans 13
(O o]0 14= g N1 0] 0l 0)V/= 011= 01 (SRR 16
Other OPLIMIZALIONS ... e e e e e e e e e e e e e e s e s b e e e e aeeseassasnraaereaaeesaananes 16
Remote Interface/NetwOork ProtOCOIcooiieiiiiiiiiiie e 16
MisCEllaNEOUS IMPIOVEMENTSccoiiiiiiieiiee et e e e e e e e e e e e e e e s s e eeeeeeeessennnnees 17
ConNeCtions Limit RAISEAcoiuuiiiiiiiiiiie ittt 17
Better ErrOr DIAgNOSIS . ..uvviiiiiiee i it e e e s ettt e e e e e e e e e e e e e e s s et e e e e e e e s s anntbraaeeaaeeeaaas 17
ICU VErsion UPGradedcooeeiiiiiiiiiiiiiee ettt e e e e st e e e e e e s e e s atntaaeeaaaeeaaa 17
Internal Debug Info Made Human-readablec.cooiiiiiiiiiie e 17
A Silly Message IS REPIACEcoiieiiiiiiie et 17
New Pseudocolumn RDBSRECORD _VERSIONccceoviiiiiiieiiiiiiee et 18
SYSEEMA TNIT SCHIPLS ..t e e e e e e e e e e e e s s st eeeeaeessasssrereeeaaeeanaas 18

4. Changes to the Firebird APl @and ODSouiiiiiiei i a e e s e et rraaeeeeaans 19

ODS (ON-Disk StrUCLUIE) ChaNGESvvveiieeeeiiiiiiieeieeee e e e s eettee e e e e e e s e s st ae e e e e e e s aaarbreaeeaaeeesannsnenees 19
NEW ODS NUIMDEN ...ttt ettt e e sbb e e e s asbe e e e e ssbe e e e e anbbeeeeennbeeeeeanes 19
Implementation ID iS DEPrECAIEoocuiiiiieiie e e e 19
MBXIMUM PAJE SIZE ...ttt et e e e e e e e e e e e e e e a e e e e e e e s eannraraeeeaas 19
Maximum Number of Page BUffersin Cachec.ccccooiiiiiiiiiiiie e 20
SYSIEM TADIES ... e e e e e e a e e e e e e e — e e e e e e e nannaaaees 20

Application Programming INEEIACESeeiiie oo e e e s e e e e e e e aanes 21
Interfaces and the New Object-oriented AP ... 21
(@1 07c N [o P OPPPP 24
N I 1 0] 002 10 01 24

5. Reserved Words and ChanQgEScoiiiiiiiiiiiie e ettt e ettt e e e e e s et e e e e e e e s s e nnnbaeeeeaaeeseannrneees 26
New Keywords in FIrebird 3.0ooiiio i a e e e e 26

6. Configuration Additions and ChangEScc.uuueiiiiiee e e e e eaee s 27
SCOPE OF PAIaIMELEIS ...coiiei ittt e e e e e e s e st e et e e e e e s sass e e e e eeaeessasntbrneeeaaeeaaans 27
MBCIO SUDSHTULTION ...eiiiiiiee ittt e e et e e s et e e s enb e e e s enbbn e e e s annneee s 27
INCIUTES ...ttt e bttt e ookttt e e e a b bt e e e b ket e e e e bbb et e e enbb et e e e anbe e e e e e nnneee s 28

LAV o 0= PP POPPR 28
EXpression of Parameter VAlUEScccuviiiiiiie ettt et r e e e e e s s st rn e e e e e e e e annnes 28
“Per-database” CONfIQUIBLIONcccuiiiiiie e e e e e s e e e e e e s e et ea e e e eaeeessnnnnnaees 29

Format of Configuration ENIIESeeiiiieiiiiiiiiiee e e s s e e e e s s e e e e e e e e e ennes 29

Parameters AVAIADIEoooiiiii e 29
NEOW PAIBITIELENSoiiiiiiiieiie ettt e e e ettt e e e e e e e bbb e et et e e e e e s aa bbb b bt e e e e e e e e aanbbbeeeeeaeeesaannnenees 29

SECUNMTYD@AIADASEcei ittt e e e e e e s e e e e e e e s e ettt e e e e e e e s eanntbrareeaaeeenaas 30

AuthServer and AUINCTIENToooiiiiiie et 30

LAY =1 Y] . SRR 30

Firebird 3.0 Release Notes

L0 LS Y =TT [S 30

QI = o= 1o T o T PP 31
L@/ 11 11 1 o IR PPERRRN 31
(=YL [0 L= = 1 o T o USRS 31
0LV o (= PR 31
SharedCache and SharedDalaDasecoooiiuiiieiiiiiie e 31
REIMOLEACTESS ... 31
Parameters Changed or ENNBNCEAcoocuuiiiiiiie e e 32
EXEEINMAIFTIEACCESSieeiie ettt ettt e e e et e e e sn bt e e e asb e e e e snbae e e e ennbeeeeens 32
Parameters Removed or DEPreCatedueeiiiiii i e e e e e e e e e e 32
[0 To 1 DT (= (o PR 33
=0T onY = o PSRRI 33
OlASELCIAUSESEMBNTICSvvveeeeiiteieeeetteee e st e e e sttt e e s st e e e st e e e e asbe e e e e anbaeeeesansneeesannreeeeennnes 33

(@ T (0o 11810010 N F= o oo [SRR 33

oo (=01 (O o L= PSPPI UPRRPPPPRI 33
Obsolete Windows priority SEHINGSuvvviiieieeiiiiiiieier e e e e s s e e e e e e s earrreeeeeeas 33

S = v] YRR 34
(oo (ol g) H U E = I K PRSP 34
(DT = 07z o I = 0107/ 0 0] o PR PPRRRP 34
R o < B =Y PO 35
L= S 2 PP RP PRSPPI 35
New Authentication Method in FIrebird 3oouiiiiiiiiiieiee e 35
S I RS o] o 1 SRR 36
Increased Password Length ... 36

The AUthentiCation PIUG-INeiiii i e e e e s aeeeeas 37
"Over the wire" ConNECtioN ENCIYPLIONeiiii oo e e e e ee e e e e e e e e eanes 37
THe SECIEL SESSION KEBY oeiiiiiii i e e e e s e e e e e e e e s s e bt b e e e e e e e e e e e neees 38
Mapping Of USErS t0 ODJECEScccoiiiiieeee e e e e e e e e e s e nneees 38
The MapPING RUIEooee e e e e e e s s st e e e e e e e e e naaaranes 39
SQL Features for ManagiNng ACCESSccccuiiieiie e e e e e et et e e e e e s s s e e e e e e s e s st e e e e e ae s e s s atataaeeeaaeeas 42
SQL-driven User ManagemMENtceiieeiiiiiiiiieeiee e e e s et e e e e e e e s st e e e e e e e s s seanbarereeaeeesenaneees 42

S I (O USRS 44
GRANT/REVOKE Rights GRANTED BY SpeCified USElcccvvviiiiiiiii e 45
REVOKE ALL ON ALL .ttt ettt st e e s st e e e s nnnne e e e ennees 46
User Privileges for Metadata ChangESccuviiiiiie ettt e e 46
GRANT EXECUTE Privileges fOr UDFScoiiiiiiiieiiiiiiee e 48
Improvement for Recursive Stored ProCedUIESeeeiiiieeiiiiiiiieiiee e 48
Privileges to Protect Other Metadata ObJECESccvvviiiiiie e 48
Pseudo-Tables With List Of USEISc..veiiiiiiiiiec ettt 49
8. Data Definition Language (DDL)cociiiiiiieie ettt e e e e s et ar e e e e e e e s st e e e e e e e e eennnneees 50
QUICK LINKS ..o 50
DDL ENNBNCEMENESeviieeeiiiiiie ettt s e e ettt e e e e st e e e s ansb e e e e snbe e e e e entneeeaannaeeees 50
LS YT D = I 0= ST 50
Manage Nullability in Domains and COlUMNSccoiiiiiiiiiiiiiee e e 53
Modify GENErators (SEQUENCES) ..vveeiiieeiiiiciiiiieeee e e e e eeitt e e e e e e e e sttt e e e e e e e s s s esbbbreeeeeeeeeesnnneenens 54
Alter the Default CharaCter SELoocveiie it 54
BLOB in COMPUTED BY EXPrESSIONScccciuviieeiiiiiiieeiniieeeeaaiieesessssseessssssseesssnsseessssnsesessans 54
“Linger” Database ClosSUre fOr SUPEISEIVEYcccccuviiiiiie e e s st re e e e e e e saraae e e e 55
New SQL for Managing Users and ACCeSS PriVIlEgEScuuvveeiiie i 55

9. Data Manipulation Language (DIML)eeeiiieoiiiiiiiieiee ettt a e e e et rae e e e e e e e s e e enanrnees 57
QUICK LINKS ..o 57
Supplemental SQL 2008 Features for MERGEc.coeoviiiiiiiieeee e 57

Firebird 3.0 Release Notes

Window (Analytical) FUNCLIONSoueiiiiiiiiiiiicce et e e e e e s e eeeeas 58
Aggregate Functions Used as Window FUNCLIONScccuiiiiiiie e 59

[z 0] 1 oo PR 60

(@ 0 =11 o PP R PRSP 60
EXCIUSIVE WINAOW FUNCLIONSeeiiiiiiiie et 61
AAVANCED Plan OULPULcooiiiiiiiiiiee et e e e e e e e e e s st e e e e e e e s s ann b b eaeeeaaeeesananreraeeeaeens 63
Advanced PLAN OULPUL IN ISOl ...ccvviiiieieee et e e e e e e e e e e e e 64
INEEINAlL FUNCLIONS ..ottt et e e sttt e e s sab e e e e anb et e e e ansbe e e e s ennbeeeesneeeeeans 64
SUBSTRING with Regular EXPreSSIONSuuvieiieeiiiiiiiiiiei et e e e s s e e e e eeanenes 64

New Inverse Hyperbolic Trigonometric FUNCLIONScccuvviiiiiie e 64
TRIM() BLOB Arguments Lose 32 KB lIMitcoooiiiiiiiiiie e 65
Enhancements to DATEADD() Internal FUNCLIONcccuiiiiiieee e 65
1 I T 0T o0 Y 1 0T S 65
Alternatives for Embedding Quotes in String LiteralSccccvveeiee i, 65
Prohibit Edgy Mixing of Implicit/EXPliCit JOINSccvvveiieeeee e 66
Left-side Parameters SUPPOIMEdoouiiiiieiiee e e e raee e 66
Enhancements to the RETURNING ClaUSEccuvviiiiiiiiie e 66
(N = o TS = o1 11 PR PPPRPR 67

AN IMProvemMENt fOr GTTS . e e e e e e e e e e e e et ba e e e e e e e e s snaaneees 67

An Improvement fOr DML SIHNGS ..oooiii oot e 68

(@] o11] 11114 1 Lo 0T PRRRRS 68
D= 1 o A 1= 1 = ot PRSPPI 69

10. Procedural SQL (PSQL) ..veeiieeeiiiiiiiieiee e e e ettt e e e e e e e e e e e e e e s s an e ae e e e aaeesssaasbrbareeaeeeseannerrneeeeas 70
QUICK LINKS ..o 70
S O IS (o= ol =V o (o] 70
PSQL SUD-TOULINESevvvvveveerieirreeeteesserssersressssrersrererererersrererererererer.r.—ersrerererrrsrrrersrsrsrsrrsrrrsrsererrrees 71
0 0 === PR PPRPRR 72
00 (== EERPRR 73
0 e o 1010 TS Y 1 = P UERRPR 73
Simple Packaging EXAMPIEooiiii it e s 74
]I Lo o = £ URTR 75
PEIMMISSIONS ...t ettt et e ettt e e e bttt e e e sa b et e e e e nb et e e e enbe e e e s anbeeeeeeanbbeeeeennbaeeeean 77
W] o Lo A L T (L= R 77
DDL_TRIGGER Context NaMESPDACEccvvveiiiiieeiiieeeiiiii e e e e e e eeettis s e e e e e eeeernan e e e e e eeeerenan s 77
EXCEPLiONS WIth PAramELErSuveiiiiee e e e e e e s st e e e e e e e e et rr e e eaaeeas 81
CONTINUE iN LOOPING LOGIC w1vviiiieeeiiiiiiiieiee e e e e ettt e e e e s ettt e e e e e e e s s santaae e e e e e e s s snnntanneeeaaeeenanns 82
RSO IO £ o g = o] [<= (o o [83
Extension of Colon PrefixX USAgEcccuvviiieiie ettt e e e e e e et aaer e e e e e s e aanes 83
PSQL CUrsors @S VariablESuuuuiiiiiiccec s ssssssnsnnnnnnns 83
Colon Prefix as aVariable Markeroooiieiiiiiiiiie e 84
Some Size Limits Removed USiNg NEW APloviiiiiiie e 85
SQLSTATE in EXCEption HANAIErSovviiiiiiie ettt e e e e sarrre e e e e e e e e ennes 86
11. Monitoring & Command-liNg ULHHTIESooiiiiiiiiiii e 87
1Y/ Ko Tl (o] oo [SR ERR PP 87
LI = (o1 (o T UEPRRR PRSPPI 87
(00 TR 87
New “Skip Data’ Backup OPLiONc..cveiiieeeiiiiiiiiiiee et e e e e e e e seanrraeeeeeeas 87
Long Names for LOG FlES ... e e e 88

0o PSR TR 88
1o | SRR 88
SET EXPLAIN Extensions for Viewing Detailed PlanSccccvvieveee i, 88
MELAOAEA EXLFACEeeiiiiieiie ittt et e e et e e e e nb e e e e snnae e e e s nnteeeeens 88

Vi

Firebird 3.0 Release Notes

Path t0 INPUT FIlES ...eeiiiiiiiiieiieiee ettt sttt e e et e e e s e e e e nnnees 89
Command BUFfer SIZE INCTEESEcoiiuviiii ittt 89

LT (ot o1 | PSSR 89
10T LN o 0 0= o 1SR 89
Useability IMPrOVEMENTSoeiiieiiii e e e e e e s e et e e e e e e e s e saabereeeeaeeenans 89

011 PR 89
BN [T 1= Y7 o o S PEPRR 89
Improvements to Validation IMESSAgEScooicuuiiiiiiee e ccciiee e e e st e e e e e e s rare e e e e e e e 20
(@1 0= i RN PRSPPI 90
All CommMEaNG-1INE ULHITIESeeeieiiiiiie e e e s 90
Hard-coded Messages REPISCEDouviiiiii i e e 90
Arbitrary Switch Syntax Clean-UPcccuvieiiiii e 20

12, COMPALDITITY TSSUES ...vvveiiieeeii ittt e ettt e e e e et e e e e e e e e et e e e e e e e s s saab b b e e e e eaeeesasnnbraeeeeaaeas 91
WHEFE ATE the TOOIS? ...cieiiiiiii ettt e e e st e e et e e e e sabe e e e e sbe e e e e snbeeeeeanbeeeeeanns 91
LOGOiNg iN @S SY SDBA ...oieeiiiie ettt e e e e e e e e et e e e e e s e e e e e e e e e e e e e b ———raaaeeesaaanraaes 91
(=0T o VA AN 1110 (o= (o o PRSP 91
CoNfigUIaLioN ParaMELEL'Seeiiieeii ittt ee e e et e e e e e e e e e e e e s e s st be e e e e aeessastataaeeeaeeesaannnreees 92
SQL Language ChanQgESuuueiiiieeiiiiiiiiiiee e e e e e e eetaae e e e e e e s s e st e e e e aeeeesastataseeeeaeessaanntarereeaaessaaanes 92
RESEIVEA WOTTS ...ttt e s et e e e sttt e e e sttt e e e sbe e e e e anbbe e e e e annbeeesennbeeeeaann 93
T U oS3 o D= o [P PPRRPPR 9
Firebird 3.0 First BEl@ REIEASEcooiiiiiiii ittt e e e 9
(o = = 0T 1 RRRPR 94
SEIVEN CraSHES ..ot e e e e s e et e e naa e e e e e 100
API/REMOLE INLEITACEveeiee it e e e e e ennees 101

L1 =S PRPTPPR 102
Firebird 3.0 Second AIPha REIEESEouvviiiiiei i a e 103
(0o = = 0T 1T ERRRR 103
SEIVEN CraSNES ..ottt e e e et e e e e e e e 106
API/REMOLE INEEITACE ... vveiee it e e e e e e nnnees 107
SeCUity/USEr MaNagEMENLuveiiiie i it e e e e s et e e e e e e s st e e e e e e e s e et be e e e e e e e e e s ensnranes 107
Procedural LanQUAGEcccuvueiieeiee ittt e e ettt e e e e e e et e e e e e e e e e s s e e e e e e e e s sannnrrareeaaens 107
Data Definition LANQUEBOEccovieeeiiiiiiiiee ettt et e e e e e e st e e e e e e e s e e enenraeee s 108
Data Manipulation LanNQUABOEcccvvriieiieeeesiciiiieee e e e e e e e ssttaee e e e e e e s s ssntasrae e e e e e e s snnnnaneeeeaens 109

L1 =PSRRI 109
International Language SUPPOITuvieiiieeeeiiiiiieeee e e e e e ecctt e e e e e e e s s ee e e e e e e s ennnrbaeeeaeeeeaaanns 111
INSEAIELION ISSUES ...ttt ettt e et e e e et e e e s st e e e anbe e e e s annneeeeann 111
Firebird 3.0 First AIPha REIEESE ... e a e e e 111
(0o = = 0T 1 TSR 112
API/REMOLE TNLEITACE ... veeiee it e e e e e ennees 116
Procedural LanQUAGEcccuvueeiieiee ittt e e e ettt e e e e e e e et e e e e e e s e e st s e e e e e e e s eannnraaeeeaaens 117
Data DefiNition LANQUEBOEcoevieeeiiiiiiiieiee ettt e e e e e st e e e e e e e s e e entnraeee s 118
Data Manipulation Language & DSQLccccviiiiiiee it e e e 119
ComMaNG-TNE ULHHTIEScoiiiiiiie it e e naeee s 120
International Language SUPPOITuvieeiieeeii it e e e e e s ee ettt e e e e e e e s st e e e e e e e e s sasnnrbaeeeaeeaeaaanns 121

14. Firebird 3.0 ProJECE TEAIMSuvviiiiieee ittt e e e e e s e ettt e e e e e e e s s et e e e e e e e e e s s satbaaeeeeaeessaaantbeeeeeaaeeaaanns 122
APPENdiX A LICENCE NOLICE ...t s e e e e e e s e et r e e e e e e s s aabaraaeeaaeeeaans 124

Vii

List of Tables

3.1. Matrix of Working Modes (D. YEMANOV)ccoiuuiriiiiiieieeiiiiee e s ettt e e e e e e anne e s e e e nnnes 4
6.1. Parameters available in databaseS.Contoooiiiiiiiiiii e 29
14.1. Firebird DevElOPMENE TEAIMSooiiiiiiieeiiieiee ettt e et e e e e e b e e e e s e e e e asre e e e s anrneeeaan 122

viii

Chapter 1

General Notes

Thank you for trying out this first Beta release of the forthcoming Firebird 3.0. We cordially invite you to test
it hard against your expectations and engage with usin identifying and fixing any bugs you might encounter.

Bug Reporting

 If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

» If you think a bug fix hasn't worked, or has caused a regression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test datain your report and post it to our Tracker.

2. Youarewarmly encouraged to make yourself known as a field-tester of this pre-release by subscribing to
the field-testers' list and posting the best possible bug description you can.

3. If youwant to start adiscussion thread about abug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this Beta.

Documentation

Youwill find all of the README documents referred to in these notes—as well as many others not referred to
—in the doc sub-directory of your Firebird 3.0 installation.

--The Firebird Project

http://www.firebirdsql.org/en/how-to-report-bugs/
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe

Chapter 2

New In Firebird 3.0

The primary goals for Firebird 3 were to unify the server architecture and to improve support for SMP and
multiple-core hardware platforms. Parallel objectives were to improve threading of engine processes and the
options for sharing page cache across thread and connection boundaries.

Alongside these aims came new strategies to improve performance, query optimization, monitoring and scal-
ability and to address the demand for more security options. A number of popular features were introduced
into the SQL language, including the long-awaited support for the Boolean data type and the associated logical
predications.

Summary of Features

Thefollowing list summarisesthefeatures and changes, with linksto the chapters and topicswhere more detailed
information can be found.

Unification of the Firebird executable is complete
With the completion of true SMP support for Superserver, the Firebird core is now a unified library that
supports a single ODS, loadable either as an embedded engine or by the “network listener” executable.
Choice of server model isdetermined by settings for two new configuration parameters defining the locking
and cache models, respectively: Shar edDat abase and Shar edCache. They can be specified at either
global level (infirebird. conf) or "per database” (in dat abases. conf).

By default, SharedDatabase = fal se and SharedCache = true, thus meaning SuperServer.

Note

The previous al i ases. conf is replaced by dat abases. conf, now including not just aliases for
databases but also (optionally) configuration parameters to enable configuration of databases and/or alter-
native security databases individualy.

The changes are described in more detail in the chapter Changes in the Firebird Engine.

True SMP support for Super Server
In Superserver mode, the engine now makes use of multiple CPUs and cores when spawning connections.

Tracker: CORE-775
Implemented by V. Khorsun

New, object-oriented C++ APIs
Object-oriented C++ APIs enable external code routines to plug in and run safely inside Firebird engine
space, including (but not limited to):

» Encryption schemes for data

» User authentication schemes, including secure key exchange

http://tracker.firebirdsql.org/browse/CORE-775

New In Firebird 3.0

» Eventualy, plug-in support for stored procedures, triggers and functions written in Java, C++, Object-
Pascal, etc.

“ Per-Database” Configuration

Custom configuration at database level can now be achieved with formal entries in dat abases. conf
(formerly al i ases. conf).

Multiple Security Databases
Firebird now supports user access control via more than one security database on the server. Each database
can be configured, using the parameter SecurityDatabasein dat abases. conf , to use aspecific database
other than the default securi t y3. f db.

Several New SQL Commands to Manage Users and Access
Changesin architecture, stiffening of rules for security and dataintegrity, along with feature requests, have
givenriseto araft of new SQL commands for managing users and their access to objects.

New Data Type Support
A true BOOLEAN type (True/False/lUnknown), complete with support for logical predicates, e.g.,

UPDATE ATABLE
SET MYBOOL = (COLUWNL IS DI STI NCT FROM COLUWNZ)

For details, see BOOLEAN Type.

IDENTITY type, spawning unique identifiers for the defined column from an internal generator. For details,
see IDENTITY -Style Column.

Support for SQL Packages
For details, refer to Packages.

DDL Triggers

Now, triggers can be written to execute when database objects are modified or deleted. A typical useisto
block unauthorised users from performing these tasks.
For details, refer to DDL Triggers.

"Window' functionsin DML

A whole new series of analytical functionsto work with multiple subsetsin DML. See Window (Analytical)
Functions.

Chapter 3

Changes in the
Firebird Engine

In Firebird 3, the remodelling of the architecture that was begun in v.2.5 was completed with the implementation
of full SMP support for the Superserver model. In the new scheme, it is possible to configure the execution
model individually per database.

Remodelled Architecture
Dmitry Y emanov

The remodelled architecture integrates the core engine for Classic/Superclassic, Superserver and embedded
models in a common binary. The cache and lock behaviours that distinguish the execution models are now
determined externally by the settingsin two new configuration parameters: SharedDatabase and SharedCache
and the connection method in the parameter Providers. The parameters for configuring the architecture are
specified globally (inf i r ebi rd. conf) and can be overridden specifically for a database (in dat abases.
conf).

Note

dat abases. conf istheold al i ases. conf with anew name. In Firebird 3, the role of thisfile involves
(potentially) much more than being just alookup for database file paths. For more details about this, refer to
the chapter Configuration Additions and Changes.

Working Modes (“*Models™)

Table 3.1. Matrix of Working Modes (D. Yemanov)

SharedDatabase=0 SharedDatabase=1
SharedCache=0 Single user Classic, SuperClassic
SharedCache=1 Superserver See Note

Infirebird. conf thedefaultsmake SharedDatabasefalse (=0) and SharedCachetrue (=1), i.e., SuperServer.

SharedDatabase=1, SharedCache=1

This mode, although theoretically possible, is hot supported currently.

Changesin the Firebird Engine

Execution Modes

Classic and SuperClassic
Classic and SuperClassic are set up using the same configuration: SharedDatabase = true and SharedCache
=false.

* On Linux, the server startup method determines which will run, i.e., running xinetd means Classic, while
running the firebird means SuperClassic.

* On Windows, the command line options for firebird.exe specify the mode, just as they did in v.2.5 for
fb_inet_server.exe, i.e., switch -m (for multi-threaded) means SuperClassic; otherwise Classicisimplied.

Superserver
Superserver is set up using the configuration SharedDatabase = false and SharedCache = true.

e For multi-user use it is important to start the executable with the -m switch. It will start in single-user
mode otherwise.

Sngle-user Mode
SharedDatabase = false and SharedCache = false means that only one connection is possible, i.e., single
user mode.

Whether a “hostless’ connection is handled by the embedded engine or by the network listener (e.g. the
XNET case), the settings SharedDatabase and SharedCache define the behaviour at the engine level. For an
embedded connection, SharedDatabase = fal se and SharedCache = true would mean the pre-v.2.5 embedded
behaviour on Windows (based on Superserver), while SharedDatabase = true and SharedCache =falsewould
mean the v.2.5 embedded behaviour (based on SuperClassic).

How the connection string is processed depends on order specified in the Providers setting. The default
setting is Renot e, Engi nel2, Loopback. Connection strings to hosts are handled by the Remote
provider, while “hostless’ ones are handled, in turn, by Enginel2 or L oopback.

Accordingly, if | i bEngi nel2. so or engi nel2. dl | (as appropriate to platform) is available to the
Dispatcher (y-valve), a“hostless’ connection will be handled by the embedded engine; otherwise it will be
handled by the loopback provider (XNET on Windows, TCP vialocalhost on POSIX).

Note

Of course, technically, XNET is not alocal loopback provider (alocal connection through a remote inter-
face) and, in previous Firebird versions, it was treated as being in the “remote” space. On Firebird 3, it
belongs with the local loopback providers.

Providers

The providers are more or less what we traditionally thought of as the methods used to connect a client to a
server, that is to say, across a network, host-locally, via the local loopback (“localhost”) or by a more direct
local connection (theold | i bf berbed. so on POSIX, now implemented asthe plug-in library | i bEngi nel
2. so; on Windows, engi nel2. dl | ; on MacOSX, engi nel2. dyl i b).

Infirebird.conf, al are available by default, as follows,

Changesin the Firebird Engine

#Provi ders = Renot e, Engi nel2, Loopback

Note

In databases.conf, one or more providers can be blocked by pasting the uncommented line and deleting the
unwanted provider[s].

The Providers Architecture
Alex Peshkov

Although a key feature of Firebird 3, the Providers architecture is not new. Providers existed historically in
Firebird's predecessors and, though well hidden, are present in al previous versions of Firebird. They were
introduced originally to deal with atask that has been performed sincethen by “interface layers’ such as ODBC,
ADO, BDE and the like, to enable access to different database engines using a single external interface.

Subsequently, this Providersarchitecture (known then as Open Systems Relational Interface, OSRI) also showed
itself as very efficient for supporting a mix of old and new database formats—different major on-disk structure
versions—on a single server having mixed connections to local and remote databases.

The providers implemented in Firebird 3 make it possible to support all these modes (remote connections,
databases with differing ODS, foreign engines) as well as chaining providers. Chaining is aterm for a situation
where aprovider is using a callback to the standard APl when performing an operation on a database.

The Components

The main element of the Providers architecture isthe y-valve. On theinitial at t ach or cr eat e dat abase
call y-valve scansthelist of known providersand callsthem one by one until one of them completesthe requested
operation successfully. For a connection that is already established, the appropriate provider is caled at once
with almost zero overhead.

Let'stake alook at some samples of y-valve operation when it selects the appropriate provider at theat t ach
stage. These use the default configuration, which contains three providers:

* Remote (establish network connection)
* Enginel2 (main database engine)

» Loopback (force network connection to the local server for <database name> without an explicit network
protocol being supplied).

Thetypical client configuration worksthisway: when one attachesto adatabase called Renbt eHost : dbnane
(TCP syntax) or \ \ Renpt eHost \ dbnane (NetBios) the Remote provider detects explicit network protocol
syntax and, finding it first in the Provider list, redirects the call to RemoteHost.

When <database name> does not contain a network protocol but just the database name, the Remote provider
rejects it and the Enginel2 provider comes to the fore and tries to open the named database file. If it succeeds,
we get an embedded connection to the database.

Note

A special “embedded library” is no longer required. To make the embedded connection, the standard client
|oads the appropriate provider and becomes an embedded server.

Changesin the Firebird Engine

Failure Response
But what happens if the engine returns an error on an attempt to attach to a database?
* If the database file to be attached to does not exist thereis no interest at all.

» Anembedded connection may fail if the user attaching to it does not have enough rightsto open the database
file. That would be the normal case if the database was not created by that user in embedded mode or if he
was not explicitly given OS rights for embedded access to databases on that box.

Note

Setting access rights in such a manner is arequirement for correct Superserver operation.

» After afailure of Enginel2 to access the database, the L oopback provider is attempted for an attach. It is
not very different to Remote except that it triesto access the named database <dbnane> on aserver running
aTCP/IP local loopback.

On Windows, the XNET protocol (also known as*“Windowslocal connection”) isused for it. POSIX systems
prepend <dbnamne> with | ocal host : and use a TCP connection.

If the attachment succeeds, aremote-like connection is established with the database even though it islocated
on the local machine.

Other Providers

Use of providersisnot limited to the three standard ones. Firebird 3 does not support pre-ODS 12 databases but
Firebird 3 will have an additional provider to access older databases (ODS 8 to 11.x). Removing support for old
formats from the engine helps to simplify its code and gain a little speed. Taking into account that this speed
gain sometimes takes place in performance-critical places, like searching akey in an index block, avoiding old
code and related branches really does make Firebird fly faster.

Nevertheless, the Providers architecture does make it possible to access old databases when changing to ahigher
version of Firebird.

Custom Providers

A strong feature of the Providers architecture is ability for the deployer to add his own providers to the server,
the client, or both.

So what else might be wanted on a client, other than a remote connection? Recall Provider chaining that was
mentioned earlier. Imagine acase where adatabase is accessed viavery slow network connection, say something
like 3G or, worse, GPRS. What comesto mind asaway to speed it up isto cache on the client some big tablesthat
rarely change. Such systemswere actually implemented but, to doit, onehad to renamef bcl i ent to something
arbitrary and load it intoitsown library calledf bcl i ent , thusmaking it possibleto use standard toolsto access
the database at the same time as caching required tables. It works but, as asolution, it is clearly not ideal.

With the Providers architecture, instead of renaming libraries, onejust adds alocal caching provider which can
use any method to detect connections to it (something like a cache @prefix at the beginning of the database
name, or whatever else you choose).

Changesin the Firebird Engine

In this example, when the database name cache @Renot eHost : dbnane isused, the caching provider accepts
the connection and invokes the y-valve once more with the traditional database name Renpt eHost : dbnane.
When the user later performsany call to his database, the caching provider gets control of it before Remote does
and, for alocally cached table, can avoid making callsto the remote server.

Use of chaining alows alot of other useful things to be implemented, such as database replication without the
need for triggers: just repeat the same callsfor the replication host when, for example, atransaction iscommitted.
In this case, the chaining provider isinstalled on the server, not the client, and no modification of the command
lineisneeded at all.

To avoid cycling when performing a callback to y-valve at attach time, such a provider can modify the list of
providers using the i sc_dpb_confi g paraneter inthe DPB. The same technique may be used at the
client, too.

For details, see the Configuration Additions and Changes chapter.

The ability to access foreign database engines using providers should not be overlooked, either. It might seem
strange to consider this, given the number of tools available for this sort of task. Think about the ability to
access other Firebird databases using EXECUTE STATEMENT, that became available in Firebird 2.5. With
a provider to ODBC or other common tool to access various data sources it is within reach to use EXECUTE
STATEMENT to get direct access from procedures and triggers, to data from any database having a driver for
the chosen access tool. It is even possible to have a provider to access some particular type of foreign database
engineif there is some reason to want to avoid the ODBC layer.

Providers Q & A

Q. Interfaces and providers are probably very good, but | have an old task written using plain API functions and
for alot of reasons| can't rewriteit in the near future. Doesit mean | will have problems migrating to Firebird 3?

» A. Definitely no problems. The old API is supported for backward compatibility in Firebird 3 and will be
supported in future versions as long as people need it.

And what about performance when using the old API?

* A. The functional API isimplemented as a very thin layer over interfaces. Code in most cases is trivial:
convert passed handles to pointers to interfaces—hitherto referred to as “handle validation”—and invoke the
appropriate function from the interface.

Functions that execute an SQL operation and fetch data from it are one place where coding is a little more
complex, involving the SQLDA construct. The data moves related to the SQLDA have always created an
overhead. The logic between the new and old APIs does not add significantly to that old overhead.

Plug-Ins
Alex Peshkov

From version 3 onward, Firebird's architecture supports plug-ins. For a number of predefined points in the
Firebird code, a developer can write his own fragment of code for execution when needed.

A plug-inis not necessarily one written by athird party: Firebird has a number of intrinsic plug-ins. Even some
core parts of Firebird are implemented as plug-ins.

Changesin the Firebird Engine

What is a Plug-In?

The term “plug-in” isused to name related but different things:

a dynamic library, containing code to be loaded as a plug-in (often called a plug-in module) and stored in
the $FI REBI RDY pl ugi ns directory;

code implementing a plug-in. That is dlightly different from the library, since a single dynamic library may
contain code for more than one plug-in;

a plug-in's factory: an object created by that code (pure virtual C++ class), creating instances of the plug-
in at Firebird's request;

an instance of the plug-in, created by its factory.

Plug-In Types

Firebird's plug-in architecture makesit possible to create plug-ins of predefined types. Each version of Firebird
will have a fixed set of supported plug-in types. To add a further type, the first requirement is to modify the
Firebird code. Our plug-in architecture facilitates both adding new types of plug-ins and simplifying the coding
of the plug-in along generic lines.

Tobeabletoimplement aplug-in, say, for encrypting adatabase on the disk, the Firebird code hasto be prepared
for it: it must have a point from which the plug-in is called.

The set of plug-in types implemented in Firebird 3 comprises:

user authentication related:

» AuthServer (validates user's credentials on server when logins are used)
» AuthClient (prepares credential s to be passed over the wire)

» AuthUserManagement (maintains a list of users on aserver in aformat known to AuthServer)

External Engine

Controls the use of various engines, see External Engines.

Trace

The Trace plug-in was introduced in Firebird 2.5, but the way it interacts with the engine was changed in
Firebird 3 to accord with the new generic rules.

Encryption

encrypting plug-ins are for
» network (WireCrypt)
 disk (DbCrypt)

» ahelper plug-in (KeyHolder), used to help maintain the secret key(s) for DbCrypt

Provider

Firebird 3 supports providers as a plug-in type.

Changesin the Firebird Engine

Technical Details

Plug-insuse aset of special Firebird interfaces. All plug-in-specific interfaces are reference counted, thus putting
their lifetime under specific control. Interfaces are declared in the include file plug-in.h. DbCr ypt _exanpl e
provides a simple model for writing a plug-in module

Note

The example does not perform any actual encryption, it is just a sample of how to write a plug-in. Complete
instructions for writing plug-ins are not in scope for this document.

Features of a Plug-In
A short list of plug-in features:

* You canwriteaplug-inin any language that supports pure virtual interfaces. Interface declarations will need
to be written for your language if they are missing.

» Aswith UDFs, you are free to add any reasonable code to your plug-in—with emphasis on reasonable. For
example, prompting for user input at the server's console from a plug-in is hardly “reasonable’!

» Cdling the Firebird API from your plug-inis OK, if needed. For example, the default authentication server
and user manager use a Firebird database to store accounts.

» Firebird provides a set of interfaces to help with configuring your plug-ins. It is not obligatory to use them,
since the plug-in code is generic and can employ any useful method for capturing configuration information.
However, using the standard tools provides commonality with the established configuration style and should
save the additional effort of rolling your own and documenting it separately.

Configuring Plug-ins

Configuration of plug-ins has two parts:

1. Theengine hasto beinstructed what plug-insit should load
2. The plug-ins themselves sometimes need some configuration.

The plug-ins to be loaded for each type of plug-in are defined in the main configuration file, fi r ebi rd.
conf , usualy with defaults. The ones defined in Firebird 3 are discussed in the chapter entitled “ Configuration
Additions and Changes’. In summary, the set that provides normal operation in the server, client and embedded
cases consists of :

* AuthServer = Srp, Win_Sspi

» AuthClient = Srp, Win_Sspi, Legacy_Auth
* UserManager = Srp

» TracePlugin = fbtrace

» Providers = Remote,Enginel2,L oopback

10

Changesin the Firebird Engine

* WireCryptPlugin = Arc4

Note

If you want to add other plug-ins, they must be cited in firebird.conf. Apart from other considerations, this
reguirement acts as a security measure to avoid loading unknown code.

Taking the entry TracePlugin = fbtrace as an example, what does the value fbtrace signify? In atrivia case,
it can indicate the name of adynamic library but the precise answer is more complicated.

Asmentioned earlier, asingle plug-in module may implement more than one plug-in. In addition, asingle plug-
in may have more than one configuration at once, with a separate plug-in factory created for each configuration.
Each of these three object contexts (module | implementation | factory) hasits own name:

» The name of amodule isthe file name of adynamic library

» The name of aplug-in implementation is the one given to it by the developer of the plug-in. It is hard-coded
inside the module.

» The name of afactory is, by default, the same as the name of the plug-in implementation’'s name. It is the
factory name which isactually usedinf i r ebi rd. conf .

Inatypical trivial case, where amodule contains one plug-in that workswith just one configuration and all three
names are equal, and no more configuration is needed. An example would be libEnginel2.so | Enginel2.dll |
Enginel2.dylib, that contains the implementation of the embedded provider Enginel2. Nothing other than the
record Providers= Enginel2 is needed to load it.

For something more complex afile will help you to set up the plug-in factories precisely.

plugins.conf
Thefile$(root)/ pl ugi ns. conf hastwo types of records: config and plugin.

the plugin record is a set of rulesfor loading land activating the plug-in. Itsformat is:

Plugin = PlugNane ## this is the nane to be referenced in firebird. conf

{
Modul e = Li bNane ## nane of dynamic library

Regi st er Name = RegNanme ## nane given to plug-in by its devel oper
Config = Conf Nanme ## nane of config record to be used
ConfigFile = ConfFile ## nane of a file that contains plug-in's configuration

When plug-in PlugName is needed, Firebird loads the library LibName and locates the plug-in registered with
the name RegName. The configuration from the config record ConfName or the config file ConfFile are passed
tothelibrary.

Note
If both ConfName and ConfFile are given, then the config record will be used.

If both parameters are missing, the default PlugName is used; except that if the ConfigFileis present and its
name is the same as the module's dynamic library but with a. conf extension, it will be used.

The ConfigFileis expected to use the format Key=Value, in line with other Firebird configuration files.

11

Changesin the Firebird Engine

For the plug-in configuration record the same format is used:

Config = Conf Name
{

Keyl = Val uel
Key2 = Val ue2
}
A Sample Setup

Suppose you have a server for which some clients trust the wire encryption from one vendor and others prefer a
different one. They have different licences for the appropriate client components but both vendors use the name
“BestCrypt” for their products.

The situation would require renaming the libraries to, say, WC1 and WC2, since there cannot be two filesin
the same directory with the same name. Now, the modules stop loading automatically because neither is called
“BestCrypt” any longer.

To fix the problem, pl ug-i ns. conf should contain something like this:

Plugin = W1
{

Regi st er Name = Best Crypt
}
Pl ugin = W2
{
Regi st er Name = Best Crypt

}
The module names will be automatically set to WC1 and WC2 and found. Y ou can add any configuration info
that the plug-ins need.

Remember to modify firebird.conf to enable both plug-ins for the WireCryptPlugin parameter:
WreCryptPlugin = W1, WC2

The server will now select appropriate plug-in automatically to talk to the client.

Another sample is distributed with Firebird, in $(r oot) / pl ugi ns. conf, configuring one of the standard
plug-ins, UDR. Because it was written to a use non-default configuration, the module name and one configura-
tion parameter are supplied explicitly.

Plug-Ins Q & A

Q. There are plug-ins named Remote, Loopback, Arc4 in the default configuration, but no libraries with such
names. How do they work?

e A.They are“built-in" plug-ins, built into fbclient library, and thus always present. Their existence is due to
the old ability to distribute the Firebird client for Windows as a single dil. The feature is retained for cases
where the standard set of plug-insis used.

Q. What do the names of Srp and Arc4 plug-ins mean?

12

Changesin the Firebird Engine

* A. Srpimplementsthe Secure Remote Passwords protocol, the default way of authenticating usersin Firebird

3. Its effective password length is 20 bytes, resistant to most attacks (including “man in the middle”) and
works without requiring any key exchange between client and server to work.

Arcd means Alleged RC4 - an implementation of RC4 cypher. Its advantage is that it can generate a unique,
cryptographically strong key on both client and server that isimpossible to guess by capturing datatransferred
over the wire during password validation by SRP.

The key is used after the SRP handshake by Arc4, which makes wire encryption secure without need to
exchange any keys between client and server explicitly.

Q. What do Win_Sspi and Legacy Auth mean?

A. Windows SSPI has been in use since Firebird 2.1 for Windows trusted user authentication. Legacy Auth
isacompatibility plug-into enable connection by the Firebird 3 client to older servers. Itisenabled by default
in the client.

And Yes, it still transfers almost plain passwords over the wire, for compatibility.

On the server it works with a security database from Firebird 2.5, and should be avoided except in situations
where you understand well what are you doing.

To use Legacy_Auth on the server you will need to avert network traffic encryption in f i r ebi r d. conf
by reducing the default Required setting for the WireCrypt parameter, either

W reCrypt Enabl ed
or

WreCypt = Disabled

Q. How can | find out what the standard Authentication and User Manager plug-ins are?

They arelisted infi rebi rd. conf.

External Engines
Adriano dos Santos Fernandes

The UDR (User Defined Routines) engine adds a layer on top of the FirebirdExternal engine interface with the
purpose of

establishing away to hook external modulesinto the server and make them available for use
creating an API so that external modules can register their available routines

making instances of routines “per attachment”, rather than dependent on the internal implementation details
of the engine

External Names

An external name for the UDR engine is defined as

13

Changesin the Firebird Engine

" <npodul e name>! <routi ne nane>! <m sc i nf o>

The <module name> is used to locate the library, <routine name> is used to locate the routine registered by
the given module, and <misc info> is an optional user-defined string that can be passed to the routine to be
read by the user.

Module Availability

Modules available to the UDR engine should be in a directory listed by way of the path attribute of the corre-
sponding plugin_config tag. By default, a UDR module should be on <fbroot>/plugins/udr, in accordance with
its path attribute in <fbroot>/plugins/udr_engine.conf.

The user library should include FirebirdUdr.h (or FirebirdUdrCpp.h) and link with the udr_engine library. Rou-
tinesare easily defined and registered, using some macros, but nothing prevents you from doing things manually.

Note

A sampleroutine library isimplemented in exanpl es/ udr , showing how to write functions, selectable pro-
cedures and triggers. It also shows how to interact with the current attachment through the legacy API.

Scope

The state of aUDR routine (i.e., its member variables) is shared among multiple invocations of the same routine
until it is unloaded from the metadata cache. However, it should be noted that the instances are isolated “per
session”.

Character Set

By default, UDR routines use the character set that was specified by the client.

Note

In future, routines will be able to modify the character set by overriding the getChar Set method. The chosen
character set will be valid for communication with the old Firebird client library aswell asthe communications
passed through the FirebirdExternal API.

Enabling UDRs in the Database

Enabling an external routine in the database involves a DDL command to “create” it. Of course, it was already
created externally and (we hope) well tested.

Syntax Pattern

{ CREATE [OR ALTER] | RECREATE | ALTER } PROCEDURE <nane>
[(<paraneter list>)]
[RETURNS (<paraneter list>)]

14

Changesin the Firebird Engine

EXTERNAL NAME ' <external name>' ENG NE <engi ne>

{ CREATE [OR ALTER] | RECREATE | ALTER } FUNCTI ON <nane>
[<paraneter list>]
RETURNS <data type>
EXTERNAL NAME ' <external name>'" ENG NE <engi ne>

{ CREATE [OR ALTER] | RECREATE | ALTER } TRI GGER <namne>

EXTERNAL NAME ' <external name>'" ENG NE <engi ne>

Examples

create procedure gen_rows (
start_n integer not null,
end_n integer not null
) returns (
n i nteger not null
) external nane 'udrcpp_exanpl el gen_rows'
engi ne udr;

create function wait_event (
event _nane varchar(31) character set ascii
) returns integer
external name 'udrcpp_exanpl el wait_event'
engi ne udr;

create trigger persons_replicate
after insert on persons
external name 'udrcpp_exanpl e!replicate! dsl'
engi ne udr;

How it Works

The external names are opague strings to Firebird. They are recognized by specific external engines. Externa
engines are declared in configuration files, possibly in the same file as a plug-in, as in the sample UDR library
that isimplemented in $(r oot) / pl ugi ns.

external _engi ne = UDR {
pl ugi n_nodul e = UDR _engi ne

}

pl ugi n_nodul e = UDR _engi ne {
filename = $(this)/udr_engine
pl ugi n_config = UDR config

}

pl ugi n_config = UDR config {
path = $(this)/udr
}

When Firebird wants to load an externa routine (function, procedure or trigger) into its metadata cache, it gets
the external engine through the plug-in external engine factory and asks it for the routine. The plug-in used is
the one referenced by the attribute plugin_module of the external engine.

15

Changesin the Firebird Engine

Note

Depending on the server architecture (Superserver, Classic, etc) and implementation details, Firebird may get
external engineinstances” per database” or “per connection”. Currently, it always getsinstances* per database” .

Optimizer Improvements
Dmitry Y emanov

» See Tracker item CORE-4528.
Hash/merge joins for non-field (DBKEY or derived expression) equalities are now allowed.
» See Tracker item CORE-1482.

The optimizer now considers the ORDER BY optimization when making its decision about join order.

Other Optimizations
Vlad Khorsun

» See Tracker item CORE-4556.
Data pages are now allocated as a group of sequential ordered pages (extents).
» See Tracker item CORE-4445.
The main database file extends faster when physical backup state changes from stalled to merge.
» See Tracker item CORE-4443.
Linux systems that support “fast file growth” can now use it.
» See Tracker item CORE-4432.
Attachments no longer block others when the allocation table is read for the first time.
» See Tracker item CORE-4431.

Contention has been reduced for the allocation table lock while database isin stalled physical backup state.

Remote Interface/Network Protocol
Dmitry Y emanov

Tracker item CORE-2530.

Further improvements were made to Firebird's network protocol, providing a denser data stream and better
prefetch logic. The following improvements were implemented:

1. Thefull length of afield whosevaueisNULL isno longer sent over thewire. (Tracker item CORE-2897).
NULL flags (4 bytesper field) are replaced with abitmap and only these flags are transmitted, in the bitmap.

16

http://tracker.firebirdsql.org/browse/CORE-4528
http://tracker.firebirdsql.org/browse/CORE-1482
http://tracker.firebirdsql.org/browse/CORE-4556
http://tracker.firebirdsql.org/browse/CORE-4445
http://tracker.firebirdsql.org/browse/CORE-4443
http://tracker.firebirdsql.org/browse/CORE-4432
http://tracker.firebirdsql.org/browse/CORE-4431
http://tracker.firebirdsql.org/browse/CORE-2530
http://tracker.firebirdsql.org/browse/CORE-2897

Changesin the Firebird Engine

This improvement is available for the DSQL API only, so gbak does not benefit from this improvement,
asit usesalower level BLR API.

2. Theprefetch (batch receive) algorithm is now aware of variable-length messages, so that VARCHARs and
NUL Ls may reduce the transmitted message size, allowing more rows to be transmitted in each batch.

Acknowledgement

Thiswork was sponsored by donations collected at the 9th Firebird Developers Day conference in Brazil.

Miscellaneous Improvements

Miscellaneous engine improvementsinclude.-

Connections Limit Raised
Paul Beach

(CORE-4439) :: Maximum connections (FD_SETSIZE) on Windows Superserver and Superclassic was raised
from 1024 to 2048.

Better Error Diagnosis
Dmitry Y emanov

(CORE-3881) :: Theerror reported for index/constraint violations has been extended to include the problematic
key value.

ICU Version Upgraded

Adriano dos Santos Fernandes

(CORE-2224) :: The ICU version was upgraded to v.52.1.

Internal Debug Info Made Human-readable
Vlad Khorsun

A new BLOB filter trandates internal debug information into text.

A Silly Message is Replaced
Claudio VaderramaC.

A silly message sent by the parser when a reference to an undefined object was encountered was replaced with
onethat tellsit likeit realy is.

17

http://tracker.firebirdsql.org/browse/CORE-4439
http://tracker.firebirdsql.org/browse/CORE-3881
http://tracker.firebirdsql.org/browse/CORE-2224

Changesin the Firebird Engine

New Pseudocolumn RDB$RECORD VERSION

Adriano dos Santos Fernandes

A pseudocolumn named RDB$SRECORD_VERSION returns the number of the transaction that created the cur-
rent record version.

Itisretrieved the sasmeway asRDB$DB_KEY, i.e, select RDB$SRECORD VERSION from aTablewhere...

systemd init Scripts
Alex Peshkov

systemd init scripts are availablein Firebird 3 POSIX installers. See Tracker ticket CORE-4085.

18

http://tracker.firebirdsql.org/browse/CORE-4085

Changes to the
Firebird APl and ODS

ODS (On-Disk Structure) Changes

New ODS Number

Firebird 3.0 creates databases with an ODS (On-Disk Structure) version of 12.

Implementation ID is Deprecated
Alex Peshkov

The Implementation ID in the ODS of a database is deprecated in favour of a new field in database headers
describing hardware details that need to match in order for the database to be assumed to have been created by
a compatible implementation.

The old Implementation ID is replaced with a 4-byte structure consisting of hardware ID, operating system 1D,
compiler ID and compatibility flags. Thethree ID fields are just for information: the ODS does not depend upon
them directly and they are not checked when opening the database.

The compatibility flags are checked for a match between the database and the engine opening it. Currently we
have only one flag, for endianness. As previously, Firebird will not open a database on little-endian that was
created on big-endian, nor vice versa.

Sample gstat Output

./gstat -h enployee
Dat abase “/usr/hone/firebird/trunk/gen/ Debug/firebird/ exanpl es/ enpbuil d/ enpl oyee. f db”
Dat abase header page information:

| npl enent ati on HWEAMD/ I ntel / x64 littl e-endi an OS=Li nux CC=gcc

The purposeisto makeit easier to do ports of Firebird for new platforms.

Maximum Page Size

The maximum page size remains 16 KB (16384 bytes).

19

Changesto the Firebird APl and ODS

Maximum Number of Page Buffers in Cache

The maximum number of pages that can be configured for the database cache depends on whether the database
is running under 64-bit or 32-bit Firebird:

o 64-bit :: 231 -1 (2,147,483,647) pages

e 32-bit :: 128,000 pages, i.e., unchanged from V.2.5

System Tables

New System Tables

RDB$SMAPPING Stores authentication and other security mappings
RDB$PACKAGES Header for SQL packages

SEC3USERS Virtual table to query the local user list
SEC$USER_ATTRIBUTES Virtual table storing local user attributes

Changes to System Tables

RDB$SYSTEM_FLAG
Claudio Valderrama C.

RDB$SY STEM_FLAG has been made NOT NULL in dl tables.

CORE-2787.

RDBS$TYPES
Dmitry Y emanov

Missing entries were added to RDB$TY PES. They describe the numeric values for these columns:

RDB$PARAMETER TYPE (tabl e RDB$PROCEDURE_PARAVETERS)

RDB$! NDEX_| NACTI VE (tabl e RDBS$I NDI CES)

RDB$UNI QUE_FLAG (tabl e RDBS$I NDI CES)

RDB$TRI GGER | NACTI VE (tabl e RDB$TRI GGERS)

RDBSGRANT _CPTI ON (tabl e RDB$SUSER PRI VI LEGES)
RDB$PAGE_TYPE (tabl e RDB$PAGES)

RDB$PRI VATE_FLAG (tabl es RIB$PROCEDURES and RDB$FUNCTI ONS)
RDB$LEGACY_FLAG (tabl e RDB$SFUNCTI ONS)

RDB$DETERM NI STI C_FLAG (t abl e RDB$FUNCTI ONS)

Monitoring Tables
Dmitry Y emanov

20

http://tracker.firebirdsql.org/browse/CORE-2787

Changesto the Firebird APl and ODS

Per-table performance counters have been added to all of the monitoring tables. See Tracker CORE-4564.

MONSATTACHMENTS
New information is now available;

» Operating system user name. See Tracker CORE-3779.
» Protocol and client library version. See Tracker CORE-2780.
* Client host name. See Tracker CORE-2187.

« authentication method used for connection (MON$AUTH_METHOD). See Tracker CORE-4222.

MONS$DATABASE

Database owner (MON$SOWNER) added. See Tracker CORE-4218.

MONS$STATEMENTS

The PLAN is now included. See Tracker CORE-2303.

Application Programming Interfaces

A new public API replacesthelegacy onein new applications, especially object-oriented ones. Theinterface part
canbefoundintheheader filel nt er f aces. hinthedirectory/ i ncl ude/ fi r ebi r d beneaththeinstallation
root directory.

Note

POSIX installations have asymlink pointingto/ usr/i ncl ude/firebird/ I nterfaces.h

The new public API can be also used inside user-defined routines (UDR, g.v.) for callbacks inside the engine,
alowing a UDR to select or modify something in the database, for example.

The main difference between the new API and the legacy one is that UDRs can query and modify datain the

same connection or transaction context asthe user query that called that UDR. It isnow possibleto write external
triggers and procedures, not just external functions (UDFs).

Interfaces and the New Object-oriented API
Alex Peshkov

Firebird needed a modernised API for a number of compelling reasons.

21

http://tracker.firebirdsql.org/browse/CORE-4564
http://tracker.firebirdsql.org/browse/CORE-3779
http://tracker.firebirdsql.org/browse/CORE-2780
http://tracker.firebirdsql.org/browse/CORE-2187
http://tracker.firebirdsql.org/browse/CORE-4222
http://tracker.firebirdsql.org/browse/CORE-4218
http://tracker.firebirdsql.org/browse/CORE-2303

Changesto the Firebird APl and ODS

High on the list was the limitation of the 16-bit integer pervading the legacy API, encompassing message
size, SQL operator length, BLOB data portions, to name afew examples. While 16-hit was probably adequate
when that old API cameto life, in today's environmentsit is costly to work around.

A trivia solution might beto add new functionsthat support 32-bit variables. The big downsideisthe obvious
need to retain support for the old API by having pairs of functions with the same functionality but differing
integer sizes. In fact, we did something like this to support 64-bit performance counters, for no better reason
than being pressed to provide for it without having a more elegant way to implement it.

» Another important reason, less obvious, derives from the era when Firebird's predecessor, InterBase, did
not support SQL. It used a non-standard query language, GDML, to manage databases. Data requests were
transported between client and server using messages whose formats were defined at request compilation
timein BLR (binary language representation). In SQL, the operator does not contain the description of the
message format so the decision was taken to surround each message with a short BLR sequence describing
its format.

The ISC API aso hasthe XSQLDA layer over BLR. The trap with the XSQLDA solution isthat it encapsu-
lates both the location of the data and their format, making it possible to change location or format (or both)
between fetch calls. Hence, the need for the BL R wrapping in every fetch call—notwithstanding, thispotential
capability to change the data format between fetches was broken in the network layer before Firebird existed.

But to support the XSQLDA layer that rides on top of the message-based APl that lower level API also has
support sending format BLR at every turn.

Thissysteminvolving calls processing datathrough multiple layersishard to extend and wastes performance;
the SQLDA is not simple to use; the desire to fix it was strong.

» Other reasons—numerous but perhaps less demanding—for changing the API included enhancing the status
vector and optimizing dynamic library loading. Interfaces also make it so much easier and more comfortable
to use the messages API.

The Non-COM Choice

The new interfaces are not compatible with COM, deliberately, and the reasons have to do with future perfor-
mance enhancement.

At the centre of the Providers architecture in Firebird 3.0 is the y-valve, which is directed at dispatching API
callsto the correct provider. Amongst the potential providers are older ones with potentially older interfaces. If
we used COM, we would haveto call the method I Unknown for each call (including record fetch), just to ensure
that the provider really had some newer APl method. Along with that comes the likelihood of future additions
to the catalogue of API callsto optimize performance. A COM-based solution does not play well with that.

Firebird interfaces, unlike COM, support multiple versions. The interface version is determined by the total
number of virtual functionsit encompasses and is stored as a pointer-size integer at the beginning of the virtua
functionstable. Thismakesit possible for very fast checking of the interface version, sinceit requires no virtual
call. That isto say, the pointer check has no overhead, unlike COM.

The Hierarchy of Interfaces

A detailed discussion of all the functions presented by al the interfaces is outside the scope of this overview.
The general schematic looks like this:

22

Changesto the Firebird APl and ODS

|Versioned IMaster IPluginFactory

IDisposable |Status

IRefCounted IPluginConfig |IService

IPluginBase

ExternalEngine

|Provider

The base of the structure is | Versioned. It is the interface that enables a version upgrade. A lot of interfaces
not requiring additional lifetime control are based directly on IVersioned. IMaster is one example aready
mentioned. Others include a number of callback interfaces whose lifetimes must match the lifetimes of the
objects from which they were to be used for callback.

Two interfaces deal with lifetime control: | Disposable and | RefCounted. The latter is especially active in the
creation of other interfaces: | Plugin isreference counted, as are many other interfacesthat are used by plug-ins.
These include the interfaces that describe database attachment, transaction management and SQL statements.

Not everything needs the extra overhead of areference-counted interface. For example, IMaster, the main inter-
face that calls functions available to the rest of the API, has unlimited lifetime by definition. For others, the API
is defined strictly by the lifetime of a parent interface; the |Status interface is non-threaded. For interfaces with
limited lifetimesit is of benefit to have asimple way to destroy them, that is, a dispose() function.

Each plug-in has one and only one main interface—I Plugin—which is responsible for basic plug-in function-
ality. Infact, alot of plugins have only that interface, although that is not a requirement.

Finaly, thereis|Provider, akind of “main” plug-inintheFirebird API. | Provider isderived from I Plugin and
must beimplemented by every provider. If you want to write your own provider you must implement | Provider.
It is implemented also by the y-valve: it is the y-valve implementation that is returned to the user when the
getDispatcher () function from the master interfaceis called.

IProvider contains functions enabling creation of an attachment to a database (attach and create) or to the
Services Manager.

Interfaces Q & A

Q. We access new API using IMaster. But how to get accessto IMaster itself?

23

Changesto the Firebird APl and ODS

* A.Thisisdone using just the one new API function fb_get master_interface(). It is exported by the f b-
cli ent library. Also IMaster is passed as a parameter to each plug-in during its registration in the system.

Q. The non-use of COM-based interfaces was said to be to avoid working with |Unknown methods and that
thisis done due to performance issues. Instead you have to check the interface version. Why is that faster than
using IUnknown?

* A. Aswas aready mentioned we do not need to execute virtual calls when checking the interface version.

Taking into an account that each virtual call means a reset of the CPU cache, it is an important difference,
especialy for the very small calls like getting specific metadata properties from |Metadata.

Other New APIs

Other new APIs support various plug-ins by declaring the interfaces between the engine and the plug-in. Besides
pluggabl e authentication and pluggable encryption, Firebird 3 supports “external engines’, bridges between the
engine and the execution environments that can run UDRSs: native code, Java and others. By and large they are
intended for use by third-party solution providers, rather than for client application development.

For creating custom plug-ins and bridges, the relevant interface (API) needs to be implemented in the plug-
in code.

APl Improvements

Improvements to the legacy API include.-

Better Error Reports for String Overflows
Alex Peshkov

Include expected and actual string length in the error message for string overflows (SQLCODE -802).

More Detail in “Wrong Page Type” Error Reports
Alex Peshkov

More details in the error message "wrong page type", i.e., identifying expected and encountered page types by
name instead of numerical type.

New Services Tag for Overriding LINGER
Alex Peshkov

The Services API now includes thetag isc_spb_prp_nalinger, for example (in oneline):

fbsvcngr host:service_ngr user sysdba password Xxxx
action_properties dbname enpl oyee prp_nolinger

For information regarding LINGER, see the write-up in the DDL chapter.

24

Changesto the Firebird APl and ODS

Code Improvement
Alex Peshkov

(CORE-4387) The functions| St at ement : : execute() and | Attachnent : : execut e() now return
an error pointer to the old transaction interface.

25

http://tracker.firebirdsql.org/browse/CORE-4387

Chapter 5

Reserved Words and Changes

New Keywords in Firebird 3.0

Reserved

BOOLEAN RDB$RECORD VERSION TRUE
DETERMINISTIC RETURN UNKNOWN
FALSE SCROLL

OVER SQLSTATE

Non-reserved

USAGE

26

Chapter 6

Configuration
Additions and Changes

Thefileal i ases. conf isrenamedtodat abases. conf.Anoldal i ases. conf fromapreviousversion
can simply be renamed and the new engine will just continue to use it as before. However, dat abases. conf
can now include some configuration information for individual databases.

Scope of Parameters

Some parameters are marked as configurable per-database or per-connection.
» Per-database configuration isdone in dat abases. conf.

» Per-connection configuration is primarily for client tool use and is done using the DPB parameter
isc_dpb_config or, for Services, the SPB parameter isc_spb_config.

* Inthe case of Embedded, the DPB can be used to tune per-database entries on first attaching to a database.

Macro Substitution

A number of predefined macros (syntax $(name)) is available for use in the configuration files to substitute for
adirectory name;

$(root)
Root directory of Firebird instance

$(install)
Directory where Firebird isinstalled. $(root) and $(install) are initially the same. $(root) can be overridden
by setting or altering the environment variable FIREBIRD, in which case it becomesdifferent from $(install).

$(this)
Directory where current configuration file islocated

$(dir_conf)
Directory where firebird.conf and databases.conf are located

$(dir_secdb)
Directory where the default security database is |ocated

$(dir_plugins)
Directory where plugins are located

27

Configuration Additions and Changes

$(dir_udf)
Directory where UDFs are located by default

$(dir_sample)
Directory where samples are located

$(dir_sampledb)
Directory where sample DB (employee.fdb) islocated

$(dir_intl)
Directory where international modules are located

$(dir_msg)
Directory where the messagesfile (firebird.msg) islocated. $(dir_msg) usually should be the same as $(root)
but can be overridden by the environment variable FIREBIRD_MSG.

Notesto be checked by Alex Peshkov

$(dir_conf) and $(dir_secdb) would normally be the same as $(root) and $(install). [To do: report whether they
can be overridden and, if so, how.]

$(dir_plugins), $(dir_udf), $(dir_sample), $(dir_sampledb) and $(dir_intl) are just predefined sub-directories
inside $(root). [To do: Could those sub-dirs be in a different location? If so, how can the macros be set?]

Includes

One configuration file can be included in another by using an “include” directive, e.g.,
include some file.conf

A relative path istreated asrelative to the enclosing configuration file. So, if our example aboveisinside/ opt /
confi g/ mast er. conf then our includerefersto thefile/ opt/ confi g/ sone_fil e. conf.

Wildcards

The standard wildcards * and ? may be used in an include directive, to include all matching files in undefined
order. For example,

include $(dir_plugins)/config/* .conf

Expression of Parameter Values

Previously, byte values were specified by default as integer, representing the number of bytes. However, now
you can optionally specify them in Kilobytes, Megabytes or Gigabytes, as appropriate, by adding K, M or G
(case-insensitive). For example, 24M isread as 25165824 (24 * 1024 * 1024).

28

Configuration Additions and Changes

Boolean values are expressed as non-zero (true)|zero (false) by default, but you may now use the quoted strings

'y', 'yes or 'true’ instead of a non-zero digit.

“Per-database” Configuration

Custom configuration at database level is achieved with formal entriesin dat abases. conf .

Format of Configuration Entries

To come.

Parameters Available

Thefollowing parameters can be copy/pasted to dat abases. conf and used as overridesfor specific databas-

€s.

Table 6.1. Parameter s available in databases.conf

Enginerelated

CryptPlugin DatabaseGrowthl ncrement DeadlockTimeout
DefaultDbCachePages EventMemSize External FileAccess
FileSystemCacheThreshold GCPalicy LockAcquireSpins
LockHashSlots LockMemSize MaxUnflushedWrites
MaxUnflushedWriteTime SecurityDatabase SharedCache
SharedDatabase UserManager WireCrypt
Some parameters can be configured at the client connection via the
Client-related DPB/SPB, as an alternative to configuring themin dat abases.
conf . Please refer back to Scope of Parameters at the beginning of
this chapter to understand these differences.
AuthClient Providers

The following parameters can be configured ONLY via the DPB/SPB

ConnectionTimeout

DummyPacketinterval

IpcName

RemoteAuxPort

RemotePipeName

RemoteServiceName

RemoteServicePort

TCPNoNagle

New Parameters

New parametersadded tof i r ebi r d. conf are:

29

Configuration Additions and Changes

SecurityDatabase

Defines the name and location of the security database that stores login user names and passwords used by the
server to validate remote connections. By default, inf i r ebi rd. conf ,itis$(root)/security3. fdb.It
can be overridden for a specific database by a configuration in dat abases. conf .

AuthServer and AuthClient

Two parameters that determine what authentication methods can be used by the network server and the client
redirector. The enabled methods are listed as string symbols separated by commas, semicolons or spaces.

» Secure remote passwords (Srp), using the plug-in isthe default, using the OS-appropriate plug-in (I i bSr p.
sO | Srp.dll | Srp.dylib)

» On Windows, the Security Support Provider Interface (Sspi) is used when no login credentials are supplied
» Client applications can use legacy authentication (Legacy_ Auth) to talk to old servers.

For AuthServer, Srp and Win_Sspi are listed; for AuthClient, Srp, Win_Sspi and Legacy Aduth.

To disable a method, erase the comment marker (#) and remove the unwanted method from the list.

Both parameters can be used in dat abases. conf . They can both be used in the DPB or the SPB for a con-
nection-specific configuration.

WireCrypt

Sets whether the network connection should be encrypted. It has three possible values: Required | Enabled |
Disabled. The default is set such that encryption is Required for connections coming in to the server and Enabled
for connections outgoing to aclient.

To access a server using an older client library and, thus, no encryption, WireCrypt in the server configuration
file should be set to Enabled or Disabled to avert the default Required.

Therulesaresimple: if onesidehasW r eCrypt = Requi r ed and the other sets the parameter to Disabled,
side with WireCrypt=Required regjects the connection and it is not established.

A missing WireCrypt plug-in or encryption key in cases where the channel must be encrypted also thwarts a
connection.

In all other cases, connection is established without encryption if at least one side hasW reCrypt = Di s-
abl ed. In other cases, the encrypted connection is established.

UserManager

Sets the plug-in that will operate on the security database. It can be a list with blanks, commas or semicolons
as separators: the first plug-in from the list is used.

Thedefault plug-inisSrp (i bSrp.s0 | Srp.dll | Srp.dylib).

30

Configuration Additions and Changes

The UserManager parameter can be used in dat abases. conf for a database-specific override.

TracePlugin

Specifies the plug-in used by Firebird's Trace facility to send trace data to the client app or audit data to the
log file.

The default plug-inisfbtrace(l i bf btrace.s0 | fbtrace.dll | fbtrace.dylib).

CryptPlugin

Note

This parameter name is considered confusing and will be changed after this Beta rel ease.

A crypt plug-inis used to encrypt and decrypt data transferred over the network.

Theinstallation default Arc4 implies use of an Alleged RC4 plug-in. The configured plug-in, which requires a
key generated by the configured authentication plug-in, can be overridden in the API for a specific connection
viathe DPB or the SPB.

Tip

For information about configuring plug-ins, see Configuring Plug-insin the Engine chapter.

KeyHolderPlugin

This parameter would represent some form of temporary storage for database encryption keys. Nothing is im-
plemented as a default plug-in but a sample Linux plug-innamed | i bCr ypt KeyHol der _exanpl e. so can
befoundin/ pl ugi ns/ .

Providers

List of allowed transports for accessing databases, discussed in the Engine chapter.

SharedCache and SharedDatabase

Two parameters that, together, determine the execution mode of the server (“server model”). Discussed in the
Engine chapter.

RemoteAccess

Parameter in fi rebi rd. conf and dat abases. conf provides an efficient, configurable replacement for
hard-coded rules limiting access to securi t y3. f db. It can also be used to configure limited remote access
to any other database, including non-default security databases.

31

Configuration Additions and Changes

By default RemoteAccess is enabled for all databases except the security database. If you intend using more
than one dedicated security database, then disabling remote access to it (or them) via dat abases. conf is
recommended.

For stricter security, server-wide, you can set RemoteAccess to falsein fi rebi rd. conf and use entries in
dat abase. conf tore-enableit for specific databases.

RemoteAccess is a Boolean. It can be expressed with either true/false, /0 or Y es/No.

Parameters Changed or Enhanced

The following parameters have been changed or enhanced:

ExternalFileAccess

Entriesinthe“Restrict” list of the Exter nal FileAccess parameter can be used to manglefile nameswith relative
paths.

Entriesinthe“Restrict” list were already used to mangl e file names with no path component. For example, with

Ext ernal Fi | eAccess = /opt/extern

and the following sequence of commands:

SQL> create table qq external file 'zz' (x int);
SQ.> insert into gqq val ues(1);
SQ> comit;

the file /opt/extern/zz will be created.

But if something like thisis submitted,

create table qq external file "dir/zz'" (x int);

the result is an error about denied access to file /opt/firebird/bin/dir/zz.

The improvement avoids this gap by mangling the file name in accord with the value of the parameter and, if
necessary, creating the missing path components, such as 'dir' in the example above.

Parameters Removed or Deprecated

The following parameters have been removed or deprecated:

32

Configuration Additions and Changes

RootDirectory

In older version, this parameter provided a superfluous option for recording the file system path to Firebird's
“root” files (firebird.conf, the security database and so on).

LegacyHash

This parameter used to make it possible to usethe old securi ty. f db from Firebird 1.X installations after it
had been subjected to an upgrade script and thence to enable or disable use of the obsolete DES hash encrypting
algorithm. It is no longer supported.

OldSetClauseSemantics

This parameter enabled temporary support for an implementation fault in certain sequences of SET clausesin
versions of Firebird prior tov.2.5. It isno longer available.

OldColumnNaming

This parameter temporarily enabled legacy code support for an old InterBase/Firebird 1.0 bug that generated
unnamed columns for computed output which was not explicitly aiased in the SELECT specification. It is no
longer available.

LockGrantOrder
This parameter used to allow the option to have Firebird's Lock Manager emulate InterBase v3.3 lock allocation

behaviour, whereby locks would be granted in no particular order, as soon as soon as they were available, rather
than by the normal order (first-come, first-served). The legacy option is no longer supported.

Obsolete Windows priority settings

UsePriorityScheduler, PrioritySwitchDelay and PriorityBoost, which were marginally relevant to obsol ete pro-
cessors on obsolete Windows versions, are no longer supported.

33

Chapter 7

Security

Security improvementsin Firebird 3 include:

Location of User Lists
Alex Peshkov

CORE-685

Firebird now supports an unlimited number of security databases. Any database may act as a security database
and can be a security database for itself.

Usedat abases. conf to configure a non-default security database. This example configures/ mt / st or -
age/ private. security. fdb asthe security database for the first and second databases:

first = /mt/storage/first.fdb

{

SecurityDat abase = / mt/storage/ private.security.fdb
}
second = / mt/storage/ second. fdb
{

SecurityDat abase = / mt/storage/ private.security.fdb
}

Here we use third database as its own security database:

third = /mt/storage/third. fdb

{
SecurityDatabase = third
}
Note
The value of the SecurityDatabase parameter can be a database alias or the actual database path.
Database Encryption
Alex Peshkov
CORE-657

With Firebird 3 comes the ability to encrypt data stored in database. Not all of the database file is encrypted:
just data, index and blob pages.

http://tracker.firebirdsql.org/browse/CORE-685
http://tracker.firebirdsql.org/browse/CORE-657

Security

To make it possible to encrypt a database you need to obtain or write a database crypt plug-in.

Note

The sample crypt plug-in in exanpl es/ dbcr ypt does not perform real encryption, it is merely a sample
of how to go about it.

Secret Key

The main problem with database encryption is how to store the secret key. Firebird provides a helper to transfer
that key from the client but that does not imply that storing the key on aclient isthe best way: it isno morethan
apossible aternative. A very bad option is to keep the key on the same disk as the database.

Tasks

To separate encryption and key access efficiently, a database crypt plug-in is split into two parts: encryption
itself and the secret key holder. This may be an efficient approach for third-party plug-inswhen you want to use
some good encryption algorithm but you have your own secret way to store akey.

Once you have decided on a crypt plug-in and akey, you can enable them with:

ALTER DATABASE ENCRYPT W TH <PLUG N_NAME>

Encryption will start right after this statement commits and will be performed in background. Normal database
activity is not disturbed during encryption.

Tip

Encryption progress may be monitored using the field MONSCRYPT_PAGE in the pseudo-table MON
$DATABASE or watching the database header page using gst at - e.

gstat -h will also provide limited information about encryption state.

To decrypt the database do:

ALTER DATABASE DECRYPT

For Linux, an example plug-in named | i bDbCr ypt _exanpl e. so can be found in the / pl ugi ns/ sub-
directory.

New Authentication Method in Firebird 3
Alex Peshkov

All of the code related to authentication is plug-in-enabled. Though Firebird performs the generic work, like
extracting authentication data from a network message or putting it into such messages as appropriate, al the
activity related to calculating hashes, storing datain databases or elsewhere, using specific prime numbers and
so on isdone by plug-ins.

35

Security

Firebird 3 has new method of user authentication implemented as a default plugin: secure remote password
(SRP) protocol. Quoting from Wikipedia:

“The SRP protocol creates a large private key shared between the two parties in a manner similar to Diffie-
Hellman key exchange, then verifies to both parties that the two keys are identical and that both sides have
the user's password. In cases where encrypted communications as well as authentication are required, the SRP
protocol is more secure than the alternative SSH protocol and faster than using Diffie-Hellman key exchange
with signed messages. It is also independent of third parties, unlike Kerberos.”

SSH needs key pre-exchange between server and client when placing a public key on the server to makeit work.
SRP does not need that. All aclient needs are login and password. All exchange happens when the connection
is established.

Moreover, SRPis resistant to “man-in-the-middle’ attacks.

Important

Use of the new authentication method is not compatible with old security databases and passwords from them.
There is no way to migrate users from Firebird 2.

Use of an old security database can be supported with the Legacy Auth authentication plug-in, but this kills
the security benefits of Firebird 3.

The Firebird 3 client is built to make it possible to talk to old servers with the default configuration.

SSL/TLS Support

CORE-3251

So, the answer to the question “Does Firebird use SSL/TL Sfor password validation?’ is*yesand no”. The“No”
answer comes because, by default, SSL is not used. That is due to a minor licensing incompatibility between

Firebird and OpenSSL, the most popular SSL implementation.

The“Yes’ applies because anyone is free to write an authentication plug-in that uses SSL and TLS.

Increased Password Length
CORE-1898.
Implementation of SRP in our plugin has increased the password length from 8 bytes. Because of the use of

SHAL for hashes, it is effectively limited to 20 bytes **. A custom SRP plug-in can be built quite easily with
longer passwords using another hash.

Tip

The increased length limit means the default SY SDBAS password is the full ‘'masterkey’ string (9 chars), no
longer 'masterke’ (8 chars) asin older versions!

Support for the L egacyHash and Authentication parametersin firebird.conf has been dropped. Authentication
is overtaken by an AuthServer parameter in firebird.conf or elsewhere.

36

http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
http://tracker.firebirdsql.org/browse/CORE-3251
http://tracker.firebirdsql.org/browse/CORE-1898

Security

**Why isthe password effectively limited to 20 characters?

A password of more than 20 bytes can be used and it will not be restricted. Hashes for passwords that differ
beyond byte 20 are different. The “effective limit” is due to the limited length of the hash in SHA1—20 bytes
== 160 bits. Sooner, rather than later, a shorter password with the same hash could be found using brute force.
That iswhy it is often said that the effective password length for a SHA-1-based password is 20 bytes.

That said, the likelihood of hash collisions is remote.

The Authentication Plug-in

The Authentication plug-in comprises three parts:

» Client—prepares data at the client to be sent to server on client
e Server—validates password for correctness

» User Manager—adds, modifiesand del etesuserson the server. It isnot needed if some external authentication
method, such as Windows trusted authentication, is used.

All three parts are actually separate plug-ins which should be configured separately inf i r ebi r d. conf . Let's
look at an example of configuring a server to accept connections from old clients. The default setting are:

Aut hServer = Srp, Wn_Sspi
User Manager = Srp

To enable access from old clients, AuthServer needs to be changed:

Aut hServer = Srp, Wn_Sspi, Legacy_Auth

If we also want to manage the list of usersin the old format we must add:

User Manager = Legacy_User Manager

Multiple User Managers

Up to and including this Betarelease, only one User Manager ispossible. Later, it is planned to make it possible
to enumerate more than one and add SQL support to work with all of them.

"Over the wire" Connection Encryption
Alex Peshkov

CORE-672 ...

All network traffic in Firebird 3 may be optionally encrypted. As with authentication, plug-ins are used for
encrypting and decrypting network traffic.

37

http://tracker.firebirdsql.org/browse/CORE-672

Security

The default plug-in is arc4 (Alleged RC4). It is eminently possible to write your own crypt plug-in to encrypt
data travelling over the wire. Whatever you use for your plug-in, it is necessary to use the Firebird 3 version
of thef bcl i ent library.

The Secret Session Key

The challenge with use of asymmetric cypher iswhereto get akey for it. Firebird assumes that such akey, aso
called asecret session key, is produced by the authentication plug-in at the connection establishment phase. SRP
meets this requirement just fine by producing a cryptographically strong session key.

Tip

If you want to use encryption with an authentication plug-in that does not provide the session key and agree to
use some pre-defined key, say, one stored at the client side as afile and on the server in the security database
for that specific client, then make that plug-in inform Firebird that it does have a session key.

Specifications for the Key

Specifications for the key's size, itsformat, how it is calculated and verified, etc., are not generalised. The key's
format and other details are specific to the wire encryption/decryption plug-in.

In particular, RC4 uses a symmetric key which can have any length, while the key produced by SRP has a
length of 20 bytes. That key is a SHA-1 hash on SRP's session key and some other SRP-related things, such
as user name.

Exporting a Key from an Authetication Plug-in

To export a key from your authentication plug-in, use the |ServerBlock or the IClientBlock interface. One of
these is always passed to the server/client part of an authentication plug-in. Both have "void putK ey(l Status)"
status, FbCryptKey* cryptKey)" method. The FbCryptKey structure is defined as follows:

struct FbCrypt Key
{

const char* type; /1 If NULL type is auth plugin nane

const voi d* encrypt Key; /1 Sequence of bytes in encryption key

const voi d* decrypt Key; /1 May be NULL for symmetric keys - encryptKey is used fo
unsi gned encrypt Lengt h; /1 Length of encryption key

unsi gned decrypt Lengt h; /1 1gnored when decryptKey is NULL - encryptLength is used

Mapping of Users to Objects
Alex Peshkov

Firebird 3 introduces new SQL privileges to map access between users and groups and security objects and
between databases. See Tracker item CORE-1900.

With Firebird now supporting multiple security databases, some new problems arise that could not occur with
asingle, global security database. Clusters of databases using the same security database were efficiently sepa-

38

http://tracker.firebirdsql.org/browse/CORE-1900

Security

rated. Mappings provide the means to achieve the same efficiency when multiple databases are using their own
security databases. Some cases require control for limited interaction between such clusters. For example:

» when EXECUTE STATEMENT ON EXTERNAL DATA SOURCE requires some data exchange between
clusters

» when server-wide SY SDBA access to databases is needed from other clusters, using services.

» comparable problemsthat have existed on Firebird 2.1 and 2.5 for Windows, due to support for Trusted User
authentication: two separate lists of users—one in the security database and another in Windows, with cases
where it was necessary to relate them. An example is the demand for a ROLE granted to a Windows group
to be assigned automatically to members of that group.

The single solution for al such casesis mapping the login information assigned to a user when it connectsto a
Firebird server to internal security objectsin a database—CURRENT_USER and CURRENT_ROLE.

The Mapping Rule

The mapping rule consists of four pieces of information:

1. mapping scope—whether the mapping islocal to the current database or whether its effect isto be global,
affecting all databasesin the cluster, including security databases

2. mapping name—an SQL identifier, since mappings are objects in a database, like any other

3. the object FROM which the mapping maps. It consists of four items:

The authentication source
plug-in name or
the product of a mapping in another database or

use of server-wide authentication or
any method

The name of the database where authentication succeeded
The name of the object from which mapping is performed

Thetype of that name—user name | role | OS group—depending upon the plug-in that added that name
during authentication

Any itemis accepted but only typeisrequired.

4. the object TO which the mapping maps. It consists of two items:

The name of the object TO which mapping is performed

Thetype, for which only USER or ROLE isvalid

Syntax for MAPPING Objects

M appings are defined using the following set of DDL statements:

{CREATE | ALTER | CREATE OR ALTER} [GLOBAL] MAPPI NG name

39

Security

USI NG {
PLUG N name [I N database] | ANY PLUG N [I N dat abase | SERVERW DE] |
MAPPI NG [I N database] | '*' [IN database]}

FROM { ANY type | type nane}
TO {USER | ROLE} [nane]

DROP [GLOBAL] MAPPI NG nane

Description

» Any mapping may be tagged as GLOBAL.

Globa mapping works best if a Firebird 3 or higher version database is used as the security database. If
you plan to use another database for this purpose—using your own provider, for example—then you should
create atable in it named RDB$MAP, with the same structure as RDB$MAP in a Firebird 3 database and
with SY SDBA-only write access.

Bewar e!

If global and local mappings of the same name exist then know and make it known that they are different
objects!

» The CREATE, ALTER and CREATE OR ALTER statements use the same set of options. The name (iden-
tifier) of amapping is used to identify it, asin other DDL command sets.

» The USING clause has a highly complicated set of options:
- anexplicit plug-in name means it will work only for that plug-in
- it can use any available plug-in; although not if the source is the product of a previous mapping
- it can be made to work only with server-wide plug-ins
- it can be made to work only with previous mapping results
- it can be left to use any method, using the asterisk (*) argument

- it can be provided with the name of the database that originated the mapping for the FROM object

Note

This argument is not valid for mapping server-wide authentication.

» The FROM clause takes a mandatory argument, the type of the object named.

-> When mapping names from plug-ins, type is defined by the plug-in.

-> When mapping the product of a previous mapping, type can be only USER or ROLE.
-> |f an explicit name is provided, it will be taken into account by this mapping

-> Usethe ANY keyword to work with any name of the given type.

* Inthe TO clause, the USER or ROLE to which the mapping is made must be specified. NAME is optional:
if it is not supplied, the name from the originating mapping is used.

Examples

40

Security

The examples use the CREATE syntax. Usage of ALTER is exactly the same and the usage of DROP should
be obvious.

1

3.

Enable use of Windows trusted authentication in all databases that use the current security database:

CREATE GLOBAL NMAPPI NG TRUSTED_AUTH
USI NG PLUG N W N_SSPI
FROM ANY USER
TO USER,

Enable SY SDBA-like access for windows admins in current database;

CREATE MAPPI NG W N_ADM NS
USI NG PLUG N W N_SSPI
FROM Pr edef i ned_Gr oup
DOVAI N_ANY_RI D_ADM NS
TO ROLE RDB$ADM N,

Note

Thegroup DOMAIN_ANY_RID_ADMINS does not exist in Windows, but such a name would be added
by thewi n_sspi plug-in to provide exact backwards compatibility.

Enable a particular user from another database to access the current database with another name:

CREATE MAPPI NG FROM RT
USING PLUG N SRP IN "rt"
FROM USER Ul TO USER U2;

I mportant

Database names or aliases will need to be enclosed in double quotes on operating systems that have case-
sensitive file names.

Enable the server's SY SDBA (from the main security database) to access the current database. (Assume
that the database is using a non-default security database):

CREATE MAPPI NG DEF_SYSDBA
USI NG PLUG N SRP I N "security.db"
FROM USER SYSDBA
TO USER,

Ensure users who logged in using the legacy authentication plug-in do not have too many privileges:

CREATE MAPPI NG LEGACY_2_GUEST
USI NG PLUG N | egacy_auth
FROM ANY USER
TO USER GUEST;

41

Security

Legacy Mapping Rule

Previous versions of Firebird have one hard-coded globa default rule: users authenticated in the security
database are aways mapped into any database one-to-one. It is a safe rule: it makes no sense for a security
database not to trust itself!

For backward compatibility thisruleisretained in Firebird 3.

Mapping Windows Users to CURRENT_USER

With Trusted User authentication enabled, Windows users in versions 2.1 and 2.5 are mapped automatically
to CURRENT_USER, by default. In Firebird 3 the mapping must be done explicitly for systems with multiple
security databases and Trusted User authentication enabled.

SQL Features for Managing Access

Changes in architecture, stiffening of rules for security and data integrity, along with a bucket list of feature
requests, have given rise in this release to a number of new SQL commands for managing users and access to
objects.

SQL-driven User Management
Alex Peshkov

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus improving
the capability to manage (add, modify or delete) usersin asecurity database from aregular database attachment.

Syntax Forms

CREATE USER nane {PASSWORD ' password'} [options]

[TAGS (tag [, tag [, tag ...]]) 1]
ALTER USER name SET [PASSWORD ' password'] [options]

[TAGS (tag [, tag [, tag ...]]) 1]
ALTER CURRENT USER SET [PASSWORD ' password'] [options]

[TAGS (tag [, tag [, tag ...]]) 1]
CREATE OR ALTER USER nane SET [PASSWORD ' password'] [options]

[TAGS (tag [, tag [, tag ...]]) 1]

DROP USER nane;

OPTIONS is a (probably empty) list with the following options:

FI RSTNAME ' string val ue'
M DDLENAME ' string val ue'
LASTNAME 'string val ue'
ACTI VE

| NACTI VE

42

Security

Each TAG may have one of two forms:

NAME = 'string val ue'

or the DROP NAME tag form to remove a user-defined attribute entirely:

DROP NAME

Note

The NAME side of the name/value pair can be any valid SQL identifier.

Older Methods Deprecated

From Firebird 3.0, multiple security databases are supported. This capability is not supported by either the gsec
utility or the Services API. Use of both of these methods is deprecated.

Usage Details

The CREATE USER, CREATE OR ALTER USER and DROP USER clauses are available only for SY SDBA
or another user granted the RDB$ADMIN rolein security database (and logged in under that role, of course.)

The PASSWORD clause is required when creating a new user.

An ordinary user can ALTER his own password, real name attributes and tags. Any attempt to modify another
user will fail, aswill an attempt to make “self” inactive or active.

If you want to modify “self”, you can use the simplified form ALTER CURRENT USER.

At least one of PASSWORD, FIRSTNAME, MIDDLENAME, LASTNAME, ACTIVE, INACTIVE or TAGS
must be present in an ALTER USER or CREATE OR ALTER USER statement.

Itisnot aregquirement to use any of the clausesFIRSTNAME, MIDDLENAME and LASTNAME. Any of them
may be |eft empty or used to store short information about the user.

The INACTIVE clause is used to disable the user's login capability without dropping it. The ACTIVE clause
restores that ability.

TAGS isalist of end-user defined attributes. The length of the string value should not exceed 255 bytes.

Setting alist of tags for the user retains previoudly set tagsif they are not mentioned in the current list.

Note

A UID or GID that was entered by the deprecated gsec utility istreated as atag in the SQL interface.

Examples

Generic:

43

Security

CREATE USER superhero PASSWORD 'test';

ALTER USER superhero SET FI RSTNAME ' C ark' LASTNAME ' Kent'
CREATE OR ALTER USER superhero SET PASSWORD ' | dQF A" ;

DROP USER super her o;

ALTER CURRENT USER SET PASSWORD ' Sonet hi ngLongEnough' ;

Working with tags:

ALTER USER superhero SET TAGS (a='a', b='b");

NANVE VALUE
A a
B b

NANVE VALUE
A a
B X
C d
ALTER USER superhero SET TAGS (drop a, c='sanple');

NANVE VALUE
B X
C sanpl e

SET ROLE

Alex Peshkov

See Tracker item CORE-1377.

The SQL2008-compliant operator SET ROLE allows the CURRENT_ROLE context variable to be set to one
that has been granted to the CURRENT _USER or to a user assigned to the database attachment as trusted (SET
TRUSTED ROLE).

Syntax Pattern for SET ROLE

Enable CURRENT_USER access to arole that has been previously granted:

SET ROLE <r ol enane>

Example of SET ROLE Usage

SET RCLE manager;
sel ect current _role fromrdb$dat abase;

Displays:

ROLE

http://tracker.firebirdsql.org/browse/CORE-1377

Security

SET TRUSTED ROLE

Theideaof aseparate SET TRUSTED ROL E command isthat, when thetrusted user attachesto adatabase with-
out providing any role info, SET TRUSTED ROLE makes atrusted role (if one exists) the CURRENT_ROLE
without any additional activity, such as setting it in the DPB.

A trusted role is not a specific type of role but may be any role that was created using CREATE ROLE, or a
predefined system role such as RDB$SADMIN. It becomes a trusted role for an attachment when the security
objects mapping subsystem finds a match between the authentication result passed from the plug-in and alocal
or global mapping for the current database. The role may be onethat is not even granted explicitly to that trusted
user.

Notes

e A trusted roleis not assigned to the attachment by default. It is possible to change this behaviour using an
appropriate authentication plug-in and a CREATE/ALTER MAPPING command.

e Whilst the CURRENT_ROLE can be changed using SET ROLE, it is not always possible to revert using
the same command, because it performs an access rights check.

Syntax Pattern

Enable access to a trusted role, if the CURRENT_USER is logged in under Trusted User authentication and
theroleisavailable:

SET TRUSTED ROLE

An example of the use of atrusted role is assigning the system role RDB$ADMIN to a Windows administrator
when Windows trusted authentication isin use.

GRANT/REVOKE Rights GRANTED BY Specified User
Alex Peshkov

Previoudly, the grantor or revoker of SQL privileges was aways the current user. This change makes it so that
adifferent grantor or revoker can be specified in GRANT and REV OK E commands.

Syntax Pattern

grant <right>to <object> [{ granted by | as } [user] <usernane>]
revoke <right> from<object> [{ granted by | as } [user] <usernane>]

The GRANTED BY clause form is recommended by the SQL standard. The alternative form using AS is
supported by Informix and possibly some other servers and isincluded for better compatibility.

Example (working as SY SDBA)

45

Security

create role ri,
grant rl to userl with admi n option;
grant r1l to public granted by userl;

-- (inisql)

show grant;

/* Grant perm ssions for this database */
GRANT R1 TO PUBLI C GRANTED BY USER1
GRANT R1 TO USER1 W TH ADM N OPTI ON

REVOKE ALL ON ALL

When auser isremoved from the security database or another authentication source, this new command is useful
for revoking its accessto al objectsin the database.

Syntax Pattern

REVOKE ALL ON ALL FROM [USER] user nare
REVOKE ALL ON ALL FROM [ROLE] rol enare

Example

gsec -del guest

isql enpl oyee

fbs bin # ./isqgl enployee

Dat abase: enpl oyee

SQL> REVOKE ALL ON ALL FROM USER guest;

sQL>

User Privileges for Metadata Changes

Dmitry Y emanov
with Roman Simakov

In Firebird 3, the system tables are read-only. This SQL syntax provides the means to assign metadata write
privileges to specified users or roles for specified objects. See Tracker item CORE-735.

Note

Some peopl e have been applying the nickname “DDL privileges’ to this feature. Don't confuse it with “DDL
triggers’! A more useful nickname would be “ Metadata privileges’.

Syntax Patterns

Granting metadata privileges.

GRANT CREATE <obj ect -t ype>
TO [USER | ROLE] <user-nane> | <rol e-nanme> [WTH GRANT OPTI ON| ;

46

http://tracker.firebirdsql.org/browse/CORE-735

Security

GRANT ALTER ANY <obj ect-type>

TO [USER | ROLE] <user-name> | <role-nane> [WTH GRANT OPTI ON|;
GRANT DROP ANY <obj ect-type>

TO [USER | ROLE] <user-name> | <role-nane> [WTH GRANT OPTI ON|;

Revoking metadata privileges:

REVOKE [GRANT OPTI ON FOR] CREATE <obj ect-type>
FROM [USER | ROLE] <user-name> | <rol e- nane>;
REVOKE [GRANT OPTI ON FOR] ALTER ANY <obj ect-type>
FROM [USER | ROLE] <user-name> | <rol e- nane>;
REVOKE [GRANT OPTI ON FOR] DROP ANY <obj ect-type>
FROM [USER | ROLE] <user-name> | <rol e-nane>;

Special form for database access:

GRANT CREATE DATABASE TO [USER | ROLE] <user-nane> | <rol e-nane>;
GRANT ALTER DATABASE

TO [USER | ROLE] <user-name> | <rol e-nane> [WTH GRANT OPTI ON|;
GRANT DROP DATABASE

TO [USER | ROLE] <user-name> | <rol e-nane> [WTH GRANT OPTI ON|;

REVOKE CREATE DATABASE FROM [USER | ROLE] <user-nanme> | <rol e- name>;
REVOKE [GRANT OPTI ON FOR] ALTER DATABASE

FROM [USER | ROLE] <user-name> | <rol e-nane>;
REVOKE [GRANT OPTI ON FOR] DROP DATABASE

FROM [USER | ROLE] <user-name> | <rol e-nane>;

Notes on Usage

» <object-type> can be any of the following:

CHARACTER SET COLLATION DOMAIN EXCEPTION
FILTER FUNCTION GENERATOR PACKAGE
PROCEDURE ROLE SEQUENCE TABLE
VIEW

Note

The metadata for triggers and indices are accessed through the privileges for the table that owns them.

» If the ANY option isused, the user will be able to perform any operation on any object
« |f the ANY option is absent, the user will be able to perform operations on the object only if he ownsit

» If the ANY option was acquired via a GRANT operation then, to revoke it, the REVOKE operation must
accord with that GRANT operation

Example

GRANT CREATE TABLE TO Joe;
GRANT ALTER ANY TABLE TO Joe;
REVOKE CREATE TABLE FROM Joe;

47

Security

GRANT EXECUTE Privileges for UDFs

Dmitry Y emanov
CORE-2554: EXECUTE permission is now supported for UDFs (both legacy and PSQL based ones).

Syntax Pattern

GRANT EXECUTE ON FUNCTI ON <nane> TO <grantee |ist>
[<grant option> <granted by cl ause>]

REVOKE EXECUTE ON FUNCTI ON <nane> FROM <grantee |ist>
[<granted by cl ause>]

Note

Theinitial EXECUTE permission is granted to the function owner (user who created or declared the function).

Improvement for Recursive Stored Procedures
Alex Peshkov

A recursive stored procedure no longer requires the EXECUTE privilege to call itself. See Tracker item
CORE-3242.

Privileges to Protect Other Metadata Objects

New SQL -2008 compliant USA GE permission isintroduced to protect metadata objects other than tables, views,
procedures and functions.

Syntax Pattern

GRANT USAGE ON <obj ect type> <nane> TO <grantee |ist>
[<grant option> <granted by cl ause>]

REVOKE USAGE ON <obj ect type> <nane> FROM <grantee |ist>
[<granted by cl ause>]

<obj ect type> ::= {DOMAIN | EXCEPTION | GENERATOR | SEQUENCE | CHARACTER SET | COLLATI ON}

Notes
Theinitial USAGE permission is granted to the object owner (user who created the object).

In Firebird 3.0 Beta 1, only USAGE permissions for exceptions (CORE-2884) and generators/sequences
(gen_id, next value for: CORE-2553) are enforced. Permissions for other object types could be validated in
subsequent releases, subject to further consideration of the integrity implications of allowing write access to
domains, character sets and collations.

48

http://tracker.firebirdsql.org/browse/CORE-2554
http://tracker.firebirdsql.org/browse/CORE-3242
http://tracker.firebirdsql.org/browse/CORE-2884
http://tracker.firebirdsql.org/browse/CORE-2553

Security

Pseudo-Tables with List of Users

CORE-2639.

To accesslists of usersand attributes, query the virtual tables SECSUSERS and SECSUSER_ATTRIBUTES.

Important

Thisfeature depends highly on the user management plug-in. Takeinto an account that some optionsareignored
when using the legacy user management plug-in.

The pseudo-tables are much like the MONS$ family tables used for monitoring the server. The table is created
on demand when you run the statement

SELECT * FROM SEC$USERS

or

SELECT * FROM SEC$USER_ATTRI BUTES

The output lists the users (or their attributes) in the security database that is configured for the current database
and available for management to the current user. SEC3USERS includes a field indicating whether a user has
the RDB$ADMIN rolein the security database.

49

http://tracker.firebirdsql.org/browse/CORE-2639

Chapter 8

Data Definition
Language (DDL)

Quick Links

« BOOLEAN DataType

* IDENTITY-Style Column

* Manage Nullability in Domains and Columns
» Modify Generators (Sequences)

» Alter Default Character Set

DDL Enhancements

The following enhancements have been added to the SQL data definition language lexicon:

New Data Types

A fully-fledged Boolean typeisintroduced in thisrelease, along with a surfaced emul ation of the Microsoft-style
“identity” column.

BOOLEAN Data Type
Adriano dos Santos Fernandes

The SQL-2008 compliant BOOLEAN datatype (8 bits) comprises the distinct truth values TRUE and FALSE.
Unless prohibited by a NOT NULL constraint, the BOOLEAN data type also supports the truth value UN-
KNOWN as the null value. The specification does not make a distinction between the NULL value of this data
type and the truth value UNKNOWN that is the result of an SQL predicate, search condition, or boolean value
expression: they may be used interchangeably to mean exactly the same thing.

Aswith many programming languages, the SQL BOOL EAN values can be tested with implicit truth values. For
example, field1 OR field2 and NOT field1 are valid expressions.

The IS Operator

Predi cations use the operator IS[NOT] for matching. For example, field1 ISFALSE, or field1 ISNOT TRUE.

50

Data Definition Language (DDL)

Note

Equivalence operators (“=", “!=", “<>" and so on) are valid in all comparisons.

Examples

CREATE TABLE TBOCOL (I D I NT, BVAL BOOLEAN);
COW T;

I NSERT | NTO TBOCL VALUES (1, TRUE);
I NSERT | NTO TBOCOL VALUES (2, 2 = 4);
I NSERT | NTO TBOCL VALUES (3, NULL = 1);

COW T;
SELECT * FROM TBOOL
I D BVAL
1 <true>
2 <fal se>
3 <null >

-- Test for TRUE val ue
SELECT * FROM TBOOL WHERE BVAL
ID BVAL

1 <true>

-- Test for FALSE val ue
SELECT * FROM TBOOL WHERE BVAL | S FALSE
I D BVAL

2 <fal se>

-- Test for UNKNOMWN val ue
SELECT * FROM TBOOL WHERE BVAL | S UNKNOMN
ID BVAL

3 <null <

-- Bool ean val ues in SELECT |i st
SELECT ID, BVAL, BVAL AND ID < 2
FROM TBOCOL
ID BVAL

1 <true> <true>
2 <fal se> <fal se>
3 <null> <fal se>

-- PSQL Declaration with start val ue
DECLARE VARI ABLE VAR1 BOOLEAN = TRUE;

-- Valid syntax, but as with a conparison
-- with NULL, will never return any record
SELECT * FROM TBOOL WHERE BVAL = UNKNOMN

SELECT * FROM TBOOL WHERE BVAL <> UNKNOWN

51

Data Definition Language (DDL)

Notes
¢ Represented in the APl with the FB_BOOL EAN type and FB_TRUE and FB_FAL SE constants.
e Thevalue TRUE is greater than the value FAL SE.

e Although BOOLEAN is not implicitly convertible to any other datatype, it can be explicitly converted to
and from string with CAST.

» For compatibility reasons, the non-reserved keywords INSERTING, UPDATING and DELETING continue
to behave as Boolean expressionswhen used in context in PSQL , while behaving asvaluesif they are column
or variable namesin non-Boolean expressions.

The following example uses the word INSERTING in all three ways:

SELECT

INSERTING, -- value

NOT INSERTING -- keyword
FROM TEST
WHERE

INSERTING -- keyword

AND INSERTING IS TRUE -- value

Identity Column Type
Adriano dos Santos Fernandes

An identity column is a column associated with an internal sequence generator. Its value is set automatically
when the column is omitted in an INSERT statement.

Syntax Patterns

<colum definition> ::=
<nane> <type> GENERATED BY DEFAULT AS IDENTITY [(START W TH <val ue>)]<constrai nts>

When defining a column, the optional START WITH clause allows the generator to be initialised to a value
other than zero. See Tracker ticket CORE-4199.

<alter colum definition> ::=
<name> RESTART [W TH <val ue>]

A column definition can be altered to modify the starting value of the generator. RESTART alone resets the
generator to zero; the optional WITH <value> clause allows the restarted generator to start at a value other than
zero. See Tracker ticket CORE-4206.

Rules

» The data type of an identity column must be an exact number type with zero scale. Allowed types are thus
SMALLINT, INTEGER, BIGINT, NUMERIC(x,0) and DECIMAL (x,0).

e Anidentity column cannot have DEFAULT or COMPUTED value.

52

http://tracker.firebirdsql.org/browse/CORE-4199
http://tracker.firebirdsql.org/browse/CORE-4206

Data Definition Language (DDL)

Notes
* Anidentity column cannot be altered to become aregular column. The reverseis also true.
¢ ldentity columns are implicitly NOT NULL (non-nullable).

« Uniquenessis not enforced automatically. A UNIQUE or PRIMARY KEY constraint is required to guar-
antee uniqueness.

» The use of other methods of generating key valuesfor IDENTITY columsn, e.g., by trigger-generator code
or by alowing usersto change or add them, is discouraged to avoid unexpected key violations.

Example

create table objects (
idinteger generated by default as identity primary key,
nanme var char (15)

)
insert into objects (nane) values (' Table');

insert into objects (nane) values ('Book');

insert into objects (id, nane) values (10, 'Conputer');

select * from objects;

1 Table
2 Book
10 Conputer

Implementation Details

Two new columns have been inserted in RDB$SRELATION_FIELDS to support identity columns: RDB
$GENERATOR_NAME and RDB$IDENTITY _TYPE.

+ RDB$GENERATOR_NAME stores the automatically created generator for the column. In RDB$GENER-
ATORS, the value of RDB$SY STEM_FLAG of that generator will be 6.

» Currently, RDB$IDENTITY_TYPE will currently always store the value 1 (by default) for identity columns
and NULL for non-identity columns. In the future this column will store the value O, too (for ALWAYYS)
when Firebird implements support for this type of identity column.

Manage Nullability in Domains and Columns
A. dos Santos Fernandes

ALTER syntax is now available to change the nullability of atable column or adomain

Syntax Pattern

ALTER TABLE <tabl e nanme> ALTER <field name> [NOT] NULL

ALTER DOVAI N <domai n name> [NOT] NULL

53

Data Definition Language (DDL)

Notes

The success of achangein atable column from NULL to NOT NULL issubject to afull datavalidation on the
table, so ensure that the column has no nulls before attempting the change.

A change in a domain subjects all the tables using the domain to validation.

An explicit NOT NULL on acolumn that depends on a domain prevails over the domain. In this situation, the
changing of the domain to make it nullable does not propagate to the column.

Modify Generators (Sequences)

More statement options have been added for maodifying generators (sequences). Where previoudly in SQL the
only option was ALTER SEQUENCE <sequence name> RESTART WITH <value>, now afull lexicon is
provided and GENERATOR and SEQUENCE are synonyms for the full range of commands.

RESTART can now be used onitsown to restart the sequence at its previous start or restart value. A new column
RDB$I NI TI AL_VALUE is added to the system table RDB$GENERATORS to store that value.

Syntax Forms

{ CREATE | RECREATE } { SEQUENCE | GENERATOR } <sequence name> [START W TH <val ue>]
CREATE OR ALTER { SEQUENCE | GENERATOR } <sequence nanme> { RESTART | START W TH <val ue> }

ALTER { SEQUENCE | GENERATOR } <sequence name> RESTART [W TH <val ue>]

Alter the Default Character Set
A. dos Santos Fernandes
ALTER DATABASE
SET DEFAULT CHARACTER SET <new charset >

The ateration does not change any existing data. The new default character set isused only in subsequent DDL
commands and will assume the default collation of the new character set.

BLOB in COMPUTED BY Expressions

Adriano dos Santos Fernandes

For Example

ALTER TABLE ATABLE
ADD ABLOB
COVPUTED BY (SUBSTRI NG(BLOB_FI ELD FROM 1 FCR 20))

Data Definition Language (DDL)

“Linger” Database Closure for Superserver

Sometimes it is desirable to have the Superserver engine keep the database open for a period after the last
attachment is closed, i.e, to have it “linger” a while. It can help to improve performance at low cost, under
conditions where the database is opened and closed frequently, by keeping resources “warm” for next time it
is reopened.

Firebird 3.0 introduces an enhancement to ALTER DATABASE to manage this optional LINGER capability
for databases running under Superserver.

Syntax Form

ALTER DATABASE SET LI NGER TO {seconds};
ALTER DATABASE DROP LI NGER;

Usage

To set linger for the database do:

ALTER DATABASE SET LINGER TO 30; -- sets linger interval to 30 seconds

Either of the following forms will clear the linger setting and return the database to the normal condition (no
linger):

ALTER DATABASE DROP LI NGER;
ALTER DATABASE SET LI NGER TO 0;

Note

Dropping LINGER is not an ideal solution for the occasional need to turn it off for some once-only condition
where the server needs aforced shutdown. The dfix utility now hasthe -NoLinger switch, which will close the
specified database immediately the last attachment is gone, regardless of the LINGER setting in the database.
The LINGER setting is retained and works normally the next time.

The same one-off override is also available through the Services API, using the tag isc_spb_prp_nolinger,

eg. (inoneline):

fbsvengr host:service_ngr user sysdba password xxx
action_properties dbname enpl oyee prp_nol i nger

See a so Tracker ticket CORE-4263 for some discussion of the development of this feature.

New SQL for Managing Users and Access Privileges

A number of new features and enhancements have been added to the DDL lexicon for managing users and their
access to objectsin databases. They are described in detail in Chapter 7, Security.

55

http://tracker.firebirdsql.org/browse/CORE-4263

Data Definition Language (DDL)

SQL-driven User Management

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus improving
the capability to manage (add, modify or delete) usersin asecurity database from aregular database attachment.

gsec is deprecated!

The command-line and shell utility gsec is deprecated from this release forward. It will continue to work with
security3. fdb butitwill not work with alternative security databases.

SET ROLE and SET TRUSTED ROLE
The SQL2008-compliant operator SET ROLE allows the CURRENT_ROLE context variable to be set to one

that has been granted to the CURRENT _USER or to a user assigned to the database attachment as trusted (SET
TRUSTED ROLE).

GRANTED BY Clause for Privileges

Previoudly, the grantor or revoker of SQL privileges was always the current user. The GRANTED BY clause
makes it so that a different grantor or revoker can be specified in GRANT and REV OKE commands.

REVOKE ALL ON ALL

When auser isremoved from the security database or another authentication source, this new command is useful
for revoking its accessto all objectsin the database.

GRANT/REVOKE Metadata Privileges

In Firebird 3, the system tables are read-only. This SQL syntax provides the means to assign metadata write
privileges to specified users or roles for specified abjects.

EXECUTE Privileges for UDFs

EXECUTE permission is now supported for UDFs (both legacy and PSQL based ones).

GRANT/REVOKE USAGE

New SQL -2008 compliant USA GE permission isintroduced to protect metadata objects other than tables, views,
procedures and functions.

56

Data Manipulation
Language (DML)

In this chapter are the additions and improvements that have been added to the SQL data manipulation language
subset in Firebird 3.0.

Quick Links

Supplemental SQL 2008 Features for MERGE

Window (Analytical) Functions

SUBSTRING With Regular Expressions

Advanced PLAN Output

New Internal Functions: Inverse Hyperbolic Trig Functions
Enhancements to DATEADD() Internal Function

TRIM() BLOB Arguments Lose 32 KB limit
Alternatives for Embedding Quotesin String Literals
Prohibit Edgy Mixing of Implicit/Explicit Joins
RETURNING Clause Can be Aliased

RETURNING Clause from Positioned Updates and Deletes
Cursor Stability

Improvements for Global Temporary Tables
Improvements for DML Strings

SIMILAR TO Performance Improvement

OR'ed Parameter in WHERE Clause

A Little Dialect 1 Accommodation

Supplemental SQL 2008 Features for MERGE

Adriano dos Santos Fernandes
In summary, support for MERGE was supplemented with the introduction of these features:

» Addition of the DELETE extension (CORE-2005)

» Enabling the use of multiple WHEN MATCHED | NOT MATCHED clauses (CORE-3639) and ability to
apply conditionsto WHEN MATCHED | NOT MATCHED

e Addition of the RETURNING ... INTO ... clause (CORE-3020)

The purpose of MERGE is to read data from the source and INSERT or UPDATE in the target table according
to acondition. It isavailable in DSQL and PSQL.

57

http://tracker.firebirdsql.org/browse/CORE-2005
http://tracker.firebirdsql.org/browse/CORE-3639
http://tracker.firebirdsql.org/browse/CORE-3020

Data Manipulation Language (DML)

Syntax Pattern

<merge statenment> ::=
MERGE

I NTO <table or view> [[AS] <correl ation nanme>]

USI NG <table or view or derived table> [[AS] <correlation nanme>]
ON <condi ti on>

<mer ge when>. ..

<returning clause>

<merge when> ::=
<nmer ge when mat ched> |
<nmer ge when not matched>

<mer ge when mat ched> :: =
VWHEN MATCHED [AND <condition>] THEN
{ UPDATE SET <assignnent |ist> | DELETE }

<mer ge when not matched> ::=

WHEN NOT MATCHED [AND <condition>] THEN

INSERT [<left paren> <columm |ist> <right paren>]
VALUES <l eft paren> <value |ist> <right paren>

Rules

At least one of <merge when matched> or <merge when not matched> should be specified.

Example

MERGE | NTO custoners ¢

US| NG
(SELECT * FROM customers_delta WHERE id > 10) cd
ON (c.id = cd.id)

VWHEN MATCHED THEN
UPDATE SET nane = cd. nane

WHEN NOT MATCHED THEN
I NSERT (id, name)
VALUES (cd.id, cd.name)

Notes

A right join is made between the INTO (left-side) and USING tables using the condition. UPDATE is called
when arecord existsin the left table (INTO), otherwise INSERT is called.

As soon as it is determined whether or not the source matches a record in the target, the set formed from the
corresponding (WHEN MATCHED / WHEN NOT MATCHED) clauses is evaluated in the order specified,
to check their optional conditions. The first clause whose condition evaluates to true is the one which will be
executed, and the subsequent ones will be ignored.

If no record is returned in the join, INSERT is not called.

Window (Analytical) Functions
Adriano dos Santos Fernandes

58

Data Manipulation Language (DML)

According to the SQL specification, window functions (also know as analytical functions) are akind of aggre-
gation, but one that does not “filter” the result set of a query. The rows of aggregated data are mixed with the
guery result set.

Thewindow functions are used with the OV ER clause. They may appear only inthe SELECT list or the ORDER
BY clause of aquery.

Besides the OVER clause, Firebird window functions may be partitioned and ordered.

Syntax Pattern

<wi ndow function> ::= <wi ndow function name>([<expr> [, <expr> ...]]) OVER (
[PARTI TI ON BY <expr> [, <expr> ...]]
[ORDER BY <expr>
[<direction>]
[<null's pl acenment >]
[, <expr> [<direction>] [<nulls placenent>] ...]

)
<direction> ::= {ASC | DESC}

<nul l's placenment> ::= NULLS {FIRST | LAST}

Aggregate Functions Used as Window Functions
All aggregate functions may be used as window functions, adding the OVER clause.

Imagine a table EMPLOY EE with columns ID, NAME and SALARY, and the need to show each employee
with his respective salary and the percentage of his salary over the payroll.

A normal query could achieve this, as follows:

sel ect
id,
depart nent,
sal ary
salary / (select sum(salary) from enpl oyee) percentage
from enpl oyee
order by id;

Results

id departnment salary percentage

1 R &D 10. 00 0. 2040
2 SALES 12. 00 0. 2448
3 SALES 8. 00 0. 1632
4 R &D 9. 00 0. 1836
5 R &D 10. 00 0. 2040

The query isrepetitive and lengthy to run, especialy if EMPLOY EE happened to be a complex view.

The same query could be specified in amuch faster and more elegant way using awindow function:

59

Data Manipulation Language (DML)

sel ect
id,
depart nent,
sal ary
salary / sum(sal ary) OVER () percentage
from enpl oyee
order by id;

Here, sum(salary) over () is computed with the sum of all SALARY from the query (the employee table).

Partitioning

Like aggregate functions, that may operate alone or in relation to a group, window functions may also operate
on agroup, whichis called a*“partition”.

Syntax Pattern

<wi ndow function>(...) OVER (PARTITION BY <expr> [, <expr> ...])

Aggregation over a group could produce more than one row, so the result set generated by a partition isjoined
with the main query using the same expression list as the partition.

Continuing the employee example, instead of getting the percentage of each employee's salary over the al-
employeestotal, we would like to get the percentage based on just the employees in the same department:

sel ect
id,
depart nent,
sal ary
salary / sun(sal ary) OVER (PARTI TI ON BY departnent) percentage
from enpl oyee
order by id;

Results

id departnment salary percentage

1 R & D 10. 00 0. 3448

2 SALES 12. 00 0. 6000

3 SALES 8. 00 0. 4000

4 R & D 9. 00 0. 3103

5 R & D 10. 00 0. 3448
Ordering

The ORDER BY sub-clause can be used with or without partitions and, with the standard aggregate functions,
make them return the partial aggregations as the records are being processed.

Example

60

Data Manipulation Language (DML)

sel ect
id,
sal ary,
sum(sal ary) over (order by salary) cunul _sal ary
from enpl oyee
order by sal ary;

Theresult set produced:

id salary cunul_salary

3 8. 00 8. 00
4 9. 00 17.00
1 10. 00 37.00
5 10. 00 37.00
2 12. 00 49. 00

Then cumul_salary returns the partial/accumulated (or running) aggregation (of the SUM function). It may
appear strange that 37.00 is repeated for the ids 1 and 5, but that is how it should work. The ORDER BY keys
are grouped together and the aggregation is computed once (but summing the two 10.00). To avoid this, you
can add the ID field to the end of the ORDER BY clause.

It's possible to use multiple windows with different orders, and ORDER BY partslike ASC/DESC and NULLS
FIRST/LAST.

With a partition, ORDER BY works the same way, but at each partition boundary the aggregation is reset.

All aggregation functions, other than LIST(), are usable with ORDER BY .

Exclusive window functions

Beyond aggregate functions are the exclusive window functions, currently divided into ranking and navigational
categories. Both sets can be used with or without partition and ordering, although the usage does not make much
sense without ordering.

Ranking Functions

The rank functions compute the ordinal rank of a row within the window partition. In this category are the
functions DENSE_RANK, RANK and ROW_NUMBER.

Syntax
<ranki ng wi ndow function> ::=
DENSE_RANK() |
RANK() |
ROW NUMBER()

The ranking functions can be used to create different type of incrementa counters. Consider SUM (1) OVER
(ORDER BY SALARY) as an example of what they can do, each of them in a different way. Following is an
example query, aso comparing with the SUM behavior.

61

Data Manipulation Language (DML)

sel ect

id,
sal ary,
dense_rank() over (order by salary),
rank() over (order by salary),
row_nunber () over (order by salary),
sun(1l) over (order by salary)

from enpl oyee

order by sal ary;

Theresult set:

id salary dense_rank rank row_number sum

3 8. 00 1 1 1 1
4 9. 00 2 2 2 2
1 10. 00 3 3 3 4
5 10. 00 3 3 4 4
2 12. 00 4 5 5 5

Thedifference between DENSE RANK and RANK isthat thereisagap related to duplicate rows (relativeto the
window ordering) only in RANK. DENSE_RANK continues assigning sequential numbers after the duplicate
salary. On the other hand, ROW_NUMBER aways assigns sequential numbers, even when there are duplicate
values.

Navigational Functions

The navigational functions get the simple (non-aggregated) value of an expression from another row of the
guery, within the same partition.

Syntax

<navi gati onal w ndow function> ::=
FI RST_VALUE(<expr>) |
LAST_VALUE(<expr>) |
NTH_VALUE(<expr>, <offset>) [FROM FIRST | FROM LAST] |
LAG(<expr> [[, <offset> [, <default>]]) |
LEAD(<expr> [[, <offset> [, <default>1]])

Important to Note

FIRST VALUE, LAST VALUE and NTH_VALUE aso operate on awindow frame. Currently, Firebird al-
ways frames from the first to the current row of the partition, not to the last. Thisis likely to produce strange
resultsfor NTH_VALUE and especially LAST_VALUE.

Example

sel ect
id,
sal ary,

62

Data Manipulation Language (DML)

first_value(salary) over (order by salary),
| ast _val ue(sal ary) over (order by salary),
nth_val ue(sal ary, 2) over (order by salary),
| ag(sal ary) over (order by salary),
| ead(sal ary) over (order by salary)

from enpl oyee

order by sal ary;

Theresult set:
id salary first_value |last_value nth_value | ag | ead
3 8. 00 8. 00 8.00 <null> <null> 9. 00
4 9.00 8. 00 9.00 9.00 8.00 10.00
1 10. 00 8. 00 10. 00 9.00 9.00 10.00
5 10. 00 8. 00 10. 00 9.00 10.00 12.00
2 12. 00 8. 00 12. 00 9.00 10.00 <null>

FIRST VALUE and LAST_VALUE get, respectively, thefirst and last value of the ordered partition.

NTH_VALUE gets the n-th value, starting from the first (default) or the last record, from the ordered parti-
tion. An offset of 1 from first would be equivalent to FIRST _VALUE; an offset of 1 from last is equivalent
to LAST_VALUE.

LAG looks for a preceding row, and LEAD for a following row. LAG and LEAD get their values within a
distance respective to the current row and the offset (which defaults to 1) passed.

In acasewherethe offset pointsoutside the partition, the default parameter (which defaultsto NULL) isreturned.

Advanced Plan Output

Dmitry Y emanov

PLAN output can now be output in a more structured and comprehensible form, e.g.

SELECT st at enent
-> First [10]
-> Sort [SUM O ORDERDATE]
-> Aggregate
-> Sort [L_ORDERKEY, O CRDERDATE, O SH PPRI ORI TY]
-> I nner Loop Join
-> Filter
-> Tabl e #ORDERS# Access By ID
-> Bitmap
-> | ndex #ORDERS_ORDERDATE# Range Scan
-> Filter
-> Tabl e #CUSTOVER# Access By ID
-> Bitmap
-> I ndex #CUSTOVER_PK# Uni que Scan
-> Filter
-> Tabl e #LI NEI TEM# Access By ID
-> Bitmap
-> I ndex #LI NEI TEM PK# Uni que Scan

63

Data Manipulation Language (DML)

Advanced PLAN Outputin isql

New syntax SET EXPLAIN [ON | OFF] has been added to the isqgl utility to surface this option. For details,
refer to SET EXPLAIN Extensions for Viewing Detailed Plansin the Utilities chapter.

Internal Functions

Additions and enhancements to the internal functions set are:

SUBSTRING with Regular Expressions
Adriano dos Santos Fernandes

A substring search can now use aregular expression.

Sear ch Pattern

SUBSTRI NG <string> [NOT] SIMLAR TO <pattern> ESCAPE <char >)

Discussion: TrackerCORE-2006

For moreinformation about the use of SIMILAR TO expressions, refer to READVE. si mi | ar _t 0. t xt inthe/
doc/ subdirectory of your Firebird installation.

Tip

The regex used is the SQL one. A guide is available in the DML chapter of the v.2.5 release notes and also
at the Firebird web site.

New Inverse Hyperbolic Trigonometric Functions
Claudio VaderramaC.

The six inverse hyperbolic trigonometric functions have been implemented internally. They are:

ACOH
Returns the hyperbolic arc cosine of a number (expressed in radians). Format: ACOSH (<number>)

ASINH
Returns the hyperbolic arc sine of anumber (expressed in radians). Format: ASINH (<number>)

ATANH
Returns the hyperbolic arc tangent of a number (expressed in radians). Format: ATANH(<number>)

COH
Returns the hyperbolic cosine of an angle (expressed in radians). Format: COSH(<number>)

64

http://tracker.firebirdsql.org/browse/CORE-2006
http://www.firebirdsql.org/file/documentation/release_notes/html/rlsnotes253.html#rnfb25-dml-regex

Data Manipulation Language (DML)

SINH
Returns the hyperbolic sine of an angle (expressed in radians). Format: SINH(<number>)

TANH
Returns the hyperbolic tangent of an angle (expressed in radians). Format: TANH(<number>)

TRIM() BLOB Arguments Lose 32 KB limit

Adriano dos Santos Fernandes

In prior versions, TRIM (substring from string) allowed BLOBs for both arguments, but the first argument had
to be smaller than 32 KB. Now both arguments can take BLOBs of up to 4 GB.

Enhancements to DATEADD() Internal Function
Adriano dos Santos Fernandes

For the internal function DATEADD()
» The function now supports afractional value for MILLISECOND. See Tracker item CORE-4457.

* the data type of input <amount> arguments has changed from INTEGER to BIGINT. See Tracker item
CORE-4310.

DML Improvements

A collection of useful DML improvements is released with Firebird 3.

Alternatives for Embedding Quotes in String Literals
Adriano dos Santos Fernandes

It isnow possible to use a character, or character pair, other than the doubled (escaped) apostrophe, to embed a
guoted string inside another string. The keyword g or Q preceding aquoted string informs the parser that certain
left-right pairs or pairs of identical characters within the string are the delimiters of the embedded string literal.

Syntax

<alternate string literal> ::=

{ 9| Q} <quote> <alternate start char> [{ <char>}...] <alternate end char> <quote>

Rules

When <alternate start char>is'(, '{, [’ or '<', <alternate end char> is paired up with its respective “ partner”,
viz.")','}', T and '>". In other cases, <alternate end char> is the same as <alternate start char>.

Inside the string, i.e., <char> items, single (not escaped) quotes could be used. Each quote will be part of the
result string.

65

http://tracker.firebirdsql.org/browse/CORE-4457
http://tracker.firebirdsql.org/browse/CORE-4310

Data Manipulation Language (DML)

Examples
sel ect ' {abc{def}ghi}' fromrdb$database; -- result: abc{def}ghi
select g'!That's a string!' from rdb$dat abase; -- result: That's a string

Prohibit Edgy Mixing of Implicit/Explicit Joins

Dmitry Y emanov

Whilemixing of implicit and explict join syntaxesisnot recommended at al, the parser still allowsthem. Certain
“mixes’ actually cause the optimizer to produce unexpected results, including “No record for fetch” errors. The
same edgy styles are prohibited by other SQL engines and now they are prohibited in Firebird.

To visit some discussion on the subject, see the Tracker ticket CORE-2812.

Left-side Parameters Supported
Adriano dos Santos Fernandes

The following style of subquery, with the parameter in the left side of a WHERE...IN (SELECT...) condition,
would fail with the error “ The data type of the parameter is unknown”.

SELECT <colums> FROMtable_ 1 t1
WHERE <conditions on table_1>
AND (? IN (SELECT sone_col FROMtable 2 t2 WHERE t1.id = t2.ref_id))

Note

Better SQL coding practice would be to use EXISTS in these cases; however, developers were stumbling over
this problem when using generated SQL from Hibernate, which used the undesirable style.

Enhancements to the RETURNING Clause

Adriano dos Santos Fernandes

Two enhancements were added to the RETURNING clause:

RETURNING Clause Value Can be Aliased

When using the RETURNING clause to return avalue to the client, the value can now be passed under an alias.

Example Without and With Aliases

UPDATE T1 SET F2 = F2 * 10
RETURNI NG OLD. F2, NEWF2; -- without aliases

UPDATE T1 SET F2 = F2 * 10
RETURNI NG OLD. F2 OLD_F2, NEWF2 AS NEWF2; -- with aliases

66

http://tracker.firebirdsql.org/browse/CORE-2812

Data Manipulation Language (DML)

Note

The keyword AS is optional.

RETURNING Clause from Positioned Updates and Deletes

Support has been added for a RETURNING clause in positioned (WHERE CURRENT OF) UPDATE and
DELETE statements.

Example

UPDATE T1 SET F2 = F2 * 10 WHERE CURRENT OF C
RETURNI NG NEW F2;

Cursor Stability
Vlad Khorsun

Until this release, Firebird suffered from an infamous bug whereby a data modification operation could loop
infinitely and, depending on the operation, delete all the rows in atable, continue updating the same rows ad
infinitum or insert rows until the host machineran out of resources. All DML statementswere affected (INSERT,
UPDATE, DELETE, MERGE). It occurred because the engine used an implicit cursor for the operations.

To ensure stability, rows to be inserted, updated or deleted had to be marked in some way in order to avoid
multiple visits. Another workaround was to force the query to have a SORT in its plan, in order to materialize
the cursor.

From Firebird 3, engine uses the Undo log to check whether a row was already inserted or modified by the
current cursor.

I mportant

This stabilisation does NOT work with SUSPEND loopsin PSQL.

An Improvement for GTTs
Vlad Khorsun

Global temporary tables (GTTs) are now writable even in read-only transactions. The effect is as follows.-

Read-only transaction in read-write database
Writable in both ON COMMIT PRESERVE ROWS and ON COMMIT DELETE ROWS

Read-only transaction in read-only database
Writablein ON COMMIT DELETE ROWS only

Also

* Roallback for GTT ON COMMIT DELETE ROWS s faster

67

Data Manipulation Language (DML)

* Rows do not need to be backed out on rollback

» Garbage collectionin GTT is not delayed by active transactions of other connections

Note

The same refinements were also backported to Firebird 2.5.1.

An Improvement for DML Strings
Adriano dos Santos Fernandes

Strings in DML queries are now transformed or validated to avoid passing maformed strings to the engine
internals, for example, to the MON$SSTATEMENTS.MONS$SQL_TEXT column.

The solution adopted depends on the character set of the attachment.-
* NONE—non-ASCII characters are transformed to question marks

» Others—the string is checked for malformed characters

Optimizations

Optimizations made for this release included:

SIMILAR TO
Adriano dos Santos Fernandes

The performance of SIMILAR TO was improved.

OR'ed Parameter in WHERE Clause
Dmitry Y emanov

Performance for (table.field = :param or :param = -1) in the WHERE clause was enhanced.

Better Choices for Navigation
Dmitry Y emanov

Previously, when an ORDER plan was in a SELECT structure, the optimizer would choose the first index
candidate that matched the ORDER BY or GROUP BY clause. This“first come” approach is not the best when
multiple index choices are available. The Firebird 3 engine surveys al of the available choices and picks the
most suitable index.

See Tracker ticket CORE-4285.

Plainer Execution Path for UNION Queries
Dmitry Y emanov

68

http://tracker.firebirdsql.org/browse/CORE-4285

Data Manipulation Language (DML)

Previously, the execution path for UNION queries was hierarchical, often causing redundant reads. This opti-
mization replaces the hierarchical execution path with aplainer one that improves performance.

See Tracker ticket CORE-4165.

Index Walk for Compound Index
Dmitry Y emanov

The optimizer now allows an index walk (ORDER plan) when a suitable compound index (A, B) is available
for aquery condition of the style WHERE A =? ORDER BY B.

See Tracker ticket CORE-1846.

Performance Improvement for SET STATISTICS INDEX
Vlad Khorsun

BTR_selectivity() would walk the whole leaf level of given index b-treeto calculate index selectivity. Through-
out the process, the only rescheduling would happen at adisk 1/0 operation. The effect wasto imposelong waits
for AST requests from concurrent attachments, such as page lock requests, monitoring, cancellation, etc. An
improvement in Firebird 3 seemsto solve that problem.

See Tracker ticket CORE-1846.

Dialect 1 Interface
Adriano dos Santos Fernandes

Selection of SQL_INT64, SQL_DATE and SQL_TIME in dialect 1 was enabled.

See Tracker CORE-3972

69

http://tracker.firebirdsql.org/browse/CORE-4165
http://tracker.firebirdsql.org/browse/CORE-1846
http://tracker.firebirdsql.org/browse/CORE-1846
http://tracker.firebirdsql.org/browse/CORE-3972

Chapter 10

Procedural SQL (PSQL)

Advancementsin procedural SQL (PSQL) include:

Quick Links

» PSQL Stored Functions

* PSQL Subroutines

» Packages

o DDL Triggers

» Exceptions with Parameters

* CONTINUE in Looping Logic

* PSQL Cursor Stabilization

» PSQL Cursorsas Variables

* SQLSTATE in Exception Trap

» Some Size Limits Removed Using New API

PSQL Stored Functions

Dmitry Y emanov
It is now possible to write ascalar function in PSQL and call it just like an internal function.
Syntax for the DDL

{ CREATE [OR ALTER] | ALTER | RECREATE} FUNCTI ON <nane>

[(paraml [, ...])]
RETURNS <t ype>

AS

BEG N

END

Tip

The CREATE statement isthe declaration syntax for PSQL functions, parallel to DECLARE for legacy UDFs.

Example

CREATE FUNCTI ON F(X I NT) RETURNS | NT
AS
BEG N
RETURN X+1;
END;

70

Procedural SQL (PSQL)

SELECT F(5) FROM RDB$DATABASE;

PSQL Sub-routines

Adriano dos Santos Fernandes

The header of a PSQL module (stored procedure, stored function, trigger, executable block) can now accept
sub-procedure and sub-function blocks in the header declarations for use within the body of the module.

Syntax for Declaring a Sub-procedure

DECLARE PROCEDURE <nane> [(paranl [, ...])]
[RETURNS (parant [, ...])]
AS

Syntax for declaring a Sub-function

DECLARE FUNCTI ON <nane> [(paranml [, ...])]
RETURNS <t ype>
AS

Examples

SET TERM *;

-- Sub-function in EXECUTE BLOCK
EXECUTE BLOCK RETURNS (N I NT)
AS
DECLARE FUNCTI ON F(X I NT) RETURNS | NT
AS
BEG N
RETURN X+1;
END
BEG N
N = F(5);
SUSPEND;
END ~

-- Sub-function inside a stored function

CREATE OR ALTER FUNCTI ON FUNC1 (nl INTEGER, n2 | NTEGER)
RETURNS | NTEGER
AS
DECLARE FUNCTI ON SUBFUNC (nl1l I NTEGER, n2 | NTECER)
RETURNS | NTEGER
AS
BEG N
RETURN nl1 + n2;
END
BEG N
RETURN SUBFUNC(nl1, n2);

71

Procedural SQL (PSQL)

END 7

sel ect funcl(5, 6) fromrdb$database *

Packages
A. dos Santos Fernandes

Acknowledgement

This feature was sponsored with donations gathered at the fifth Brazilian Firebird Developers Day, 2008

A package is a group of procedures and functions managed as one entity. The notion of “packaging” the code
components of a database operation addresses several objectives:

Modularisation
Theideaisto separate blocks of interdependent code into logical modules, as programming languages do.

In programming it is well recognised that grouping code in various ways, in namespaces, units or classes,
for example, is a good thing. With standard procedures and functions in the database this is not possible.
Although they can be grouped in different script files, two problems remain:

1. Thegrouping is not represented in the database metadata.

2. Scripted routines all participate in aflat namespace and are callable by everyone (we are not referring
to security permissions here).

To facilitate dependency tracking
We want a mechanism to facilitate dependency tracking between a collection of related internal routines, as
well as between this collection and other routines, both packaged and unpackaged.

Firebird packages come in two parts: a header (keyword PACKAGE) and a body (keyword PACKAGE
BODY). Thisdivision isvery similar to a Delphi unit, the header corresponding to the interface part and the
body corresponding to the implementation part.

The header is created first (CREATE PACKAGE) and the body (CREATE PACKAGE BODY) follows.

Whenever apackaged routine determinesthat it uses a certain database object, adependency onthat object is
registered in Firebird system tables. Thereafter, to drop, or maybe alter that object, you first need to remove
what depends on it. As it is a package body that depends on it, that package body can just be dropped,
even if some other database object depends on this package. When the body is dropped, the header remains,
allowing you to recreate its body once the changes related to the removed object are done.

To facilitate permission management
It is good practice in general to create routines to require privileged use and to use roles or users to enable
the privileged use. As Firebird runs routines with the caller privileges, it is necessary also to grant resource
usage to each routine when these resources would not be directly accessible to the caller. Usage of each
routine needs to be granted to users and/or roles.

Packaged routines do not have individual privileges. The privileges act on the package. Privileges granted
to packages are valid for all package body routines, including private ones, but are stored for the package
header.

72

Procedural SQL (PSQL)

For example:

GRANT SELECT ON TABLE secret TO PACKAGE pk_secret;
GRANT EXECUTE ON PACKAGE pk_secret TO ROLE rol e_secret;

To enable“ private scope”
This objective was to introduce private scope to routines; that is, to make them available only for internal
usage within the defining package.

All programming languages have the notion of routine scope, which is not possible without some form of
grouping. Firebird packages also work like Delphi units in this regard. If aroutine is not declared in the
package header (interface) and is implemented in the body (implementation), it becomes a private routine.
A private routine can only be called from inside its package.

Signatures

For each routinethat isassigned to apackage, elementsof adigital signature (the set of [routine name, parameters
and return type]) are stored in the system tables.

The signature of a procedure or routine can be queried, asfollows:

SELECT. ..
-- sanple query to cone

Packaging Syntax

<package_header> :: =
{ CREATE [OR ALTER] | ALTER | RECREATE } PACKAGE <nane>
AS
BEG N
[<package_itenr ...]
END

<package_iten> ::=
<function_decl > ; |
<pr ocedur e_decl > ;

<function_decl> ::=
FUNCTI ON <name> [(<parameters>)] RETURNS <type>

<procedure_decl > ::=
PROCEDURE <nane> [(<paraneters>) [RETURNS (<paraneters>)]]

<package_body> :: =
{ CREATE | RECREATE } PACKAGE BODY <name>

AS
BEG N

[<package_itenr ...]

[<package_body_itenr ...]
END

73

Procedural SQL (PSQL)

<package_body_ itenmr ::=
<function_inmpl > |
<pr ocedur e_i npl >

<function_inmpl> ::=
FUNCTI ON <nane> [(<paraneters>)] RETURNS <type>
AS
BEG N

END

I
FUNCTI ON <nane> [(<paranmeters>)] RETURNS <type>
EXTERNAL NAME ' <nane>' ENG NE <engi ne>

<procedure_inmpl> ::=
PROCEDURE <nane> [(<paranmeters>) [RETURNS (<paraneters>)]]
AS
BEG N

END

I
PROCEDURE <name> [(<paranmeters>) [RETURNS (<paraneters>)]]
EXTERNAL NAME ' <nane>' ENG NE <engi ne>

<dr op_package_header> :: =
DROP PACKAGE <nanme>

<dr op_package_body> :: =
DROP PACKAGE BODY <nane>

Syntax rules

» All routines declared in the header and at the start of the body should be implemented in the body with the
same signature, i.e., you cannot declare the routine in different ways in the header and in the body.

» Default valuesfor procedure parameters cannot be redefined in <package item> and <package body_item>.
They can be in <package body_item> only for private procedures that are not declared.

Notes

* DROP PACKAGE drops the package body before dropping its header.

e The source of package bodies is retained after ALTER/RECREATE PACKAGE. The column RDB
$PACKAGES.RDB$VALID_BODY_FLAG indicates the state of the package body. See Tracker item
CORE-4487.

* UDF declarations (DECLARE EXTERNAL FUNCTION) are currently not supported inside packages.

e Syntax is available for a description (COMMENT ON) for package procedures and functions and their
parameters. See Tracker item CORE-4484.

Simple Packaging Example

SET TERM *;
-- package header, declarations only
CREATE OR ALTER PACKAGE TEST

74

http://tracker.firebirdsql.org/browse/CORE-4487
http://tracker.firebirdsql.org/browse/CORE-4484

Procedural SQL (PSQL)

AS
BEG N

PROCEDURE P1(1 INT) RETURNS (O INT); -- public procedure
END

-- package body, inplenmentation
RECREATE PACKAGE BODY TEST
AS
BEG N
FUNCTI ON F1(1 INT) RETURNS INT; -- private function
PROCEDURE P1(1 I NT) RETURNS (O I NT)
AS
BEG N
END
FUNCTI ON F1(1 I NT) RETURNS | NT
AS
BEG N
RETURN O;
END
END ~

Note

More examples can be found in the Firebird installation, in ../examples/package/.

DDL triggers
A. dos Santos Fernandes

Acknowledgement

This feature was sponsored with donations gathered at the fifth Brazilian Firebird Devel opers Day, 2008

The purpose of a “DDL trigger” is to enable restrictions to be placed on users who attempt to create, ater or
drop aDDL abject.

Syntax Pattern

<dat abase-trigger> ::=

{CREATE | RECREATE | CREATE OR ALTER}
TRI GGER <nane>
[ACTI VE | | NACTI VE]
{BEFORE | AFTER} <ddl event>
[PCSI TI ON <n>]

AS

BEG N

END
<ddl event> ::=
ANY DDL STATEMENT
| <ddl event itemr [{OR <ddl event itenp}...]

<ddl event itenr ::=
CREATE TABLE

75

Procedural SQL (PSQL)

ALTER TABLE
DROP TABLE
CREATE PROCEDURE
ALTER PROCEDURE
DROP PROCEDURE
CREATE FUNCTI ON
ALTER FUNCTI ON
DROP FUNCTI ON
CREATE TRI GGER
ALTER TRl GGER
DROP TRI GGER
CREATE EXCEPTI ON
ALTER EXCEPTI ON
DROP EXCEPTI ON
CREATE VI EW
ALTER VI EW

DROP VI EW

CREATE DOMAI N
ALTER DOVAI N
DROP DOMAI N
CREATE ROLE
ALTER ROLE

DROP ROLE

CREATE SEQUENCE
ALTER SEQUENCE
DROP SEQUENCE
CREATE USER
ALTER USER

DROP USER

CREATE | NDEX
ALTER | NDEX

DROP | NDEX
CREATE COLLATI ON
DROP COLLATI ON
ALTER CHARACTER SET
CREATE PACKAGE
ALTER PACKAGE
DROP PACKAGE
CREATE PACKAGE BODY
DROP PACKAGE BODY

Semantics

1

BEFORE triggers are fired before changesto the system tables. AFTER triggers arefired after system table

changes.

Important Rule

The event type [BEFORE | AFTER] of aDDL trigger cannot be changed.

When a DDL statement fires atrigger that raises an exception (BEFORE or AFTER, intentionally or un-
intentionally) the statement will not be committed. That is, exceptions can be used to ensure that a DDL

operation will fail if the conditions are not precisely as intended.

DDL trigger actions are executed only when committing the transaction in which the affected DDL com-
mand runs. Never overlook the fact that what is possible to do in an AFTER trigger is exactly what is
possible to do after a DDL command without autocommit. Y ou cannot, for example, create atable in the

trigger and use it there.

76

Procedural SQL (PSQL)

4. With“CREATE OR ALTER” statements, atrigger isfired onetime at the CREATE event or the ALTER
event, according to the previous existence of the object. With RECREATE statements, atrigger isfired for
the DROP event if the object exists, and for the CREATE event.

5. ALTER and DROP events are generally not fired when the object name does not exist. For the exception,
see point 6.

6. Theexceptiontorule5isthat BEFORE ALTER/DROP USER triggers fire even when the user name does
not exist. This is because, underneath, these commands perform DML on the security database and the
verification is not done before the command on it isrun. Thisislikely to be different with embedded users,
so do not write code that depends on this.

7. If some exception is raised after the DDL command starts its execution and before AFTER triggers are
fired, AFTER triggerswill not befired.

8. Packaged procedures and triggers do not fire individual {CREATE | ALTER | DROP} {PROCEDURE
| FUNCTION} triggers.

Permissions

Thefollowing users can create, alter or drop DDL triggers and access the trigger-related switchesin the Firebird
utilities:

* the database owner
« SYSDBA
» auser logged in under the RDB$SADMIN role

» auser having the ALTER DATABASE metadata privilege

Support in Utilities

A DDL trigger is a type of database trigger, so the parameters -nodbtriggers (GBAK and 1SQL) and -T
(NBACKUP) apply to them. Remember that only users with the appropriate metadata privileges can use these
switches.

DDL_TRIGGER Context Namespace

The introduction of DDL triggers brings with it the new DDL_TRIGGER namespace for use with RDB
$GET_CONTEXT. Itsusageisvalid only when a DDL trigger is running. Itsuseisvalid in stored procedures
and functions called by DDL triggers.

The DDL_TRIGGER context works like a stack. Before a DDL trigger is fired, the values relative to the exe-
cuted command are pushed onto this stack. After the trigger finishes, the values are popped. So in the case of
cascade DDL statements, when an user DDL command fires a DDL trigger and this trigger executes another
DDL command with EXECUTE STATEMENT, the values of the DDL_TRIGGER namespace are the ones
relative to the command that fired the last DDL trigger on the call stack.

77

Procedural SQL (PSQL)

Elements of DDL_TRIGGER Context
« EVENT_TYPE: event type (CREATE, ALTER, DROP)
* OBJECT_TYPE: object type (TABLE, VIEW, etc)

 DDL_EVENT: event name (<ddl event item>), where <ddl_event_item> is EVENT_TYPE | ' ' ||
OBJECT_TYPE

* OBJECT_NAME: metadata object name
e SQL _TEXT: sgl statement text
ExamplesUsing DDL Triggers

Here is how you might use aDDL trigger to enforce a consistent naming scheme, in this case, stored procedure
names should begin with the prefix “SP_":

set auto on;
create exception e_invalid_sp_nane 'Invalid SP name (should start with SP_)’'
set term!;

create trigger trig_ddl _sp before CREATE PROCEDURE

as
begi n
if (rdb$get_context (' DDL_TRIGGER , ' OBJECT_NAME') not starting 'SP_') then
exception e_invalid_sp_nang;
end!
-- Test

create procedure sp_test
as

begi n

end!

create procedure test
as

begi n

end!

-- The last conmand raises this exception and procedure TEST is not created
-- Staterment failed, SQSTATE = 42000

-- exception 1

-- -E_I NVALI D_SP_NAME

-- -lnvalid SP nane (should start with SP)

-- -At trigger "TRIGDDL_SP line: 4, col: 5

set term ;!

Implement custom DDL security, in this case restricting the running of DDL commands to certain users.

create exception e_access_deni ed ' Access deni ed’

78

Procedural SQL (PSQL)

set term!;

create trigger trig_ddl before any ddl statenent

as
begi n
if (current_user <> 'SUPER USER) then
exception e_access_deni ed;
end!
-- Test

create procedure sp_test
as

begi n

end!

-- The last conmand rai ses this exception and procedure SP_TEST is not created
-- Statenent failed, SQ.STATE = 42000

-- exception 1

-- -E_ACCESS DEN ED

-- -Access denied

-- -At trigger '"TRIGDDL' line: 4, col: 5

set term ;!

Use atrigger to log DDL actions and attempts:

create sequence ddl _seq;

create table ddl _I og (
id bigint not null primry key,
nmonent tinestanp not null,
user _name varchar(31) not null,
event _type varchar(25) not null,
obj ect _type varchar(25) not null,
ddl _event varchar(25) not null,
obj ect _nanme varchar (31) not null,
sql _text blob sub_type text not null,
ok char (1) not null

)
set term!;

create trigger trig_ddl_| og_before before any ddl statenent
as
declare id type of columm ddl _|l og.id;
begi n
-- W do the changes in an AUTONOMOUS TRANSACTI ON, so if an exception happens
-- and the command didn't run, the log will survive.
i n aut ononmous transaction do
begi n
insert into ddl _log (id, noment, user_nane, event_type, object_type,
ddl _event, object_nanme, sqgl_text, ok)
val ues (next value for ddl _seq, current_tinestanp, current_user,
rdb$get _context (' DDL_TRIGGER , ' EVENT_TYPE'),
rdb$get _context (' DDL_TRI GGER , ' OBJECT_TYPE'),
rdb$get _context (' DDL_TRIGGER , 'DDL_EVENT'),
rdb$get _context (' DDL_TRI GGER , ' OBJECT_NAME'),
rdb$get _context (' DDL_TRIGEGER , 'SQ_TEXT'),

79

Procedural SQL (PSQL)

'N)
returning id into id;
rdb$set _context (' USER SESSION, 'trig_ddl log_ id, id);
end
end!

-- Note: the above trigger will fire for this DDL command. It's good idea to
-- use -nodbtriggers when working with them
create trigger trig ddl _|og after after any ddl statenent

as
begi n
-- Here we need an AUTONOMOUS TRANSACTI ON because the original transaction
-- will not see the record inserted on the BEFORE trigger autononous
-- transaction if user transaction is not READ COW TTED.
i n aut ononous transaction do
update ddl | og set ok ='Y
where id = rdb$get _context (' USER_ SESSION', 'trig_ddl log_id);
end!
commi t!
set term;!

-- Delete the record about trig_ddl _|og after creation.
del ete fromddl _| og;
commi t;

-- Test

-- This will be | ogged one tine
-- (as T1 did not exist, RECREATE acts as CREATE) with OK =Y.
recreate table t1 (

nl integer,

n2 integer

)

-- This will fail as Tl already exists, so OK will be N
create table t1 (

nl integer,

n2 integer

)

-- T2 does not exist. There will be no | og.
drop table t2;

-- This will be |ogged tw ce
-- (as T1 exists, RECREATE acts as DROP and CREATE) with OK =Y.
recreate table t1 (

n integer

)

conm t;

select id, ddl _event, object_nane, sqgl_text, ok
fromddl _| og order by id;

Procedural SQL (PSQL)

SQL_TEXT

recreate table t1 (
nl integer
n2 integer

3 CREATE TABLE T1 80:2 N

SQL_TEXT

create table t1 (
nl integer
n2 integer

4 DROP TABLE T1 80:6 Y

SQL_TEXT
recreate table t1 (
n integer

5 CREATE TABLE T1 80:9 Y

SQL_TEXT
recreate table t1 (
n integer

Exceptions with parameters
Adriano dos Santos Fernandes

An exception can now be defined with a message containing slots for parameters which are filled and passed
when raising the exception, using the syntax pattern

EXCEPTI ON <name> USI NG (<value list>)

Examples

create exception e_invalid val '"Invalid value @ for the field @';

if (val < 1000) then

thing = val;
el se

exception e_invalid_val using (val, 'thing');
end

CREATE EXCEPTI ON EX_BAD_SP_NAME
"Name of procedures nust start with ''@'' : '""@'""’

81

Procedural SQL (PSQL)

CREATE TRI GGER TRG SP_CREATE BEFORE CREATE PROCEDURE
AS
DECLARE SP_NAME VARCHAR(255) :
BEG N
SP_NAME = RDB$GET CONTEXT(' DDL_TRI GGER , ' OBJECT NAME);

| F (SP_NAVE NOT STARTING 'SP_')
THEN EXCEPTI ON EX_BAD SP_NAME USING (' SP_', SP_NAME);
END;

Notes

The status vector is generated using this code combination: isc _except, <exception number>,
isc_formatted exception, <formatted exception message>, <exception parameters>

Since a new error code (isc_formatted _exception) is used, the client must be v.3.0, or at least use thef i r e-
bi rd. nsg filefrom v.3.0, in order to trand ate the status vector to a string.

Considering, in left-to-right order, each parameter passed in the exception-raising statement as “the Nth”, with
N starting at 1:

 If an Nth parameter is not passed, the text is not substituted.
e If NULL ispassed, it isreplaced by the string "*** null ***".
« |f more parameters are passed than are defined in the exception message, the surplus ones are ignored.

e Thetotal length of the message, including the values of the parameters, is still limited to 1053 bytes.

CONTINUE in Looping Logic

Adriano dos Santos Fernandes

CONTINUE is a complementary command to BREAK/LEAVE, alowing flow of control to break (leave) and
start of the next iteration of a FOR/WHILE loop.

Syntax

CONTI NUE [<l abel >] ;

Example

FOR SELECT A, D FROM ATABLE | NTO : achar, :ddate
DO BEG N
| F (ddate < current_data - 30) THEN
CONTI NUE;
ELSE
/* do stuff */

END

82

Procedural SQL (PSQL)

PSQL Cursor Stabilization
Vlad Khorsun

PSQL cursors without SUSPEND inside are now stable:

FOR SELECT ID FROM T WHERE VAL | S NULL INTO : 1D

DO BEG N
UPDATE T SET VAL =1
VWHERE ID = : I D

END

Previously, this block would loop interminably. Now, the loop will not select the value if it was set within the
loop.

Note

This could change the behaviour of legacy code.

If there is a SUSPEND inside the block, the old instability remains: this query, for example, still produces the
infinite loop:

FOR SELECT ID FROM T INTO : 1D
DO BEG N
I NSERT INTO T (1D) VALUES (:1D);
SUSPEND;
END

Extension of Colon Prefix Usage
Adriano dos Santos Fernandes

Hitherto, the colon (:) prefix has been used in PSQL to mark areference to avariable in DML statements. Its
use has been extended in Firebird 3 for two unrelated purposes:

1. toalow OLD/NEW fieldsin cursorsto be read or assigned to and to assign them to variables.

2. tomake variable assgnment in both DML and PSQL statements in modules and blocks more flexible and,
where needed, to resolve ambiguity between field names and variable names

PSQL Cursors as Variables

Referencing cursors as record variables is now supported in PSQL. Either explicit (DECLARE AS CURSOR)
or implicit (FOR SELECT) PSQL cursors make their current record avail able via the cursor name, thus making
the INTO clause optional.

In FOR SELECT loops, it requires the AS CURSOR clause to be specified. For example:

83

Procedural SQL (PSQL)

execute bl ock as
begi n
for
select id, x fromtl as cursor cl
do begin
for select id, x fromt2 where x = :cl.x as cursor c2 do
begi n
[* . . . %
end
end
end

Note

Notice the extension of the use of a colon (:) as a prefix to the referenced cursor field.

Another example

for
select rdb$relation_id as id, rdb$rel ati on_nanme as nane
fromrdb$rel ati ons
where rdb$view blr is nul
as cursor tables
do begin
out _id = tables.id;
out _nane = tabl es. nane;
suspend;
end

To avoid ambiguity, the colon prefix could be used:

out_id = :tables.id;

out _nane = :tabl es. nang;
/* or */

;out_id = :tables.id;

:out _name = :tabl es. nang;

“tables’ hereisacursor name and acts similarly to OLD/NEW in triggers.

Colon Prefix as a Variable Marker

It is now valid to apply the colon prefix to a variable on either side of an assignment statement in PSQL-only
constructs.

Previously, these were valid assignments:

varl = :var?2
/* or */
new. fld = :var;

whereas, these were invalid:

Procedural SQL (PSQL)

varl = :var?2;
/* or */
new. fld = :var;

The extension (CORE-4434) fixes this inconsistency.

Thisis now valid syntax:

create trigger t1 before insert on tl
as
decl are v integer;
begi n
v = :old. n;
‘new.n = :v;
end

In fact, using this example, there is no difference between

v = :old.n
/* and */
v = :old.n

Here, it isjust “syntactic sugar” but, in other cases, it provides the means to resolve ambiguity between field
name references and variable names.

Example of possible ambiguity

for
select rdb$relation_id as id, rdb$rel ati on_name as nane
fromrdb$rel ati ons
where rdb$view blr is nul
as cursor tables

do begin
out_id = :table.id;
sel ect tables.name fromtables where tables.id = :tables.id into :out_naneg;
suspend;

end

Inside the nested SELECT, “tables’ is both atable name and a cursor name here, so the colon is used to resolve
the ambiguity.

Some Size Limits Removed Using New API
Dmitry Y emanov

If and only if the new API isbeing used:

» Thesizeof thebody of astored procedure or atrigger can exceed thetraditional limit of 32 KB. Thetheoretical
limit provided by the new API is4GB. At the moment, as a security measure, the hardcoded limit is 10MB.
It may change before the final release.

85

http://tracker.firebirdsql.org/browse/CORE-4434

Procedural SQL (PSQL)

» Thetotal size of al input or output parameters for a stored procedure or a user-defined DSQL query is no
longer limited to the traditional size of (64KB minus overhead). Of course, there is a limit: it continues to
be (maximum SQL text size minus overhead).

SQLSTATE in Exception Handlers

Dmitry Y emanov

In the Beta2 release of Firebird 3 an SQLSTATE code will become avalid condition for trapping an exception
with aWHEN statement.

86

Monitoring &
Command-line Utilities

No new monitoring features or other utilities are released with Firebird 3.0. Existing features have undergone
afew improvements.

Monitoring
Dmitry Y emanov

Severa changes have been made to the set of virtual tables storing the monitoring information. These are listed
in the System Tables section of Chapter 4, Changesto the Firebird APl and ODS.

Tracing
Vlad Khorsun

Latest improvements to the Trace functions include:

» Trace output now supports showing the explained plan. See Tracker CORE-4451.

» Tracing execution of stored functions. See Tracker CORE-4345

gbak
Alex Peshkov

New “Skip Data” Backup Option
gbak has a new option switch-- - ski p_d(ata) toignore the datafrom specific tables during a backup.

The switch -skip_d(ata) accepts a regular expression as its argument. For example, to skip two tables in the
employee database (aliased here as 'employee’):

gbak -skip_d '(sales|customer)' enployee el.fbk

Tip

The regex used is the SQL one—the same one that is used for Firebird's SIMILAR TO searches. A guideis
available in the DML chapter of the v.2.5 release notes and also at the Firebird web site.

87

http://tracker.firebirdsql.org/browse/CORE-4451
http://tracker.firebirdsql.org/browse/CORE-4345
http://www.firebirdsql.org/file/documentation/release_notes/html/rlsnotes253.html#rnfb25-dml-regex

Monitoring & Command-line Utilities

Long Names for Log Files

This improvement allows the gbak log to take an extra-long name without encountering the message “ Attempt
to store 256 bytesin aclumplet”.

gsec

The gsec utility is deprecated from Firebird 3 forward. This means you are encouraged to use the new SQL
features for managing access described in Chapter 7, Security, in preference to existing equivalents provided
by gsec.

Important

gsecwill continuetowork withsecur i t y3. f db. However, it doesnot work with alternative security databas-
es.

isql

SET EXPLAIN Extensions for Viewing Detailed Plans

Dmitry Y emanov

A new SET optionisadded: SET EXPLAIN [ON | OFF]. It extendsthe SET PLAN optionto report the explained
plan instead of the standard one.

If SET PLAN isomitted, then SET EXPLAIN turnsthe plan output on. SET PLANONLY works asin previous
versions.

Usage options

SET PLAN = simple plan + query execution

SET PLANONLY = simple plan, no query execution

SET PLAN + SET EXPLAIN = explained plan + query execution

SET PLAN + SET EXPLAIN + SET PLANONLY = explained plan, no query execution
SET EXPLAIN = explained plan + query execution

SET EXPLAIN + SET PLANONLY = explained plan, no query execution

Metadata Extract
Claudio Valderrama C.

The metadata extract tool (-[€]x[tract] switch) wasimproved to create a script that takes the dependency order
of objects properly into account.

88

Monitoring & Command-line Utilities

Path to INPUT Files

Adriano dos Santos Fernandes

The INPUT command will now use arelative path based on the directory of the last-opened, unclosed file in
the chain to locate the next file.

Command Buffer Size Increase
Adriano dos Santos Fernandes

The size of the isgl command buffer has increased from 64 KB to 10 MB to match the new engine limits. See
Tracker ticket CORE-4148.

fb_lock print

Input Arguments
Dmitry Y emanov

fb_lock_print now accepts 32-bit integers asthe input argumentsfor seconds and intervals. Previoudly they were
limited to SMALLINT.

Useability Improvements
Vlad Khorsun

A few other small improvements:
1. More detailed usage help is available from the command line (-help).

2. Events history and list of owners are no longer output by default: they may be requested explicitly if re-
quired. Header-only is the new default.

3. New -o[wnersg] switch to print only owners (locks) with pending requests

gfix

-NoLinger Switch
Alex Peshkov

dfix has a new switch -NoL inger to provide a one-off override to the LINGER setting of a database.

For information regarding LINGER, see the write-up in the DDL chapter.

89

http://tracker.firebirdsql.org/browse/CORE-4148

Monitoring & Command-line Utilities

Improvements to Validation Messages
Vlad Khorsun

» Critical validation messages are now split from minor ones

» Thetable name is now returned in the text of validation contraint error messages, to help identify the error
context

Other Tweaks

Some implementation annoyances were cleared up in several utilities.

All Command-line Utilities

Resolution of Database Path
Alex Peshkov

All utilitiesresolve database pathsin dat abases. conf when they need to access a database file directly. But
not all of them would follow the same rules when expanding a database name. Now, they do.

Help and Version Information
Claudio VaderramaC.

All command-line utilitiesexcept gpreand gli now present help and versioninformation in aunified and coherent
way.

No info yet at CORE-2540.

Hard-coded Messages Replaced
Claudio Vaderrama C.

Hard-coded messages were replaced with the regular parameterised-style ones in tracemanager and nbackup.

Arbitrary Switch Syntax Clean-up
Claudio Vaderrama C.

Switch optionsin gli and nbackup were made to check the correctness (or not) of the abbreviated switch options
presented.

90

http://tracker.firebirdsql.org/browse/CORE-2540

Chapter 12

Compatibility Issues

In this section are features and modifications that might affect the way you have installed and used Firebird
in earlier releases.

Where Are the Tools?

On Windows, you will find all of the executable programs, including the command-line and shell tools, in the
Firebird installation (root) folder. In previous versionsthey werein afolder beneath the root folder, named ..\bin.

On POSIX platforms, you will find the tools and other executable programs in similar locations to those used
for earlier versions. Exactly where depends on the distribution you are using.

Logging in as SYSDBA

The old masterkey password is no longer available for your first login as SY SDBA. You need to set up the
password, using gsec as your first step to getting access to databases and utilities. In a shell, go to the directory
where the Firebird utilities are and proceed as follows:

1. Enter thefollowing command, al in oneline:

gsec -add SYSDBA -pw Soret hi ngCryptic -user SYSDBA -password anyt hi ng
¢ The authentication password isignored for this one-time task and can be anything you like. The com-
mand might work with no authentication password at al.

« An effective password, using the default user manager Srp, can be up to 20 characters, although a
password of up to 255 characters will be valid. If you have already configured the server to use legacy
authentication (see below), or you intend to do so, then only the first 8 characters of any password,
including that of the SY SDBA, will be read.

* masterkey isNOT arecommended password for SY SDBA!

2. Now, you can log in to databases, including the security database using gsec, using the password you
assigned to SYSDBA.

Legacy Authentication

If you do not intend to use SRP encrypted log-insright away and want to use the security database—securi ty
3. f db— asyou have done in previous Firebird versions, proceed as follows:

91

Compatibility Issues

1. Using atext editor, openfi r ebi r d. conf and find the entry for the parameter User M anager :

#User Manager = Srp

Delete the “#’ symbol and change the value to:

User Manager = Legacy_User Manager

2. Find the entry for the WireCrypt parameter:

#WreCrypt = Enabled (for client) / Required (for server)

Delete the “#’ symbol and change the value to:

WreCrypt = Enabl ed
-- or, if you don't plan to use SRP encryption at all --
WreCrypt = Disabled

3. Savethe changes.

4. Stop and restart Firebird for the changes to take effect.

Configuration Parameters

The previously deprecated f i r ebi r d. conf parameters CompleteBooleanEvaluation, OldColumnNaming
and OldSetClauseSemantics are no longer supported anymore and have been removed. The lack of one or more
of these parameters may break your application code, so please check these settingsinfi r ebi rd. conf on
your older server version.

The parameters UsePriorityScheduler, PrioritySwitchDelay, PriorityBoost, LegacyHash and L ock-
GrantOrder no longer have any use and have been removed.

Important

Ensure that you study the chapter Configuration Additions and Changes in preparation for upgrading user
software to Firebird 3.

SQL Language Changes

It will be necessary to pay attention to some changesin the SQL language implementation.

» Improperly mixed explicit and implicit joins are no longer supported, in accordance with the SQL specifica-
tion. It also meansthat, inthe explicit A JO N B ON <condi t i on>, the condition is not allowed to refer
to any stream except A and B. See Tracker ticket CORE-2812 for more details.

92

http://tracker.firebirdsql.org/browse/CORE-2812

Compatibility Issues

Reserved Words

A number of new reserved keywordsareintroduced. Pleaserefer to the chapter Reserved Words and Changesand
ensureyour DSQL statements and procedure/trigger sources do not contain any of those keywordsasidentifiers.
Otherwise, it will be necessary either to use them quoted (in Dialect 3 only) or rename them.

93

Chapter 13

Bugs Fixed

Firebird 3.0 First Beta Release

The following improvements and bug fixes were reported as fixed prior to the v.3.0.0 release:

Core Engine

(CORE-4576) The Cache Writer thread could not start.

fixed by V. Khorsun

(CORE-4574) Regression: Incorrect result in subquery with aggregate.
fixed by A. dos Santos Fernandes

(CORE-4570) ALTER PACKAGE was returning awrong error.

fixed by A. dos Santos Fernandes

(CORE-4566) Incorrect size of the output parameter or argument when EXECUTE BLOCK, procedure
or function used a system field in the metadata character set.

fixed by A. Peshkov

(CORE-4565) GDSCODE could have value = 0 in WHEN-section under some concurrent environments.
This bug affected Superclassic and Classic models but not Superserver.

fixed by V. Khorsun
(CORE-4555) A DDL trigger was remaining active after being dropped.

fixed by A. dos Santos Fernandes

94

http://tracker.firebirdsql.org/browse/CORE-4576
http://tracker.firebirdsql.org/browse/CORE-4574
http://tracker.firebirdsql.org/browse/CORE-4570
http://tracker.firebirdsql.org/browse/CORE-4566
http://tracker.firebirdsql.org/browse/CORE-4565
http://tracker.firebirdsql.org/browse/CORE-4555

Bugs Fixed

(CORE-4530) A DB_KEY based join of two tables could be ineffective.

fixed by D. Yemanov

(CORE-4522) DDL permissions were not protecting against removal of BLOB filters.
fixed by R. Smakov

(CORE-4515) Regression: trace was reporting UPDATES in statistics when doing INSERT into
<some_table>.

fixed by D. Yemanov
(CORE-4505) Use of anamed cursor would fail if a statement was not executed.
fixed by A. Peshkov

(CORE-4488) A FOR SELECT <L> FROM <T> AS CURSOR <C> seems to return awrong result
if table <T> is modified inside the cursor's BEGIN...END block. Cursor references, which are not variables,
should represent the current state of the record. If it was updated "in place” (via"where current of"), then cursor
references should return the new values. The first example reported in CORE-4488 should return NULLSs.

fixed by A. dos Santos Fernandes

(CORE-4478) Failure to load a provider or plugin was not reported anywhere.

fixed by A. Peshkov

(CORE-4477) The field RDB$SMAP_TO_TY PE was missing from the system table RDB$TY PES.
fixed by A. Peshkov

(CORE-4468) CREATE USER GRANT ADMIN ROLE did not work.

fixed by A. Peshkov

(CORE-4464) Duplicate tags for CREATE/ALTER USER were not handled correctly.

fixed by A. Peshkov

95

http://tracker.firebirdsql.org/browse/CORE-4530
http://tracker.firebirdsql.org/browse/CORE-4522
http://tracker.firebirdsql.org/browse/CORE-4515
http://tracker.firebirdsql.org/browse/CORE-4505
http://tracker.firebirdsql.org/browse/CORE-4488
http://tracker.firebirdsql.org/browse/CORE-4488
http://tracker.firebirdsql.org/browse/CORE-4478
http://tracker.firebirdsql.org/browse/CORE-4477
http://tracker.firebirdsql.org/browse/CORE-4468
http://tracker.firebirdsql.org/browse/CORE-4464

Bugs Fixed

(CORE-4453) Regression: The NOT NULL constraint, if declared in adomain, did not work.
fixed by A. dos Santos Fernandes

(CORE-4447) A positioned UPDATE statement would preclude its index usage for the subsequent cursor
field references.

fixed by D. Yemanov

(CORE-4444) Engine could hang and block all attachments in an out-of-disk-space condition during
physical backup.

fixed by V. Khorsun
(CORE-4433) GlobalRWLock could not downgrade an EX lock to SH if readers were present.
fixed by V. Khorsun

(CORE-4435) After callingr el ease() instead of det ach() for anattachment to adatabasein embedded
mode, the attachment would remain interminably active.

fixed by A. Peshkov

(CORE-4430) Properties of a user created in Legacy UserManager were padded with spaces up to 10
characters.

fixed by A. Peshkov

(CORE-4415) Pointless extraction of generic DDL trigger.

fixed by A. dos Santos Fernandes

(CORE-4396) A query executed via EXECUTE STATEMENT was returning the wrong result.
fixed by A. dos Santos Fernandes

(CORE-4395) EXECUTE STATEMENT ON EXTERNAL was not finding a Firebird 2.5 database.

fixed by A. Peshkov

96

http://tracker.firebirdsql.org/browse/CORE-4453
http://tracker.firebirdsql.org/browse/CORE-4447
http://tracker.firebirdsql.org/browse/CORE-4444
http://tracker.firebirdsql.org/browse/CORE-4433
http://tracker.firebirdsql.org/browse/CORE-4435
http://tracker.firebirdsql.org/browse/CORE-4430
http://tracker.firebirdsql.org/browse/CORE-4415
http://tracker.firebirdsql.org/browse/CORE-4396
http://tracker.firebirdsql.org/browse/CORE-4395

Bugs Fixed

(CORE-4394) "Cursor not found error" when using the legacy API.

fixed by A. Peshkov

(CORE-4388) SELECT WITH LOCK could enter an infinite loop for a single record.

fixed by D. Yemanov

(CORE-4381) Run-time errors were returning incorrect line/column information.

fixed by A. dos Santos Fernandes

(CORE-4379) Explicit cursors containing correlated subqueries in the select list were performing poorly.
fixed by D. Yemanov

(CORE-4376) Preparation of an erroneous DDL statement was not indicating that the main command failed.
fixed by A. dos Santos Fernandes

(CORE-4375) A procedure would execute infinitely if it contained more than 32767 statements inside
any BEGIN/END block.

fixed by D. Yemanov

(CORE-4374) Truncation error when using EXECUTE STATEMENT with aBLOB.

fixed by A. dos Santos Fernandes

(CORE-4373) Package compilation was not checking for duplicate names.

fixed by A. dos Santos Fernandes

(CORE-4372) Deadlock could occur when two data pages contained record fragments pointing to each other.
fixed by V. Khorsun

(CORE-4371) A CREATE FUNCTION or CREATE PROCEDURE statement that referred to a non-
existent exception would return the error message “Error while parsing function's BLR” instead of “exception
not defined”.

97

http://tracker.firebirdsql.org/browse/CORE-4394
http://tracker.firebirdsql.org/browse/CORE-4388
http://tracker.firebirdsql.org/browse/CORE-4381
http://tracker.firebirdsql.org/browse/CORE-4379
http://tracker.firebirdsql.org/browse/CORE-4376
http://tracker.firebirdsql.org/browse/CORE-4375
http://tracker.firebirdsql.org/browse/CORE-4374
http://tracker.firebirdsql.org/browse/CORE-4373
http://tracker.firebirdsql.org/browse/CORE-4372
http://tracker.firebirdsql.org/browse/CORE-4371

Bugs Fixed

fixed by D. Yemanov

(CORE-4366) A WHERE predicate containing NULL 1S NOT DISTINCT FROM (select min(NULL)
from ...) was returning the wrong result.

fixed by D. Yemanov
(CORE-4365) Equality predicate distribution was not working for some complex queries.
fixed by D. Yemanov

(CORE-4360) SELECT from derived table which contains GROUP BY on a column with aliteral value
was returning wrong results.

fixed by D. Yemanov

(CORE-4354) Parsing of arecursive query would return the error “ Column does not belong to referenced
table” when the source table did have such a column.

fixed by A. dos Santos Fernandes
(CORE-4353) Sorting records were larger than was really necessary.
fixed by D. Yemanov

(CORE-4344) Error “no current record for fetch operation” when table inner joins procedure inner joins
table.

fixed by D. Yemanov

(CORE-4334) Resources (e.g. sort files) owned by a trigger could be left unreleased when the trigger
was interrupted asynchronously.

fixed by D. Yemanov
(CORE-4331) LAG, LEAD and NTH_VALUE would raise an error when the second argument wasNULL.

fixed by A. dos Santos Fernandes

98

http://tracker.firebirdsql.org/browse/CORE-4366
http://tracker.firebirdsql.org/browse/CORE-4365
http://tracker.firebirdsql.org/browse/CORE-4360
http://tracker.firebirdsql.org/browse/CORE-4354
http://tracker.firebirdsql.org/browse/CORE-4353
http://tracker.firebirdsql.org/browse/CORE-4344
http://tracker.firebirdsql.org/browse/CORE-4334
http://tracker.firebirdsql.org/browse/CORE-4331

Bugs Fixed

(CORE-4330) Thefunction LAG returned anincorrect result if the OFFSET valuewas assigned from atable.
fixed by A. dos Santos Fernandes

(CORE-4326) The keyword SET was required in the ALTER USER statement when it should have been
optional.

fixed by A. Peshkov

(CORE-4318) Regression: Predicates involving PSQL variables or parameters were not pushed inside
the aggregation.

fixed by D. Yemanov

(CORE-4313) Error “ Attempt to reopen an open cursor” could be raised if the query handle was reused
in a different transaction.

fixed by D. Yemanov

(CORE-4309) The 'Cache Writer' record in MONSATTACHMENTS would vanish when deleting, via
delete from MON$SATTACHMENTS, another connection that was running a heavy update on a big table.

fixed by V. Khorsun

(CORE-4307) Any fields present only in the WHERE clause of aview WITH CHECK OPTION would
cause aninvalid CHECK CONSTRAINT violation.

fixed by A. dos Santos Fernandes

(CORE-4303) Possible races during service destruction.

fixed by A. Peshkov

(CORE-4301) Non-ASCII datain SEC3USERS was not read correctly.
fixed by A. dos Santos Fernandes

(CORE-4286) Theerror “ Statement already has a cursor assigned” would be thrown when trying to execute
another SQL statement using a different cursor name.

fixed by A. Peshkov

99

http://tracker.firebirdsql.org/browse/CORE-4330
http://tracker.firebirdsql.org/browse/CORE-4326
http://tracker.firebirdsql.org/browse/CORE-4318
http://tracker.firebirdsql.org/browse/CORE-4313
http://tracker.firebirdsql.org/browse/CORE-4309
http://tracker.firebirdsql.org/browse/CORE-4307
http://tracker.firebirdsql.org/browse/CORE-4303
http://tracker.firebirdsql.org/browse/CORE-4301
http://tracker.firebirdsql.org/browse/CORE-4286

Bugs Fixed

(CORE-4118) Expression index might be overlooked for derived fields or view fields.

fixed by D. Yemanov

(CORE-3305) A “BLOB not found” error would be returned after creating or atering an invalid trigger.
fixed by D. Yemanov

(CORE-2350) Anover-long column namefor aSELECT aliaswas not being rejected, asit should have been.
fixed by A. dos Santos Fernandes

(CORE-1475) A database which had active attachments could not be replaced from a backup file even
after the database was shut down.

fixed by D. Yemanov

Server Crashes

(CORE-4575) The server would crash in the garbage collector thread at disconnect of the last attachment.
fixed by V. Khorsun

(CORE-4568) The server could crash while disconnecting from the database under load.

fixed by D. Yemanov

(CORE-4510) A database validation bug could cause the server to crash.

fixed by V. Khorsun

(CORE-4506) The server would crash when executing almost any "show ..." commands after areconnect.
fixed by A. Peshkov

(CORE-4500) Firebird would crash after an unsuccessful remapping of the lock table's shared memory.

fixed by D. Yemanov

100

http://tracker.firebirdsql.org/browse/CORE-4118
http://tracker.firebirdsql.org/browse/CORE-3305
http://tracker.firebirdsql.org/browse/CORE-2350
http://tracker.firebirdsql.org/browse/CORE-1475
http://tracker.firebirdsql.org/browse/CORE-4575
http://tracker.firebirdsql.org/browse/CORE-4568
http://tracker.firebirdsql.org/browse/CORE-4510
http://tracker.firebirdsql.org/browse/CORE-4506
http://tracker.firebirdsql.org/browse/CORE-4500

Bugs Fixed

(CORE-4498) The server would crash when getting an explained plan for aDBKEY -based retrieval.
fixed by D. Yemanov

(CORE-4422) The server would crash when using ROW_NUMBER()over(PARTITION BY X) in an
ORDER by clause.

fixed by D. Yemanov

(CORE-4419) The server could crash while sorting records longer than 128K B.

fixed by D. Yemanov

(CORE-4322) The engine would crash when aggregate or window functionswere used in arecursive query.
fixed by A. dos Santos Fernandes

(CORE-4321) Regression: isgl was not destroying the SQL statement.

fixed by A. Peshkov

(CORE-4319) The engine would crash when the Trace config contained the line “ connection_id=NN" and
an attempt was made to connect to a non-existent database or alias.

fixed by V. Khorsun

(CORE-4304) The engine would crash when an attempt to REcreate a table with a foreign key was made
after asyntax error that preceded the RECREATE attempt.

fixed by A. dos Santos Fernandes

API/Remote Interface

(CORE-4275) CREATE DATABASE would faultif f bcl i ent . dl | wasloaded from another directory
(Providers = Enginel?2).

fixed by V. Khorsun

101

http://tracker.firebirdsql.org/browse/CORE-4498
http://tracker.firebirdsql.org/browse/CORE-4422
http://tracker.firebirdsql.org/browse/CORE-4419
http://tracker.firebirdsql.org/browse/CORE-4322
http://tracker.firebirdsql.org/browse/CORE-4321
http://tracker.firebirdsql.org/browse/CORE-4319
http://tracker.firebirdsql.org/browse/CORE-4304
http://tracker.firebirdsql.org/browse/CORE-4275

Bugs Fixed

Utilities

isql

(CORE-4480) isgl would issue the warning “Bad debug info format” when connecting to a database with
stored functions after arestore.

fixed by D. Yemanov

(CORE-4440) isgl would crash without connecting when executing the command SHOW VERSION.
fixed by A. Peshkov

(CORE-4380) isgl would truncate a BLOB when reading an empty segment.

fixed by A. dos Santos Fernandes

(CORE-4320) Regression: isgl would crash when receiving statistics from the execution of a SQL query.

fixed by V. Khorsun

gbak

(CORE-4470) gbak restore would fail on a database containing dependency between views and packaged
functions.

fixed by A. dos Santos Fernandes

(CORE-4425) User collations based on UNICODE were not being upgraded to a newer ICU version
on restore.

fixed by A. dos Santos Fernandes
(CORE-4417) gbak refused to commit the index for aprimary key with characters accented with an umlaut.
fixed by A. dos Santos Fernandes

(CORE-4346) V.3 gbak was unable to restore backups made on earlier server versions.

102

http://tracker.firebirdsql.org/browse/CORE-4480
http://tracker.firebirdsql.org/browse/CORE-4440
http://tracker.firebirdsql.org/browse/CORE-4380
http://tracker.firebirdsql.org/browse/CORE-4320
http://tracker.firebirdsql.org/browse/CORE-4470
http://tracker.firebirdsql.org/browse/CORE-4425
http://tracker.firebirdsql.org/browse/CORE-4417
http://tracker.firebirdsql.org/browse/CORE-4346

Bugs Fixed

fixed by D. Yemanov

nBackup
(CORE-4461) nBackup was printing error messages to stdout instead of stderr.
fixed by A. Peshkov

gli
(CORE-4327) gli was throwing an error when copying NULL blobs between databases.
fixed by A. Peshkov

Firebird 3.0 Second Alpha Release

The following improvements and bug fixes were reported as fixed prior to the v.3.0.0 release:

Core Engine
(CORE-4302) Descending index could be very inefficient for some keys
fixed by V. Khorsun

(CORE-4289) A NOT NULL field from a derived table could become NULL when referred to from
outside the derived table

fixed by D. Yemanov

(CORE-4281) TY PE OF arguments of stored functions could cause the server to hang if depending on
adomain or column that had been changed

fixed by A. dos Santos Fernandes

(CORE-4270) A subquery involving awindowed function and awhere <fiel d> | N(select ...)
condition could cause an error

fixed by D. Yemanov

103

http://tracker.firebirdsql.org/browse/CORE-4461
http://tracker.firebirdsql.org/browse/CORE-4327
http://tracker.firebirdsql.org/browse/CORE-4302
http://tracker.firebirdsql.org/browse/CORE-4289
http://tracker.firebirdsql.org/browse/CORE-4281
http://tracker.firebirdsql.org/browse/CORE-4270

Bugs Fixed

(CORE-4265) An unexpected lock conflict error could be raised while connecting to a heavily loaded
database

fixed by D. Yemanov
(CORE-4262) Context parsing errors could occur with derived tables and CA SE functions
fixed by D. Yemanov

(CORE-4261) JOIN result could be wrong when joined fields had been created viather ow_nunber ()
function

fixed by D. Yemanov

(CORE-4258) The boundary for the minimum value for BIGINT/DECIMAL (18) was wrong

fixed by A. dos Santos Fernandes

(CORE-4251) The Guardian service could write garbage after the end of amessage in the Event Log
fixed by V. Khorsun

(CORE-4250) Access violation could occur in Guardian at process shutdown

fixed by V. Khorsun

(CORE-4237) M etadata being reported from system table queries for UDF return arguments was different
to that returned in Firebird 2.5

fixed by A. dos Santos Fernandes

(CORE-4234) I F (subfunc()) wouldthrow an error when subfunc returned a Boolean
fixed by A. dos Santos Fernandes

(CORE-4229) Bidirectional cursor was not being positioned by the first call of FETCH LAST

fixed by D. Yemanov

104

http://tracker.firebirdsql.org/browse/CORE-4265
http://tracker.firebirdsql.org/browse/CORE-4262
http://tracker.firebirdsql.org/browse/CORE-4261
http://tracker.firebirdsql.org/browse/CORE-4258
http://tracker.firebirdsql.org/browse/CORE-4251
http://tracker.firebirdsql.org/browse/CORE-4250
http://tracker.firebirdsql.org/browse/CORE-4237
http://tracker.firebirdsql.org/browse/CORE-4234
http://tracker.firebirdsql.org/browse/CORE-4229

Bugs Fixed

(CORE-4227) A parser conflict was causing wrong evaluation of BETWEEN and Boolean expressions
fixed by A. dos Santos Fernandes

(CORE-4216) Memory leak with TRIGGER ON TRANSACTION COMMIT

fixed by V. Khorsun

(CORE-4211) The embedded engine would hang for 5 seconds when closing, with errors about timeout
in shutdown process and invalid mutex being written intof i r ebi r d. | og

fixed by A. Peshkov
(CORE-4201) A computed field would return NULL inside aBEFORE INSERT trigger
fixed by D. Yemanov

(CORE-4198) An incorrect “token unknown” error would occur when an SQL string ended with a hex
number literal

fixed by A. dos Santos Fernandes

(CORE-4177) Some Boolean expressions were not being allowed
fixed by A. dos Santos Fernandes

(CORE-4159) Incorrect memory statistics were being reported
fixed by D. Yemanov

(CORE-4156) RDB$GET_CONTEXT/RDB$SET_CONTEXT parameters were being described incor-
rectly as CHAR NOT NULL instead of VARCHAR NULLABLE

fixed by A. dos Santos Fernandes

(CORE-3689) Bad performance and slow response were exhibited when many concurrent sorts were
executed

fixed by D. Yemanov

105

http://tracker.firebirdsql.org/browse/CORE-4227
http://tracker.firebirdsql.org/browse/CORE-4216
http://tracker.firebirdsql.org/browse/CORE-4211
http://tracker.firebirdsql.org/browse/CORE-4201
http://tracker.firebirdsql.org/browse/CORE-4198
http://tracker.firebirdsql.org/browse/CORE-4177
http://tracker.firebirdsql.org/browse/CORE-4159
http://tracker.firebirdsql.org/browse/CORE-4156
http://tracker.firebirdsql.org/browse/CORE-3689

Bugs Fixed

(CORE-3291) With bugcheckabort=1 and sweep starting at gap ~21000, “Bugcheck 186 (record disap-
peared)” and 100% CPU load would occur

fixed by V. Khorsun
(CORE-2165) Unnecessary index reads could occur when using a strict inequality condition

fixed by V. Khorsun

Server Crashes

(CORE-4293) The server could crash on a SELECT with along or complex list of compound AND/
OR'd predicates

fixed by D. Yemanov

(CORE-4271) Recreation of an errant package body could cause the engine to crash
fixed by A. dos Santos Fernandes

(CORE-4268) Disconnecting from a database could cause a server crash

fixed by D. Yemanov

(CORE-4267) Sweeping a database could cause a server crash

fixed by D. Yemanov

(CORE-4225) The server could crash when trace activity was attempted on a database having a database-
level trigger

fixed by V. Khorsun
(CORE-4185) Server crashes could occur, reporting “invalid lock id (NNNNN)”

fixed by A. Peshkov

106

http://tracker.firebirdsql.org/browse/CORE-3291
http://tracker.firebirdsql.org/browse/CORE-2165
http://tracker.firebirdsql.org/browse/CORE-4293
http://tracker.firebirdsql.org/browse/CORE-4271
http://tracker.firebirdsql.org/browse/CORE-4268
http://tracker.firebirdsql.org/browse/CORE-4267
http://tracker.firebirdsql.org/browse/CORE-4225
http://tracker.firebirdsql.org/browse/CORE-4185

Bugs Fixed

APIl/Remote Interface

(CORE-4283) “Resource temporarily unavailable” errors could occur while events were being registered
simultaneously

fixed by A. Peshkov

(CORE-4236) Database shutdown was being reported as successfully completed before all active connec-
tions had actually been interrupted

fixed by D. Yemanov

(CORE-4178) The new API was till returning obscure historical definition artifacts of datafields, instead
of proper metadata properties that would make the interface actually usable

fixed by A. Peshkov
(CORE-4162) Warnings were not being returned from calls to attachDatabase()

fixed by A. Peshkov

Security/User Management
(CORE-4241) Log-in could succeed with an empty password
fixed by A. Peshkov

(CORE-4200) An uncommitted SELECT from the pseudo table sec$user s would block new database
connections

fixed by A. Peshkov

Procedural Language

(CORE-4247) Positioned DELETE (WHERE CURRENT OF <CURSOR>) could fail for tables with
newly added fields

fixed by A. dos Santos Fernandes

107

http://tracker.firebirdsql.org/browse/CORE-4283
http://tracker.firebirdsql.org/browse/CORE-4236
http://tracker.firebirdsql.org/browse/CORE-4178
http://tracker.firebirdsql.org/browse/CORE-4162
http://tracker.firebirdsql.org/browse/CORE-4241
http://tracker.firebirdsql.org/browse/CORE-4200
http://tracker.firebirdsql.org/browse/CORE-4247

Bugs Fixed

(CORE-4244) Creating aprocedure could be aproblemif it involved adding text in DOS864 character set
fixed by A. dos Santos Fernandes

(CORE-4184) An error would be raised while executing an empty EXECUTE BLOCK with NOT NULL
output parameter

fixed by A. dos Santos Fernandes

(CORE-4160) A parameterized exception would mishandle non-ASCI| characters passed as the parameter
fixed by A. dos Santos Fernandes

(CORE-4145) Preparing an EXECUTE BLOCK that used domains was causing a memory leak

fixed by A. dos Santos Fernandes

Data Definition Language

(CORE-4214) Global temporary tables were able to reference permanent relations, which they should
not be able to do

fixed by V. Khorsun

(CORE-4212) Dropping aforeign key on a Global temporary table would cause a server crash
fixed by V. Khorsun

(CORE-4203) Packaged routines with CHAR or VARCHAR parameters could not be created
fixed by A. dos Santos Fernandes

(CORE-4180) CREATE COLLATION was not verifying the base collation character set
fixed by A. dos Santos Fernandes

(CORE-4173) Setting a generator value twice in asingle transaction would set it to zero

fixed by D. Yemanov

108

http://tracker.firebirdsql.org/browse/CORE-4244
http://tracker.firebirdsql.org/browse/CORE-4184
http://tracker.firebirdsql.org/browse/CORE-4160
http://tracker.firebirdsql.org/browse/CORE-4145
http://tracker.firebirdsql.org/browse/CORE-4214
http://tracker.firebirdsql.org/browse/CORE-4212
http://tracker.firebirdsql.org/browse/CORE-4203
http://tracker.firebirdsql.org/browse/CORE-4180
http://tracker.firebirdsql.org/browse/CORE-4173

Bugs Fixed

(CORE-4155) External routines DDL in packages was wrongly reporting termination with semi-colon
asan error

fixed by A. dos Santos Fernandes

Data Manipulation Language

(CORE-4269) Wrong output would be produced when afield with the result of awindowed function was
used in aquery with a useless WHERE 0=0 and GROUP BY clause

fixed by D. Yemanov
(CORE-4255) Parameterized queries using RDB$DB_KEY would not work
fixed by D. Yemanov

(CORE-4240) Recursive query would return incorrect results if passage through more than one branch
was requested

fixed by D. Yemanov
(CORE-4158) LIKE with escape was not working

fixed by A. dos Santos Fernandes

Utilities

gfix
(CORE-4297) gf i x would crash when the size of the description of alimbo transaction waslarger than 1L KB

fixed by V. Khorsun

fbsvemgr
(CORE-4298) f bsvcmgr was not recognising sts_record versions and other sts switches

fixed by A. Peshkov

109

http://tracker.firebirdsql.org/browse/CORE-4155
http://tracker.firebirdsql.org/browse/CORE-4269
http://tracker.firebirdsql.org/browse/CORE-4255
http://tracker.firebirdsql.org/browse/CORE-4240
http://tracker.firebirdsql.org/browse/CORE-4158
http://tracker.firebirdsql.org/browse/CORE-4297
http://tracker.firebirdsql.org/browse/CORE-4298

Bugs Fixed

isql

(CORE-4259) Buginthei sql command setlocale(LC_CTYPE, "") on Windows due to a reference
to editline, which is not available on that platform

fixed by F. Schlottmann-Goedde

(CORE-4205) 1SQL -x wasfailing to output the START WITH clause of generators/sequences
fixed by A. dos Santos Fernandes

(CORE-4149) New permission types were not being displayed by isql

fixed by D. Yemanov

(CORE-362) It was impossible to enter certain charactersinisql

fixed by F. Schlottmann-Goedde

gbak
(CORE-4202) Backup/restore from an older version to v.3.0 would fail with aBLR error
fixed by D. Yemanov

(CORE-4168) A backup containing procedures or triggers that selected from external tables could not
be restored with Exter nalFileAccess = None

fixed by D. Yemanov
(CORE-4164) Owner name was missing for generators and exceptions restored from a backup

fixed by D. Yemanov

nbackup

(CORE-2648) nBackup's deltafile was ignoring the Forced Writes setting of the database

110

http://tracker.firebirdsql.org/browse/CORE-4259
http://tracker.firebirdsql.org/browse/CORE-4205
http://tracker.firebirdsql.org/browse/CORE-4149
http://tracker.firebirdsql.org/browse/CORE-362
http://tracker.firebirdsql.org/browse/CORE-4202
http://tracker.firebirdsql.org/browse/CORE-4168
http://tracker.firebirdsql.org/browse/CORE-4164
http://tracker.firebirdsql.org/browse/CORE-2648

Bugs Fixed

fixed by V. Khorsun

Database Monitoring (MONS$)
(CORE-4235) Deadlock could occur while accessing the monitoring tables under concurrent load
fixed by D. Yemanov & V. Khorsun

(CORE-4176) Monitoring tables were returning incomplete information in Classic and Superclassic
configurations

fixed by D. Yemanov

Trace
(CORE-4219) Regular expressions with double-slash would fail in trace

fixed by A. Peshkov

(CORE-4163) Configuration filef bt r ace. conf contained syntax errors

fixed by A. Peshkov

International Language Support

Installation Issues

(CORE-4153) Attempting to use Legacy Auth directly after install would not work without restarting
the service

fixed by P. Reeves

Firebird 3.0 First Alpha Release

The following improvements and bug fixes were reported as fixed prior to the v.3.0.0 release:

111

http://tracker.firebirdsql.org/browse/CORE-4235
http://tracker.firebirdsql.org/browse/CORE-4176
http://tracker.firebirdsql.org/browse/CORE-4219
http://tracker.firebirdsql.org/browse/CORE-4163
http://tracker.firebirdsql.org/browse/CORE-4153

Bugs Fixed

Core Engine

(CORE-4135) Sweep was blocking the establishment of concurrent attachments in Superserver.
fixed by V. Khorsun

(CORE-4134) A race condition could occur when auto-sweep was started.

fixed by V. Khorsun

(CORE-4074) COMPUTED BY columns and POSITION function could produce garbled resuilts.
fixed by A. dos Santos Fernandes

(CORE-4027) Creating atablewith computed fields containing SELECT FIRST could produce a corrupted
result.

fixed by A. dos Santos Fernandes

(CORE-3973) The SQLDA for an aiased column in agrouped query was missing the original table name,
column name and owner.

fixed by A. dos Santos Fernandes

(CORE-3947) Wrong results were produced when a column in the WHERE clause used the collation
option (NUMERIC-SORT=1).

fixed by A. dos Santos Fernandes
(CORE-3941) A unique expression index would exhibit a memory alignment problem.
fixed by A. dos Santos Fernandes

(CORE-3929) The invalid error “attempted update of read-only column” would appear when selecting
MINVALUE from alist of more than 255 elements.

fixed by A. dos Santos Fernandes

112

http://tracker.firebirdsql.org/browse/CORE-4135
http://tracker.firebirdsql.org/browse/CORE-4134
http://tracker.firebirdsql.org/browse/CORE-4074
http://tracker.firebirdsql.org/browse/CORE-4027
http://tracker.firebirdsql.org/browse/CORE-3973
http://tracker.firebirdsql.org/browse/CORE-3947
http://tracker.firebirdsql.org/browse/CORE-3941
http://tracker.firebirdsql.org/browse/CORE-3929

Bugs Fixed

(CORE-3894) When an attempt was made to reduce the size of a CHAR or VARCHAR column, the
numbers delivered in the error message were incorrect.

fixed by A. dos Santos Fernandes

(CORE-3874) A computed column would appear in non-existent rows output from aleft join.
fixed by A. dos Santos Fernandes

(CORE-3820) Some character sets were duplicated in the system table RDB$TY PES.

fixed by A. dos Santos Fernandes

(CORE-3754) SIMILAR TO was not working correctly.

fixed by A. dos Santos Fernandes

(CORE-3735) An unprivileged user could delete from the system tables RDB$SDATABASE, RDB$COL -
LATIONS and RDB$CHARACTER_SETS.

fixed by D. Yemanov

(CORE-3694) “Internal consistency check” would occur in a query with grouping by subquery+stored
proceduret+aggregate.

fixed by A. dos Santos Fernandes

(CORE-3672) It was not possible to use the SUBSTRING function to create a computed index for large
columns.

fixed by A. dos Santos Fernandes

(CORE-3638) Some collation tweaking: FR_CA_CI_Al callation was introduced; FR_FR was changed
to beidentical to FR_CA and FR_FR_CI_Al was changed to be identical to the new FR_CA_CI_Al.

fixed by A. dos Santos Fernandes
(CORE-3476) The LIST function was concatenating binary blobs as though they were text.

fixed by A. dos Santos Fernandes

113

http://tracker.firebirdsql.org/browse/CORE-3894
http://tracker.firebirdsql.org/browse/CORE-3874
http://tracker.firebirdsql.org/browse/CORE-3820
http://tracker.firebirdsql.org/browse/CORE-3754
http://tracker.firebirdsql.org/browse/CORE-3735
http://tracker.firebirdsql.org/browse/CORE-3694
http://tracker.firebirdsql.org/browse/CORE-3672
http://tracker.firebirdsql.org/browse/CORE-3638
http://tracker.firebirdsql.org/browse/CORE-3476

Bugs Fixed

(CORE-3401) Coallation errors could occur with the use of [type of] <domain> and type of <column>.
fixed by A. dos Santos Fernandes

(CORE-3373) It was possible to store a string of length 31 charactersinto aVARCHAR(25) column.
fixed by A. dos Santos Fernandes

(CORE-3338) Regression: Code changes had disabled support for expression indexes with COALESCE,
CASE and DECODE.

fixed by A. dos Santos Fernandes
(CORE-3317) Success of row deletion depended on the order of insertion of the rows.
fixed by V. Khorsun

(CORE-3310) A complex expression involving RDBSGET_CONTEXT and BETWEEN worked in DSQL
but failed with a conversion error when selected in a view definition.

fixed by A. dos Santos Fernandes
(CORE-3260) Interlock.h was not portable.
fixed by A. Peshkov

(CORE-3250) The Firebird server could not be started under any user name other than “root”, “firebird”,
“interbas’ or “interbase”.

fixed by A. Peshkov

(CORE-3239) The collation UTF8 UNICODE_CI could not be used in acompound index.
fixed by A. dos Santos Fernandes

(CORE-3204) A constraint violation error involving CAST was not being raised inside views.
fixed by A. dos Santos Fernandes

(CORE-3052) Comparisons involving multiple index segments could produce wrong result sets.

114

http://tracker.firebirdsql.org/browse/CORE-3401
http://tracker.firebirdsql.org/browse/CORE-3373
http://tracker.firebirdsql.org/browse/CORE-3338
http://tracker.firebirdsql.org/browse/CORE-3317
http://tracker.firebirdsql.org/browse/CORE-3310
http://tracker.firebirdsql.org/browse/CORE-3260
http://tracker.firebirdsql.org/browse/CORE-3250
http://tracker.firebirdsql.org/browse/CORE-3239
http://tracker.firebirdsql.org/browse/CORE-3204
http://tracker.firebirdsql.org/browse/CORE-3052

Bugs Fixed

fixed by A. dos Santos Fernandes

(CORE-2988) The concurrent transaction number was not being reported when alock timeout occurred.
fixed by N. Samofatov

(CORE-2957) COUNT(*) from abig table could return a negative result.

fixed by D. Yemanov

(CORE-2952) Character class names in SIMILAR TO expressions could be case-sensitive or case-
insensitive, depending on the collation of the left part, whereas they should be unequivocally case-insensitive.

fixed by D. Sbiryakov

(CORE-2932) An ALTER TABLE..ALTER COLUMN..ALTER POSITION operation could result in
wrong column positions.

fixed by A. dos Santos Fernandes

(CORE-2922) The character set used in a constant was not being registered as a dependency.
fixed by A. dos Santos Fernandes

(CORE-2913) COLLATE expressions were being applied incorrectly.

fixed by A. dos Santos Fernandes

(CORE-2798) Plan output lacked the names of views when selecting from views that contained procedure
cals.

fixed by D. Yemanov

(CORE-2796) DB_KEY was aways zero for rows in external tables.

fixed by D. Yemanov

(CORE-2678) A full outer join could not use available indices, resulting in very slow execution sometimes.

fixed by D. Yemanov

115

http://tracker.firebirdsql.org/browse/CORE-2988
http://tracker.firebirdsql.org/browse/CORE-2957
http://tracker.firebirdsql.org/browse/CORE-2952
http://tracker.firebirdsql.org/browse/CORE-2932
http://tracker.firebirdsql.org/browse/CORE-2922
http://tracker.firebirdsql.org/browse/CORE-2913
http://tracker.firebirdsql.org/browse/CORE-2798
http://tracker.firebirdsql.org/browse/CORE-2796
http://tracker.firebirdsql.org/browse/CORE-2678

Bugs Fixed

(CORE-2508) Use of certain choices of character in double-quoted index names, for example a bracket
character, could defeat the parsing logic when generating a human-readable plan.

fixed by D. Yemanov

(CORE-2155) A join of a stored procedure with a view or atable could fail with the error “No current
record for fetch operation”.

fixed by D. Yemanov

(CORE-1712) A buffer overrun error was being caught erroneously in a DOUBLE PRECISION to
VARCHAR conversion in a Diaect 1 database.

fixed by C. Valderrama C.
(CORE-1605) An aggregated query was causing “Bugcheck 232 (invalid operation)”.
fixed by A. dos Santos Fernandes

(CORE-1550) An unnecessary index scan was executed when the same index is mapped to both WHERE
and ORDER BY clauses.

fixed by D. Yemanov

API/Remote Interface

(CORE-3718) Thecient library could hang after an unsuccessful attempt to connect to the remote auxiliary
(events) port.

fixed by A. Peshkov

(CORE-3475) Parameters inside the CAST function were being wrongly described in the SQLDA as
non-nullable.

fixed by A. dos Santos Fernandes
(CORE-3269) The client would perform detach incorrectly when the server became unavailable.

fixed by A. Peshkov

116

http://tracker.firebirdsql.org/browse/CORE-2508
http://tracker.firebirdsql.org/browse/CORE-2155
http://tracker.firebirdsql.org/browse/CORE-1712
http://tracker.firebirdsql.org/browse/CORE-1605
http://tracker.firebirdsql.org/browse/CORE-1550
http://tracker.firebirdsql.org/browse/CORE-3718
http://tracker.firebirdsql.org/browse/CORE-3475
http://tracker.firebirdsql.org/browse/CORE-3269

Bugs Fixed

(CORE-2484) An erroneous “ Success’ message would be returned in the error status vector when failing
to connect to atrash database file.

fixed by C. Valderrama C.

(CORE-2431) String valuesin error messages were not converted to the connection character set.

fixed by A. dos Santos Fernandes

Procedural Language

(CORE-4018) Use of asystem domain in declarations of arguments or return values in a stored procedure
could prevent the procedure from being modifiable.

fixed by A. dos Santos Fernandes

(CORE-3737) EXECUTE BLOCK parameter definitions were not being respected and could cause wrong
behavior with respect to character sets.

fixed by A. dos Santos Fernandes

(CORE-3545) Validation of domain CHECK constraints when used in PSQL declarations was inconsistent:
it was using the type of the expression, instead of the type of the variable.

fixed by A. dos Santos Fernandes

(CORE-3055) The names of variables or arguments could be wrong or absent in error messages when
more than 256 variables were used.

fixed by A. dos Santos Fernandes
(CORE-3047) Resolution of EXECUTE BLOCK parameter collations was using wrong logic.
fixed by A. dos Santos Fernandes

(CORE-2204) Constraints on stored procedure output parameters were checked even when the procedure
returned no rows.

fixed by A. dos Santos Fernandes

117

http://tracker.firebirdsql.org/browse/CORE-2484
http://tracker.firebirdsql.org/browse/CORE-2431
http://tracker.firebirdsql.org/browse/CORE-4018
http://tracker.firebirdsql.org/browse/CORE-3737
http://tracker.firebirdsql.org/browse/CORE-3545
http://tracker.firebirdsql.org/browse/CORE-3055
http://tracker.firebirdsql.org/browse/CORE-3047
http://tracker.firebirdsql.org/browse/CORE-2204

Bugs Fixed

(CORE-1620) Incorrect error message (an absurd column number) was returned if an empty SQL string
was prepared for EXECUTE STATEMENT.

fixed by D. Yemanov

Data Definition Language
(CORE-3114) Attempting to drop a non-existent generator (sequence) would result in a serious exception.

fixed by A. dos Santos Fernandes

(CORE-3056) Problems could occur if further DDL commands were issued in the same transaction
following a CREATE COLLATION command.

fixed by A. dos Santos Fernandes

(CORE-2696) The ALTER TABLE command allowed the addition of a column with a NOT NULL
definition, allowing a non-savvy DBAdmin to wreck the table.

fixed by A. dos Santos Fernandes

(CORE-1748) Unrestorable backup: a problem which would occur if ALTER TABLE...ADD COLUMN
added a column with aNOT NULL constraint. The fix for CORE-2696 has now made it impossible to do this.

fixed by A. dos Santos Fernandes

(CORE-1518) Adding anon-nullable column to a popul ated table would render the table inconsistent. The
fix for CORE-2696 has now made it impossible to do this.

fixed by A. dos Santos Fernandes

(CORE-1355) Client tools tended to be confused about how to interpret a NULL that is returned from
a non-nullable column. The fix for CORE-2696 has how made it impossible to add a non-nullable column to
a populated table.

It is not clear, though, whether this part of the fix makes it mandatory to specify a default value for a non-
nullable column.

fixed by A. dos Santos Fernandes

118

http://tracker.firebirdsql.org/browse/CORE-1620
http://tracker.firebirdsql.org/browse/CORE-3114
http://tracker.firebirdsql.org/browse/CORE-3056
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1748
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1518
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1355
http://tracker.firebirdsql.org/browse/CORE-2696

Bugs Fixed

(CORE-634) Bad behaviour of DELETE when the WHERE clause was a subquery involving FIRST/
SKIP: the operation would zap every row in the table.

fixed by V. Khorsun
(CORE-304) Any user could alter or drop generators and exceptionsta metadata security hole.

fixed by D. Yemanov

Data Manipulation Language & DSQL

(CORE-4144) When when preparing a query with UNION, the error “ context already in use (BLR error)”
was wrongly being thrown.

fixed by V. Khorsun
(CORE-4005) Recursive CTEs were returning awrong error message.
fixed by V. Khorsun

(CORE-3416) Inserting aword containing the 8-bit character 'a into a CHARACTER SET ASCII column
would succeed instead of throwing atrandliteration error.

fixed by A. dos Santos Fernandes

(CORE-3201) The internal function ATANZ2 was returning an incorrect value with arguments (0, 0).
fixed by A. dos Santos Fernandes

(CORE-3174) An expression index involving TRIM could lead to an incorrect indexed |ookup.

fixed by A. dos Santos Fernandes

(CORE-2699) A common table expression context could be used with parameters.

fixed by A. dos Santos Fernandes

(CORE-2606) A multi-byte CHAR value requested as VARCHAR was returned with padded spaces.

fixed by A. dos Santos Fernandes

119

http://tracker.firebirdsql.org/browse/CORE-634
http://tracker.firebirdsql.org/browse/CORE-304
http://tracker.firebirdsql.org/browse/CORE-4144
http://tracker.firebirdsql.org/browse/CORE-4005
http://tracker.firebirdsql.org/browse/CORE-3416
http://tracker.firebirdsql.org/browse/CORE-3201
http://tracker.firebirdsql.org/browse/CORE-3174
http://tracker.firebirdsql.org/browse/CORE-2699
http://tracker.firebirdsql.org/browse/CORE-2606

Bugs Fixed

(CORE-2238) With UTF8 and large varchar fields, IS DISTINCT FROM would cause the error “Imple-
mentation limit exceeded”.

fixed by D. Yemanov

(CORE-1188) STARTING WITH ? (where the parameter value supplied is an empty string) would fail
if the plan used a compound index.

fixed by A. dos Santos Fernandes

(CORE-92) Infinite insertion cycle: INSERT INTO THIS TABLE SELECT ... FROM THIS TABLE
would loop forever until resources were exhausted.

fixed by V. Khorsun

Command-line Utilities

(CORE-2547) Utilities did not always honour the minimum number of characters required to recognise
an option.

fixed by C. Valderrama C.

Other old bugs that were fixed in utilities:

FbGuard

(CORE-2784) Guardian would keep creating more and more threads each time FBServer died.
fixed by C. Valderrama C.

(CORE-1595) Firebird Guardian's tray icon would disappear after a Windows Explorer crash.

fixed by C. Valderrama C.

isql

(CORE-4137) isgl was generating metadata script output with syntax errors in the CHARACTER SET
clause, e.g., CHARACTER SETI SC8859_1.

120

http://tracker.firebirdsql.org/browse/CORE-2238
http://tracker.firebirdsql.org/browse/CORE-1188
http://tracker.firebirdsql.org/browse/CORE-92
http://tracker.firebirdsql.org/browse/CORE-2547
http://tracker.firebirdsql.org/browse/CORE-2784
http://tracker.firebirdsql.org/browse/CORE-1595
http://tracker.firebirdsql.org/browse/CORE-4137

Bugs Fixed

fixed by A. dos Santos Fernandes

(CORE-3431) isgl was padding UTF-8 dataincorrectly.

fixed by A. dos Santos Fernandes

(CORE-2788) isgl would extract the array dimensions after the character set name.

fixed by C. Valderrama C.

gbak

(CORE-3575) ghbak did not support backup volumes of size greater than 4GB.
fixed by A. Peshkov

(CORE-2740) gbak would restore invalid views without any warning to the user.
fixed by C. Valderrama C.

(CORE-2545) Several validations were lacking in gbak.

fixed by C. Valderrama C.

nbackup
(CORE-2543) nbackup could hide the real cause of afailure.

fixed by C. Valderrama C.

International Language Support
(CORE-4136) The“Sharp-S’ character was being treated incorrectly in the UNICODE_CI_Al collation.

fixed by A. dos Santos Fernandes

121

http://tracker.firebirdsql.org/browse/CORE-3431
http://tracker.firebirdsql.org/browse/CORE-2788
http://tracker.firebirdsql.org/browse/CORE-3575
http://tracker.firebirdsql.org/browse/CORE-2740
http://tracker.firebirdsql.org/browse/CORE-2545
http://tracker.firebirdsql.org/browse/CORE-2543
http://tracker.firebirdsql.org/browse/CORE-4136

Chapter 14

Firebird 3.0 Project Teams

Table 14.1. Firebird Development Teams

Developer Country Major Tasks
Dmitry Y emanov Russian Full-time database engineer/implementor, core team |leader
Federation
Alex Peshkov Russian Full-time security features coordinator; buildmaster; porting
Federation | authority
Claudio Vaderrama Chile Code scrutineer; bug-finder and fixer; ISQL enhancements;
UDF fixer, designer and implementor
Vladyslav Khorsun Ukraine Full-time DB engineer, SQL feature designer/implementor
Adriano dos San- Brazil International character-set handling; text and text BLOB en-
tos Fernandes hancements; new DSQL features; code scrutineering
Roman Simakov Russian Engine contributions
Federation
Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds
Pavel Cisar Czech Re- | QA tools designer/coordinator
public
Philippe Makowski France QA tester
Paul Reeves France Win32 installers and builds
Mark Rotteveel The Nether- | Jaybird implementor and co-coordinator
lands
Jiri Cincura Czech Re- | Developer and coordinator of .NET providers
public
Alexander Potapchenko Russian Developer and coordinator of ODBC/JDBC driver for Fire-
Federation | bird
Stephen Boyd Canada GPRE contributions
Alexey Kovyazin Russian Website coordinator
Federation
Paul Vinkenoog The Nether- | Coordinator, Firebird documentation project; documentation
lands writer and tools devel oper/implementor
Norman Dunbar U.K. Documentation writer

122

Firebird 3.0 Project Teams

Developer Country Major Tasks
Pavel Mensnhchikov Russian Documentation transl ator
Federation
Tomneko Hayashi Japan Documentation transl ator
Umberto (Mimmo) Masotti Italy Documentation translator
Helen Borrie Australia | Release notes editor; Chief of Thought Police

123

Appendix A:
Licence Notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense’); you may only use this Documentation if you comply with the terms of this Licence. Copies of the
Licence are available at http://www.firebirdsgl.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsgl.org/
manual/pdl.html (HTML).

The Original Documentation is entitled Firebird 3.0 Release Notes.

The Initial Writer of the Original Documentation is: Helen Borrie. Persons named in attributions are Contrib-
utors.

Copyright (C) 2004-2013. All Rights Reserved. Initial Writer contact: helebor at users dot sourceforge dot net.

124

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 3.0 Release Notes
	Table of Contents
	General Notes
	Bug Reporting
	Documentation

	New In Firebird 3.0
	Summary of Features

	Changes in the Firebird Engine
	Remodelled Architecture
	Working Modes (“Models”)
	Execution Modes

	Providers
	The Providers Architecture
	The Components
	Failure Response

	Other Providers
	Custom Providers

	Providers Q & A

	Plug-Ins
	What is a Plug-In?
	Plug-In Types
	Technical Details
	Features of a Plug-In
	Configuring Plug-ins
	plugins.conf

	Plug-Ins Q & A

	External Engines
	External Names
	Module Availability
	Scope
	Character Set
	Enabling UDRs in the Database
	How it Works

	Optimizer Improvements
	Other Optimizations
	Remote Interface/Network Protocol
	Miscellaneous Improvements
	Connections Limit Raised
	Better Error Diagnosis
	ICU Version Upgraded
	Internal Debug Info Made Human-readable
	A Silly Message is Replaced
	New Pseudocolumn RDB$RECORD_VERSION
	systemd init Scripts

	Changes to the Firebird API and ODS
	ODS (On-Disk Structure) Changes
	New ODS Number
	Implementation ID is Deprecated
	Maximum Page Size
	Maximum Number of Page Buffers in Cache
	System Tables
	New System Tables
	Changes to System Tables
	RDB$SYSTEM_FLAG
	RDB$TYPES
	Monitoring Tables
	MON$ATTACHMENTS
	MON$DATABASE
	MON$STATEMENTS

	Application Programming Interfaces
	Interfaces and the New Object-oriented API
	The Non-COM Choice
	The Hierarchy of Interfaces
	Interfaces Q & A

	Other New APIs
	API Improvements
	Better Error Reports for String Overflows
	More Detail in “Wrong Page Type” Error Reports
	New Services Tag for Overriding LINGER
	Code Improvement

	Reserved Words and Changes
	New Keywords in Firebird 3.0

	Configuration Additions and Changes
	Scope of Parameters
	Macro Substitution
	Includes
	Wildcards

	Expression of Parameter Values
	“Per-database” Configuration
	Format of Configuration Entries
	Parameters Available

	New Parameters
	SecurityDatabase
	AuthServer and AuthClient
	WireCrypt
	UserManager
	TracePlugin
	CryptPlugin
	KeyHolderPlugin
	Providers
	SharedCache and SharedDatabase
	RemoteAccess

	Parameters Changed or Enhanced
	ExternalFileAccess

	Parameters Removed or Deprecated
	RootDirectory
	LegacyHash
	OldSetClauseSemantics
	OldColumnNaming
	LockGrantOrder
	Obsolete Windows priority settings

	Security
	Location of User Lists
	Database Encryption
	Secret Key
	Tasks

	New Authentication Method in Firebird 3
	SSL/TLS Support
	Increased Password Length
	The Authentication Plug-in
	Multiple User Managers

	"Over the wire" Connection Encryption
	The Secret Session Key
	Specifications for the Key
	Exporting a Key from an Authetication Plug-in

	Mapping of Users to Objects
	The Mapping Rule
	Syntax for MAPPING Objects
	Legacy Mapping Rule
	Mapping Windows Users to CURRENT_USER

	SQL Features for Managing Access
	SQL-driven User Management
	Older Methods Deprecated
	Usage Details

	SET ROLE
	SET TRUSTED ROLE

	GRANT/REVOKE Rights GRANTED BY Specified User
	REVOKE ALL ON ALL
	User Privileges for Metadata Changes
	GRANT EXECUTE Privileges for UDFs
	Improvement for Recursive Stored Procedures
	Privileges to Protect Other Metadata Objects

	Pseudo-Tables with List of Users

	Data Definition Language (DDL)
	Quick Links
	DDL Enhancements
	New Data Types
	BOOLEAN Data Type
	The IS Operator

	Identity Column Type
	Implementation Details

	Manage Nullability in Domains and Columns
	Modify Generators (Sequences)
	Alter the Default Character Set
	BLOB in COMPUTED BY Expressions
	“Linger” Database Closure for Superserver
	New SQL for Managing Users and Access Privileges
	SQL-driven User Management
	SET ROLE and SET TRUSTED ROLE
	GRANTED BY Clause for Privileges
	REVOKE ALL ON ALL
	GRANT/REVOKE Metadata Privileges
	EXECUTE Privileges for UDFs
	GRANT/REVOKE USAGE

	Data Manipulation Language (DML)
	Quick Links
	Supplemental SQL 2008 Features for MERGE
	Window (Analytical) Functions
	Aggregate Functions Used as Window Functions
	Partitioning
	Ordering
	Exclusive window functions
	Ranking Functions
	Navigational Functions

	Advanced Plan Output
	Advanced PLAN Output in isql

	Internal Functions
	SUBSTRING with Regular Expressions
	New Inverse Hyperbolic Trigonometric Functions
	TRIM() BLOB Arguments Lose 32 KB limit
	Enhancements to DATEADD() Internal Function

	DML Improvements
	Alternatives for Embedding Quotes in String Literals
	Prohibit Edgy Mixing of Implicit/Explicit Joins
	Left-side Parameters Supported
	Enhancements to the RETURNING Clause
	RETURNING Clause Value Can be Aliased
	RETURNING Clause from Positioned Updates and Deletes

	Cursor Stability
	An Improvement for GTTs
	An Improvement for DML Strings
	Optimizations
	SIMILAR TO
	OR'ed Parameter in WHERE Clause
	Better Choices for Navigation
	Plainer Execution Path for UNION Queries
	Index Walk for Compound Index
	Performance Improvement for SET STATISTICS INDEX

	Dialect 1 Interface

	Procedural SQL (PSQL)
	Quick Links
	PSQL Stored Functions
	PSQL Sub-routines
	Packages
	Signatures
	Packaging Syntax
	Simple Packaging Example

	DDL triggers
	Permissions
	Support in Utilities
	DDL_TRIGGER Context Namespace
	Elements of DDL_TRIGGER Context

	Exceptions with parameters
	CONTINUE in Looping Logic
	PSQL Cursor Stabilization
	Extension of Colon Prefix Usage
	PSQL Cursors as Variables
	Colon Prefix as a Variable Marker

	Some Size Limits Removed Using New API
	SQLSTATE in Exception Handlers

	Monitoring & Command-line Utilities
	Monitoring
	Tracing
	gbak
	New “Skip Data” Backup Option
	Long Names for Log Files

	gsec
	isql
	SET EXPLAIN Extensions for Viewing Detailed Plans
	Metadata Extract
	Path to INPUT Files
	Command Buffer Size Increase

	fb_lock_print
	Input Arguments
	Useability Improvements

	gfix
	-NoLinger Switch
	Improvements to Validation Messages

	Other Tweaks
	All Command-line Utilities
	Resolution of Database Path
	Help and Version Information

	Hard-coded Messages Replaced
	Arbitrary Switch Syntax Clean-up

	Compatibility Issues
	Where Are the Tools?
	Logging in as SYSDBA
	Legacy Authentication
	Configuration Parameters
	SQL Language Changes
	Reserved Words

	Bugs Fixed
	Firebird 3.0 First Beta Release
	Core Engine
	Server Crashes
	API/Remote Interface
	Utilities
	isql
	gbak
	nBackup
	qli

	Firebird 3.0 Second Alpha Release
	Core Engine
	Server Crashes
	API/Remote Interface
	Security/User Management
	Procedural Language
	Data Definition Language
	Data Manipulation Language
	Utilities
	gfix
	fbsvcmgr
	isql
	gbak
	nbackup
	Database Monitoring (MON$)
	Trace

	International Language Support
	Installation Issues

	Firebird 3.0 First Alpha Release
	Core Engine
	API/Remote Interface
	Procedural Language
	Data Definition Language
	Data Manipulation Language & DSQL
	Command-line Utilities
	FbGuard
	isql
	gbak
	nbackup

	International Language Support

	Firebird 3.0 Project Teams
	A. Licence Notice

