Firebird 3.0 Release Notes

Helen Borrie (Collator/Editor)
27 January 2014 - Document v.0300-08 - for Firebird 3.0 Alpha 2

Firebird 3.0 Release Notes

27 January 2014 - Document v.0300-08 - for Firebird 3.0 Alpha 2
Helen Borrie (Collator/Editor)

Table of Contents

T 0T = I N (o] (S TSP PPRPTI 1
.. 1

20 (o T (= 0T 1 (] oo PSR 1
(Dol l 101 g1 = 1 o] o PR RTTPRI 1

A = T A o Lo 10 = o1 (o IR X O TP 2
SUMMEANY OF FEALUMESeeeiiieeii ittt e e e e e e e e e e et e e e e e e e s s s et et e e e e e aeeesasnnreaneeeaeens 2

3. Changes in the FIrebird ENQINGooo i e e e e e e e e s eanneees 4
ReMOEN €0 ATCIITECIUNEcooiiiiiie ettt e et e e e et e e e e s naeee s 4
WOorking Modes (“MOEIS") ... e e e e e e e e e e e s e enneaees 4

L0V o (= TR PPRR 5

1 o PRSP PPRRPR 8

EXIENAl ENQINES ..ooiiiiiiiiieee ettt e ettt a e e e s e sttt e e e e e e s s e e nntbbe e e e e e e e e eenntrbareeaaeeeaaaa 13
MisCEllaNEOUS IMPIOVEMENTSccoiiiiiiieiiee e e e e e e s e e e e e e e e e s s e e e e e e e e s eennnees 16
Internal Debug Info Made Human-readableccooiiiiiiiiiie e 16

A Silly Message IS REPIACEcceieiiiiiiiieei e 16

New Pseudocolumn RDBSRECORD_VERSIONccceoviiiiiiieiiiiiieee i 16

SYSEEMA TNIT SCHIPLS ..t e e e e e e e e e e e e s s st eeeeaeessasssrereeeaaeeanaas 16

4. Changes to the Firebird APl @and ODSooiiiiiieiiiiiee e e e e e s e st eeaaeeeeans 17
ODS (ON-Disk StrUCLUIE) ChaNGESvvveiieeeeiiiiiiieeieeee e e e s eettee e e e e e e s e s st ae e e e e e e s aaarbreaeeaaeeesannsnenees 17
NEW ODS NUIMDEN ...ttt ettt e e sbb e e e s asbe e e e e ssbe e e e e anbbeeeeennbeeeeeanes 17
Implementation ID 1S DEPrECAIEcoccviiiiieii e e e e 17
MBXIMUM PAJE SIZE ...ttt et e e e e e e e e e e e e e e a e e e e e e e s eannraraeeeaas 17
Maximum Number of Page BUffers in Cacheccccccooiiiiiiiiiiiie e 18

Changes t0 SYSLEM TaDIESceiie i e e e e s s e e e e e e e 18
Application Programming INEEIFACESeeiiieiiiiiiiiieiie e e e e e e e e e e s aanes 18
Interfaces and the New Object-oriented AP ... 19

(@1 0c N [o TSRO PPPP 21

N I 1 0] 002 10 01 22

5. Reserved Words and ChaNQgEScoiiiiiiiieiiee e ettt e ettt e e e e e s st e e e e e e s s s sansbareeeaaeeseennrneees 23
New Reserved Words in FIrebird 3.0oooiiiiiiiiiiiiie e e e 23

6. Configuration Additions and ChanQEScc.uuuiiiiiiee e e e e eae s 24
SCOPE OF PAIaIMELENS ...coiiiiii ittt e e e e e e e e s e s et e et e e e e e s saasntbaeeeaeeeseanntbrneeeeaeeaaans 24
MBCIO SUDSHTULTION ..ot iiite ettt ettt e e et e e bt e e s nnb e e e enbbn e e e s annneee s 24

e o S PSPPSRI 25

LAV o 0= PP POPPR 25
EXpression of Parameter VAlUESccuuviiiiiie ettt e ettt a e e e e st re e e e e e e e e annnes 25
“Per-database” CONfIQUIBLIONccouiiiiiiee e e e e e e e e e e e e e s e e e e e e e e e s snnnnnaees 25
Format of Configuration ENIIESuueiiiieiiiiiiiiiee e e e s e e e e e s s e e e e e e e e e annes 26
Parameters AVAIADIEoooiiiii e 26

NEOW PAIBITIELENSoiiiiiiiieiie ettt e ettt e e e e e e e e a bbb et et e e e e e s e bbb bttt e e e e e e e aanbbbeeeeaaeeesaannnenees 26
SECUNMTYD@AIADASEcei ittt e e e e s e s e e e e e e e s e e a e e e e eeessannrrrareeaaeeeaans 26
AuthServer and AUINCTIENToooiiiiii e 26

LAY =1 Y] . SRR 27

L L= 1V F= 17 T 27

I = (o= 1o T o PSR 27

(@Y7 11 11 1 o PR PPERRR 27
(=YL [0 [L= = 1o T o SRS 28

L0V o (= T PRSPPI 28

Firebird 3.0 Release Notes

SharedCache and SharedDalaDasecoooiiiiiieiiiiiie e 28
REIMOLEACTESS ... 28
Parameters Removed or DEPreCateduuiiieiiiiiiiiiieie e e e e e s e e e e e e 28
[0 To 1 DT (= (o] PR 28
=0T onY = 0 P REPPRP 28
OlASELCIAUSESEMBNTICSvvveeeeeeiiieeeetteee e sttt e e e st a e st e e e st re e e s asbe e e e e anbaeeeesassneeesanreeeeennnes 29

(@ T [@0o 11810010\ F= o oo [SRR 29

[0 To: (=01 (O o L= PSSR UPRR PRI 29
Obsolete Windows priority SEHINGSvvveiieieeiiiiiiiiiee e e s e e e e e e e e e e s earrreeeea s 29

S = v] YRR 30
(oo (ol g) H U E = I K PRSP 30
(DT = 07z S I = 017/ 0 o] o PR PPRRRPR 30
T o < B =Y PO 31
1= S 2 PP RPOPPPRPRPIRN 31
New Authentication Method in FIrebird 3oouiiiiiiiiiiieiee e 31
S I RS o] o 1 USSR 32
Increased Password Length ... 32

The AUthentiCation PIUG-INeeiii i e e e e e eeeeas 33
"Over the wire" ConNECtioN ENCIYPLIONciiii i e e e e e rrae e e e e e e e eanes 33
THE SECIEL SESSION KEBY .oeiiiiiiiiiiciie e e e e e e e e e e e e e e s s e an e b e e e e e eeeeeenneees 34
SQL-driven User ManagemMENtueeeiieeeiiiiiiiiee e e e e e e sseiiieee e e e e e s s ssatare e e e aeessssanbsaeeeaeeesseaansrenees 34
USAOE DELAIIS e e e e e s e e e e e e rrae s 35
Pseudo-Tables With List Of USEISuiiiiiiiiiee et 36

NEW OBJECE RIGNES e e e e e e e e e e e e e e s e e bbb e e e e e e e e e e e snanraees 36
GRANT EXECUTE Privileges fOr UDFScciiiiiiiiiiiiiiiee et 36
Privileges to Protect Other Metadata ObJECEScccvvviiiiiei e 37

8. Data Definition Language (DDL)cociiiiiiieie ettt e e e e s et ar e e e e e e e s st e e e e e e e e eennnneees 38
QUICK LINKS ..o 38
DDL ENNBNCEMENESeeiiei ettt ettt e ettt e e s et e e e snbb e e e e enbe e e e e entneeesannneeeas 38
LS YT D = I 0= SO 38
Manage Nullability in Domains and COlUMNSccoiiiiiiiiiiiiiee e e 41
Modify GENErators (SEQUENCES) ...veviiieeiiiiciiiiieeee e e e s seitt et e e e e e e e e sttt e e e e e e e s s ssbabreeeeeeeeesannnnenees 42
Alter the Default CharaCter SELoocuveiii i e 42
BLOB in COMPUTED BY EXPrESSIONSccciuviieeiiuiiieeeiniiieeeaaiteeeessssseesssnssseesssnsseessssnsesessans 42
Improved Management of SQL Privil€gesccuveeiiiiiii i 43
“Linger” Database ClosSUre fOr SUPEISEIVEYccccuviiiiiie e e s s et re e e e e e saaraee e e e e e 44
SQL-driven User ManagemMENteeiieeiiiiiiiieeiee e e e s ettt e e e e e s s s starae e e e e e e e s s seanbaaeeeeaeessennneees 44

9. Data Manipulation Language (DIML)eeiiie oottt e e e e etaarae e e e e e e e e e e enannnees 46
QUICK LINKS ..o 46
Supplemental SQL 2008 Features for MERGEoooiiiiiiiiice e 46
Window (Analytical) FUNCLIONSooiiiiiiiii e e e e e e e e rraeeeeas 47
Aggregate Functions Used as Window FUNCLIONScccuiiiiiiie e 48

[z 0] 1 oo PRSP 49

(@ 0 =11 1o R PP UR OO PRSRR 49
EXClUSIVE WINAOW FUNCLIONSeeiiiiiiiie et 50
AAVANCED Plan OULPULcoiiiiiiiiiiiee ettt e e e s e e e e e e e e s ettt e e e e e e e s s ann b b aeeeeeaeeessaanrraenseaeens 52
Advanced PLAN OULPUL IN ISOl ...ueiiiiieiie et e e e nrrrn e e e e e e e e 53
INEEINAlL FUNCLIONS ..ottt et e e st e e s sab e e e e st et e e e s sae e e e e nnnbeeeesnreeeenn 53
SUBSTRING with Regular EXPreSSIONScuvveiieeiiiiiiiiiieieee et e e e s ssiirraee e e e e e 53

New Inverse Hyperbolic Trigonometric FUNCLIONScccvviiiiiie e 53
TRIM() BLOB Arguments Lose 32 KB lIMit ... 54
Some Useful DML IMPIOVEMENLSuveiiieeieiiiiiiiteeeeee e e e s st e e e e e e et e e e e e e e e s s eanbareeeeaaeeesaennnneees 54

Firebird 3.0 Release Notes

Alternatives for Embedding Quotes in String LiteralSccccvveeiee i, 54
Prohibit Edgy Mixing of Implicit/EXPliCit JOINSccvvviiieeeee e 54
Left-side Parameters SUPPOIMEAoouiiiiiiii e e e ee e 55
Enhancements to the RETURNING ClaUSEcuvviiiiiiiiiie it 55
(N = o TS = o1 11 PR PPPRPR 56

AN IMProvemMENt fOr GTTS .. e e e e e e e e e e e s e st e e e e e e e e s seanneees 56

An Improvement fOr DML SIHNGS ..oooiee oo e e e 56

(@] o11] 11114 1 Lo 0T PRRRRS 57
D= 1 o A 1= 1 = ot PRSPPI 58

10. Procedural SQL (PSQL) ..veeiieeeiiiiiiiieiee e e e e e ettt e e e e s e e s e e e e e e e s s aan b ae e e e aaeesssaasbrraeeeaaeeseannnrrneneeas 59
QUICK LINKS ... 59
S O IS (o= ol = U0 o (o] 59
PSQL SUD-TOULINESevvvvveveerieirreeeteesserssersressssrersrererererersrererererererer.r.—ersrerererrrsrrrersrsrsrsrrsrrrsrsererrrees 60
0 0 === PR PPRPRR 61
0 o 1010 TS Y 1 = PR 62
Simple Packaging EXAMPIEcoiiiiiii et 63
]I Lo o = =R 64
SUPPOIE IN ULIHITIES .oveeiiiee e e e e e e e e e e e s s et ab e e e e e e e e e e s ensnrnees 66
PEIMMISSIONS ...t ettt et e ettt e e e bttt e e e sa b et e e e e nb et e e e enbe e e e s anbeeeeeeanbbeeeeennbaeeeean 66
DDL_TRIGGER Context NaMESPDACEccvvvriiieieieieeiiiiis e e e eeeettis s s e e s e e e eeeraan e e e e e e eeenenan s 66
EXCEPLiONS WIth PAramELESuviiiiiie et e e e e e e s s e e e e e e e e s e etarr e e eaaeeas 70
CONTINUE iN LOOPING LOGIC .vvviiiieeeiiiiiiiieiee e e e e ettt e e e e e s ettt e e e e e e e s s saaataae s e e e e e s s snnntnrnaeeaaeeenanns 71
PSQL Cursor StabiliZationooovviiiiiiiiiiieeeeeeeeeeee ettt 71
Some Size Limits Removed USiNg NEW APloviiiiiie et 72
SQLSTATE in EXCEption HaNAIErvvviiiiiei ittt e e e e 72
11, ComMMEANG-INE ULHTTIESeveiie ittt et e e e e et e e e e st e e e ennre e e e snnnreeas 73
1Y/ Ko Tl (o] oo [EEERR PP 73
1o | PR 73
SET EXPLAIN Extensions for Viewing Detailed PlanSccccvvieeieeee i, 73
MELAOAEA EXLFACEeeiiiieiie ittt e et e et e e e e nb e e e e snnae e e e e nnbeeeeens 74

Path t0 INPUT FIlES ...eeiiiiiiiiieiiieiee ettt sttt e e et e e s s nbe e e e e nnnees 74
Command BUFfer SIZE INCTEESEccoiiuviiii it e 74

LT (ot o1 | PSSR 74
10T LN o 0 0= o 1P 74
Useability IMPrOVEMENTSoiiiiei it e e e e e e s e et e e e e e e e e saabrreeeeaeeenans 74

011 PP 75
BN\ [T o 1= Y7 o o S PPEPRR 75

(@1 0= RS 2RO RP 75
All CommMEANG-1INE ULHITIESeueeeiiiiiee e e e s es 75

War 0n Hard-Coded MESSAJESuvviiieieeiiiiiiiieiee e e e s st e e e e e e et e e e e e e e s et rae e e e e e e e e enneees 75

War on Arbitrary SWITCh SYNEEXcceieiiiiiiiiiiiieee e e e e s e e e e e e s e eaneees 75

2 S TU oS3 D= o PR PPRRPRR 76
Firebird 3.0 Second AlIPha REIEESEuuveiiiiiii i e e e e e 76
(o = = 0T 1 EERPR 76
SEIVEN CrASNES ..o et e e e e et e e e e nrees 79
API/REMOLE INEEITACEuveeiee ittt e st e e rnbe e e e s nneeeas 79
SeCUIity/USEr MaNagEMENLvviiiiieee ittt e e e e e s et e e e e e e e et e e e e e e e s seabb e e e e e aeeeeennnrnees 80
Procedural LanQUAGEccuuvieeiieeeei ittt e e e ettt e e e e s e et e e e e e e e e e et e e e e e e e s aennrrenaeaaens 80
Data DefiNition LANQUEBOEccceeeei ittt ee e e e e e s s st e e e e e e e e e s sanarnaeeeaaeeas 81
Data Manipulation LanNQUAOEccuuveeiieeeeiiiiiiiieiee e e e e e s siittaeee e e e e e s s essntrseeeeeaessssnssssnreeaaeesaans 81

L1 =PRI 82
International Language SUPPOITuviriiirie e e e e e e s eeittr e e e e e e e s s st e e e e e e e e s ssannrreeeeaeeeaaanns 84

Vi

Firebird 3.0 Release Notes

INSEAIELION ISSUES ...ttt ettt et e e e et e e e st e e e e enbe e e e e nnneeeeeanns 84

Firebird 3.0 First AIPha REIEESEccuiiiieiiie e e e e e e e e e 84
(o = = 0T 1 EERPR 84
API/REMOLE INEEITACEuveeiee ittt e st e e rnbe e e e s nneeeas 89
Procedural LanQUAGEcuuviieiiee ettt e e ettt e e e e e s et e e e e e e e e e et e e e e e e e s aannrbanaaaaens 89

Data DefiNition LANQUEBOEccoeeeei ittt e e e e e s et e e e e e e e s et aeaeaaeeas 90

Data Manipulation Language & DSQLccciiiiiiiie et 91
ComMAaNG-IINE ULHITIESeveiiiiiiie i e e e naeeee s 93
International Language SUPPOITuvirieieie et e e e e e s ettt e e e e e e e s s st e e e e e e e e s s eannrreeeeaaeeaannns o7}

13. Firebird 3.0 ProJECE TEAIMSuvviiieeeiiiiiiiiieiee e e e e e ceett et et e e e e e e ettt e e e e e e e s e s n e b ae e e e aeeeessnasbaaeeeaaeeesaannnneees 95
APPENdiX A LICENCE NOLICE ..ot e e e e e e e s st re e e e e e e e s aaatbbareeeaeeaeans 97

Vii

List of Tables

3.1. Matrix of Working Modes (D. YEMANOV)ccoiuuiriiiiiieieeiiiiee e s ettt e e e e e e anne e s e e e nnnes
6.1. Parameters available in databaseS.Contoooiiiiiiiiiii e
13.1. Firebird DevelOPMENt TEAIMSoiiiiiiiieeitiie e et e et e e e e e e e e e e s b e e e e s e e e e anne e e e e ennes

viii

Chapter 1

General Notes

Thank you for trying out this second Alpha release of the forthcoming Firebird 3.0. We cordially invite you to
test it hard against your expectations and engage with usin identifying and fixing any bugs you might encounter.

Bug Reporting

 If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

» If you think a bug fix hasn't worked, or has caused a regression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test datain your report and post it to our Tracker.

2. Youarewarmly encouraged to make yourself known as a field-tester of this pre-release by subscribing to
the field-testers' list and posting the best possible bug description you can.

3. If youwant to start adiscussion thread about abug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this apha

Documentation

Youwill find all of the README documents referred to in these notes—as well as many others not referred to
—in the doc sub-directory of your Firebird 3.0 installation.

Anautomated "Release Notes' pagein the Tracker provideslistsand linksfor all of the Tracker tickets associated
with this and other pre-release versions. Use thislink.

--The Firebird Project

http://www.firebirdsql.org/en/how-to-report-bugs/
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe
http://tracker.firebirdsql.org/secure/ReleaseNote.jspa?version=10333&styleName=Html&projectId=10000

Chapter 2

New About Firebird 3.0

The primary goals for Firebird 3 were to unify the server architecture and to improve support for SMP and
multiple-core hardware platforms. Parallel objectives were to improve threading of engine processes and the
options for sharing page cache across thread and connection boundaries.

Alongside these aims came new strategies to improve performance, query optimization, monitoring and scal-
ability and to address the demand for more security options. A number of popular features were introduced
into the SQL language, including the long-awaited support for the Boolean data type and the associated logical
predications.

Summary of Features

Thefollowing list summarisesthefeatures and changes, with linksto the chapters and topicswhere more detailed
information can be found.

Unification of the Firebird executable is complete
With the completion of true SMP support for Superserver, the Firebird core is now a unified library that
supports a single ODS, loadable either as an embedded engine or by the “network listener” executable.
Choice of server model isdetermined by settings for two new configuration parameters defining the locking
and cache models, respectively: Shar edDat abase and Shar edCache. They can be specified at either
global level (infirebird. conf) or "per database” (in dat abases. conf).

By default, SharedDatabase = fal se and SharedCache = true, thus meaning SuperServer.

Note

The previous al i ases. conf is replaced by dat abases. conf, now including not just aliases for
databases but also (optionally) configuration parameters to enable configuration of databases and/or alter-
native security databases individualy.

The changes are described in more detail in the chapter Changes in the Firebird Engine.

True SMP support for Super Server
In Superserver mode, the engine now makes use of multiple CPUs and cores when spawning connections.

Tracker: CORE-775
Implemented by V. Khorsun

New, object-oriented C++ APIs
Object-oriented C++ APIs enable external code routines to plug in and run safely inside Firebird engine
space, including (but not limited to):

» Stored procedures, triggers and functions written in Java, C++, ObjectPascal, etc.

» Encryption schemes for data

http://tracker.firebirdsql.org/browse/CORE-775

New About Firebird 3.0

» User authentication schemes, including secure key exchange

New Data Type Support
A true BOOLEAN type (True/False/lUnknown), complete with support for logical predicates, e.g.,

UPDATE ATABLE
SET MYBOOL = (COLUMNL1ISDISTINCT FROM COLUMN2)

See BOOLEAN Type.

IDENTITY type, spawning unique identifiersfor the defined column from aninternal generator. See IDEN-
TITY-Style Column.

Support for SQL Packages
For details, refer to Packages.

DDL Triggers
Now, triggers can be written to execute when database objects are modified or deleted. A typical useisto
block unauthorised users from performing these tasks.
For details, refer to DDL Triggers.

'Window' functionsin DML
A whole new series of analytical functionsto work with multiple subsetsin DML. See Window (Analytical)
Functions.

Chapter 3

Changes in the
Firebird Engine

In Firebird 3, the remodelling of the architecture that was begun in v.2.5 was completed with the implementation
of full SMP support for the Superserver model. In the new scheme, it is possible to configure the execution
model individually per database.

Remodelled Architecture
Dmitry Y emanov

The remodelled architecture integrates the core engine for Classic/Superclassic, Superserver and embedded
models in a common binary. The cache and lock behaviours that distinguish the execution models are now
determined externally by the settingsin two new configuration parameters: SharedDatabase and SharedCache
and the connection method in the parameter Providers. The parameters for configuring the architecture are
specified globally (inf i r ebi rd. conf) and can be overridden specifically for a database (in dat abases.
conf).

Note

dat abases. conf istheold al i ases. conf with anew name. In Firebird 3, the role of thisfile involves
(potentially) much more than being just alookup for database file paths. For more details about this, refer to
the chapter Configuration Additions and Changes.

Working Modes (“*Models™)

Table 3.1. Matrix of Working Modes (D. Yemanov)

SharedDatabase=0 SharedDatabase=1
SharedCache=0 Single user Classic, SuperClassic
SharedCache=1 Superserver See Note

Infirebird. conf thedefaultsmake SharedDatabasefalse (=0) and SharedCachetrue (=1), i.e., SuperServer.

SharedDatabase=1, SharedCache=1

This mode, although theoretically possible, is hot supported currently.

Changesin the Firebird Engine

Execution Modes

Classic and SuperClassic
Classic and SuperClassic are set up using the same configuration: SharedDatabase = true and SharedCache

= false.

* On Linux, the server startup method determines which will run, i.e., running xinetd means Classic, while
running the firebird means SuperClassic.

* On Windows, the command line options for firebird.exe specify the mode, just as they did in v.2.5 for
fb_inet_server.exe, i.e., switch -m (for multi-threaded) means SuperClassic; otherwise Classicisimplied.

Sngle-user Mode
SharedDatabase = false and SharedCache = false means that only one connection is possible, i.e., single

user mode.

Whether a “hostless’ connection is handled by the embedded engine or by the network listener (e.g. the
XNET case), the settings SharedDatabase and SharedCache define the behaviour at the engine level. For an
embedded connection, SharedDatabase = fal se and SharedCache = true would mean the pre-v.2.5 embedded
behaviour on Windows (based on Superserver), while SharedDatabase = true and SharedCache = falsewould
mean the v.2.5 embedded behaviour (based on SuperClassic).

How the connection string is processed depends on order specified in the Providers setting. The default
setting is Renot e, Engi nel2, Loopback. Connection strings to hosts are handled by the Remote
provider, while “hostless’ ones are handled, in turn, by Enginel2 or L oopback.

Thus, | i bEngi nel2. so or engi nel2. dl | (as appropriate to platform) is available to the Dispatcher
(y-valve), a“hostless’ connection will be handled by the embedded engine; otherwise it will be handled by
the loopback provider (XNET on Windows, TCP vialocahost on POS| X).

Note

Of course, technically, XNET is not alocal loopback provider (alocal connection through a remote inter-
face) and, in previous Firebird versions, it was treated as being in the “remote” space. On Firebird 3, it
belongs with the local loopback providers.

Providers

Theprovidersaremoreor lesswhat wetraditionally thought of asthe methods used to connect aclient to aserver,
viz., across anetwork, host-locally, viathelocal loopback (“localhost™) or by amore direct local connection (the
old ! i bf benbed. so on POSIX, now implemented as the plug-in library | i bEngi ne12. so; on Windows,
engi nel2. dl | ; on MacOSX, engi nel2. dyl i b).

In firebird.conf, all are available by default, viz.,

#Provi ders = Renot e, Engi nel2, Loopback

Changesin the Firebird Engine

Note

In databases.conf, one or more providers can be blocked by pasting the uncommented line and deleting the
unwanted provider[s].

The Providers Architecture
Alex Peshkov

Although a key feature of Firebird 3, the Providers architecture is not new. Providers existed historically in
Firebird's predecessors and, though well hidden, are present in al previous versions of Firebird. They were
introduced originally to deal with atask that has been performed latterly by “interface layers’ such as ODBC,
ADO, BDE and the like, to enable access to different database engines using a single external interface.

Subsequently, thisProvidersarchitecture (known then as Open Systems Relational Interface, OSRI) al so showed
itself as very efficient for supporting a mix of old and new database formats—different major on-disk structure
versions—on asingle server having mixed connections to local and remote databases.

The providers implemented in Firebird 3 make it possible to support all these modes (remote connections,
databases with differing ODS, foreign engines) as well as chaining providers. Chaining is aterm for a situation
where aprovider is using a callback to the standard APl when performing an operation on database.

The Components

The main element of the Providers architecture isthe y-valve. On theinitial att ach or cr eat e dat abase
call y-valve scansthelist of known providersand callsthem one by one until one of them completesthe requested
operation successfully. For a connection that is already established, the appropriate provider is called at once
with almost zero overhead.

Let'stake alook at some samples of y-valve operation when it selects the appropriate provider at theat t ach
stage. These use the default configuration, which contains three providers: Remote (establish network con-
nection), Enginel2 (main database engine) and L oopback (force network connection to the local server for
<database name> without an explicit network protocol being supplied).

Thetypical client configuration worksthisway: when one attachesto adatabase called Renot eHost : dbnane
(TCP syntax) or \ \ Renot eHost \ dbname (NetBios) the Remote provider detects explicit network protocol
syntax and, finding it first in the Provider list, redirects the call to RemoteHost.

When <database name> does not contain a network protocol but just the database name, the Remote provider
regjectsit and the Enginel2 provider comes to the fore and tries to open the named database file. If it succeeds,
we get an embedded connection to the database.

Note

A specia “embedded library” is no longer required. To make the embedded connection, the standard client
|oads the appropriate provider and becomes an embedded server.

Failure Response

But what happensif the engine returns an error on an attempt to attach to a database?

Changesin the Firebird Engine

» |f the database file to be attached to does not exist thereis no interest at al.

» Anembedded connection may fail if the user attaching to it does not have enough rights to open the database
file. That would be the normal case if the database was not created by that user in embedded maode or if he
was not explicitly given OS rights for embedded access to databases on that box.

Note

Setting access rights in such a manner is arequirement for correct Superserver operation.

» After afailure of Enginel2 to access the database, the L oopback provider is attempted for an attach. It is
not very different to Remote except that it triesto access the named database <dbnane> on aserver running
aTCP/IP local loopback.

On Windows, the XNET protocol (also known as*Windowslocal connection”) isused for it. POSIX systems
prepend <dbnane> with | ocal host : and use a TCP connection.

If the attachment succeeds, aremote-like connection is established with the database even thoughiit islocated
on the local machine.

Other Providers

Use of providersisnot limited to the three standard ones. Firebird 3 does not support pre-ODS 12 databases but
Firebird 3 will have an additional provider to access older databases (ODS 8 to 11.x). Removing support for old
formats from the engine helps to simplify its code and gain a little speed. Taking into account that this speed
gain sometimes takes place in performance-critical places, like searching akey in an index block, avoiding old
code and related branches really does make Firebird fly faster.

Nevertheless, the Providers architecture does makeit possible to access old databases when changing to a higher
version of Firebird.

Custom Providers

A strong feature of the Providers architecture is ability for the deployer to add his own providersto the server,
the client, or both.

So what else might be wanted on a client, other than a remote connection? Recall Provider chaining that was
mentioned earlier. Imagine acase where adatabase is accessed viavery slow network connection, say something
like 3G or, worse, GPRS. What comesto mind asaway to speed it upisto cache on the client some big tablesthat
rarely change. Such systemswere actually implemented but, to doit, onehad to renamef bcl i ent to something
arbitrary and load it intoitsown library calledf bcl i ent , thusmaking it possibleto use standard toolsto access
the database at the same time as caching required tables. It works but, as asolution, it is clearly not ideal.

With the Providers architecture, instead of renaming libraries, onejust adds alocal caching provider which can
use any method to detect connections to it (something like a cache @prefix at the beginning of the database
name, or whatever else you choose).

In this example, when the database name cache @Renot eHost : dbnane isused, the caching provider accepts
the connection and invokes the y-valve once more with the traditional database name Renpt eHost : dbnane.
When the user later performsany call to his database, the caching provider gets control of it before Remote does
and, for alocally cached table, can avoid making callsto the remote server.

Changesin the Firebird Engine

Use of chaining allows alot of other useful things to be implemented, such as database replication without the
need for triggers: just repeat the same callsfor the replication host when, for example, atransaction iscommitted.
In this case, the chaining provider isinstalled on the server, not the client, and no modification of the command
lineisneeded at all.

To avoid cycling when performing a callback to y-valve at attach time, such a provider can modify the list of
providers using the i sc_dpb_confi g paraneter inthe DPB. The same technique may be used at the
client, too.

For details, see the Configuration Additions and Changes chapter.

The ability to access foreign database engines using providers should not be overlooked, either. It might seem
strange to consider this, given the number of tools available for this sort of task. Think about the ability to
access other Firebird databases using EXECUTE STATEMENT, that became available in Firebird 2.5. With
a provider to ODBC or other common tool to access various data sources it is within reach to use EXECUTE
STATEMENT to get direct access from procedures and triggers, to data from any database having a driver for
the chosen access tool. It is even possible to have a provider to access some particular type of foreign database
engineif there is some reason to want to avoid the ODBC layer.

Providers Q & A

Q. Interfaces and providers are probably very good, but | have an old task written using plain API functions and
for alot of reasons| can't rewriteit in the near future. Doesit mean | will have problems migrating to Firebird 3?

» A. Definitely no problems. The old API is supported for backward compatibility in Firebird 3 and will be
supported in future versions as long as people need it.

And what about performance when using the old API?

* A. The functional API isimplemented as a very thin layer over interfaces. Code in most cases is trivial:
convert passed handles to pointers to interfaces—a step was always present but referred to as “handle vali-
dation”—and invoke the appropriate function from the interface.

Functions that execute an SQL operator and fetch data from it are a place where it is a little more complex.
The SQLDA and the data movesrelated to it have never been the fastest part of the functional API, anyway.
It was one the reasons to have the new APl and the logic between the new and old APIs does not add much
to that old overhead.

Plug-Ins
Alex Peshkov

From version 3 onward, Firebird's architecture supports plug-ins. For a number of pre-defined points in the
Firebird code, a developer can write his own fragment of code for execution when needed.

A plug-inis not necessarily one written by athird party: Firebird has anumber of intrinsic plug-ins and, as will
be seen, even some core parts of Firebird are implemented as plug-ins.

What is a Plug-In?

Theterm “plug-in” is often used to name related but different things:

Changesin the Firebird Engine

e adynamic library, containing code to be loaded as a plug-in (often called a plug-in module) and stored in
the $FI REBI RDY pl ugi ns directory;

» code implementing a plug-in. That is dlightly different from the library, since a single dynamic library may
contain code for more than one plug-in;

» aplug-in's factory: an object created by that code (pure virtual C++ class), creating instances of the plug-
in at Firebird's request;

» aninstance of the plug-in, created by its factory.

Plug-In Types

Firebird's plug-in architecture makesit possible to create plug-ins of predefined types. Each version has afixed
set of supported plug-in types. To add a further type, the first requirement is to modify the Firebird code. Our
plug-in architecture facilitates both adding new types of plug-insand simplifying the coding of the plug-in along
generic lines.

Tobeabletoimplement aplug-in, say, for encrypting adatabase on the disk, the Firebird code hasto be prepared
for it: it must have a point from which the plug-in is called.

The set of plug-in typesimplemented in Firebird 3 comprises:

user authentication related:
» AuthServer (validates user's credentials on server when logins are used)

» AuthClient (prepares credentials to be passed over the wire)
» AuthUserManagement (maintains alist of users on a server in aform, known to AuthServer)

ExternalEngine
Controls the use of various engines, see External Engines.

Trace
The Trace plug-in was introduced in Firebird 2.5, but the way it interacts with the engine was changed in
Firebird 3 to accord with the new generic rules.

Encryption
encrypting plug-ins are for

» network (WireCrypt)
* disk (DbCrypt)
» ahelper plug-in (KeyHolder), used to help maintain the secret key(s) for DbCrypt

Provider
Firebird 3 supports providers as a plug-in type.

Technical Details

Plug-insuseaset of special Firebird interfaces. All plug-in-specific interfaces are reference counted, thus putting
their lifetime under specific control. Interfaces are declared in the include file plug-in.h. DbCr ypt _exanpl e
provides a simple model for writing a plug-in module

Changesin the Firebird Engine

Note

The example does not perform any actual encryption, it is just a sample of how to write a plug-in. Complete
instructions for writing plug-ins are not in scope for this document.

Features of a Plug-In
A short list of plug-in features:

* Youcanwriteaplug-inin any language that supports pure virtual interfaces. Interface declarationswill need
to be written for your language if they are missing.

» Aswith UDFs, you are free to add any reasonable code to your plug-in#with emphasis on reasonable. For
example, asking a question at the server's console from aplug-in is hardly “reasonable”!

e Cdling the Firebird API from your plug-inis OK, if needed. For example, the default authentication server
and user manager use a Firebird database to store accounts.

» Firebird provides a set of interfaces to help with configuring your plug-ins. It is not obligatory to use them,
since the plug-in code is generic and can employ any useful method for capturing configuration information.
However, using the standard tool s provides commonality with the established configuration style and should
save the additional effort of rolling your own and documenting it separately.

Configuring Plug-ins

Configuration of plug-ins has two parts:

1. Theengine hasto beinstructed what plug-insit should load
2. The plug-ins themselves sometimes need some configuration.

The plug-ins to be loaded for each type of plug-in are defined in the main configuration file, fi rebi rd.
conf , usualy with defaults. The ones defined in Firebird 3 are discussed in the chapter entitled “ Configuration
Additionsand Changes’. In summary, the set that provides normal operation in the server, client and embedded
cases consists of :

e AuthServer = Srp, Win_Sspi

e AuthClient = Srp, Win_Sspi, Legacy Auth
* UserManager = Srp

» TracePlugin = fbtrace

» Providers = Remote,Enginel2,L oopback

* WireCryptPlugin = Arc4

Note

If you want to add other plug-ins, they must be cited in firebird.conf. Apart from other considerations, this
reguirement acts as a security measure to avoid loading unknown code.

10

Changesin the Firebird Engine

Taking the entry TracePlugin = fbtrace as an example, what does the value fbtrace signify? In atrivia case,
it can indicate the name of adynamic library but the precise answer is more complicated.

Asmentioned earlier, asingle plug-in module may implement more than one plug-in. In addition, asingle plug-
in may have more than one configuration at once, with a separate plug-in factory created for each configuration.
Each of these three object contexts (module | implementation | factory) has its own name:

» The name of amodule isthe file name of adynamic library

» The name of a plug-in implementation isthe one given to it by the developer of the plug-in. It is hard-coded
inside the module.

» The name of afactory is, by default, the same as the name of the plug-in implementation's name. It is the
factory name which isactually usedinf i r ebi rd. conf .

Inatypical trivial case, where amodule contains one plug-in that workswith just one configuration and all three
names are equal, and no more configuration is needed. An example would be libEnginel2.so | Enginel2.dll |
Enginel2.dylib, that contains the implementation of the embedded provider Enginel2. Nothing other than the
record Providers= Enginel2 is needed to load it.

For something more complex afile will help you to set up the plug-in factories precisely.

plugins.conf
Thefile$(root)/ pl ugi ns. conf hastwo types of records. config and plugin.

the plugin record is a set of rulesfor loading land activating the plug-in. Itsformat is:

Plugin = PlugNane ## this is the name to be referenced in firebird. conf

{
Modul e = Li bNanme ## nane of dynamic library

Regi st er Name = RegNanme ## nanme given to plug-in by its devel oper
Config = Conf Name ## name of config record to be used
ConfigFile = ConfFile ## name of a file that contains plug-in's configuration

When plug-in PlugName is needed, Firebird loads the library LibName and locates the plug-in registered with
the name RegName. The configuration from the config record ConfName or the config file ConfFile are passed
to thelibrary.

Note
If both ConfName and ConfFile are given, then the config record will be used.

If both parameters are missing, the default PlugName is used; except that if the ConfigFileis present and its
name is the same as the module's dynamic library but with a. conf extension, it will be used.

The ConfigFileis expected to use the format Key=Value, in line with other Firebird configuration files.

For the plug-in record the same format is used:

Config = Conf Nane

{
Keyl = Val uel

11

Changesin the Firebird Engine

Key2 = Val ue2

A Sample Setup

Suppose you have a server for which some clients trust the wire encryption from one vendor and others prefer a
different one. They have different licences for the appropriate client components but both vendors use the name
“BestCrypt” for their products.

The situation would require renaming the libraries to, say, WC1 and WC2, since there cannot be two filesin
the same directory with the same name. Now, the modul es stop loading automatically because neither is called
“BestCrypt” any longer.

To fix the problem, pl ug-i ns. conf should contain something like this:

Plugin = W1
{ Regi st er Nanme = Best Crypt
Pl Lgi n = W2
{ Regi st er Nane

}

Best Cr ypt

The module names will be automatically set to WC1 and WC2 and found. Y ou can add any configuration info
that the plug-ins need.

Remember to modify firebird.conf to enable both plug-ins for WireCryptPlugin parameter:
WreCyptPlugin = W1, WC2

The server will now select appropriate plug-in automatically to talk to the client.

Another sample is distributed with Firebird, in $(r oot) / pl ugi ns. conf, configuring one of the standard
plug-ins, UDR. Because it was written to a use non-default configuration, the module name and one configura-
tion parameter are supplied explicitly.

Plug-Ins Q & A

Q. There are plug-ins named Remote, Loopback, Arc4 in the default configuration, but no libraries with such
names. How do they work?

* A. They are“built-in” plug-ins, built into fbclient library, and thus always present. Their existence is due to
the old ability to distribute the Firebird client for Windows as asingle dll. The feature is retained for cases
where the standard set of plug-insis used.

Q. What do the names of Srp and Arc4 plug-ins mean?

* A. Srpimplementsthe Secure Remote Passwords protocol, the default way of authenticating usersin Firebird
3. Its effective password length is 20 bytes, resistant to most attacks (including “man in the middle”) and
works without requiring any key exchange between client and server to work.

12

Changesin the Firebird Engine

Arcd means Alleged RC4 - an implementation of RC4 cypher. Its advantage isthat it can generate a unique,
cryptographically strong key on both client and server that isimpossible to guess by capturing datatransferred
over the wire during password validation by SRP.
The key is used after the SRP handshake by Arc4, which makes wire encryption secure without need to
exchange any keys between client and server explicitly.

Q. What do Win_Sspi and Legacy Auth mean?

* A. Windows SSPI has been in use since Firebird 2.1 for Windows trusted user authentication. Legacy Auth
isacompatibility plug-into enable connection by the Firebird 3 client to older servers. Itisenabled by default
in the client.

And Yes, it still transfers almost plain passwords over the wire, for compatibility.

On the server it works with a security database from Firebird 2.5, and should be avoided except in situations
where you understand well what are you doing.

Touse Legacy Auth on the server you will need to disable network traffic encryptioninf i r ebi r d. conf :

WreCypt = Disabled

Q. How can | find out what the standard Authentication and User Manager plug-ins are?

* They arelistedinfi rebird. conf.

External Engines
Adriano dos Santos Fernandes

The UDR (User Defined Routines) engine adds a layer on top of the FirebirdExternal engine interface with the
purpose of

 establishing away to hook external modules into the server and make them available for use
» creating an APl so that external modules can register their available routines

» making instances of routines “per attachment”, rather than dependent on engine the internal implementation
details of the engine

External Names

An external name for the UDR engine is defined as

" <nodul e nanme>! <routi ne nane>! <m sc i nf o>

The <module name> is used to locate the library, <routine name> is used to locate the routine registered by
the given module, and <misc info> is an optiona user-defined string that can be passed to the routine to be
read by the user.

13

Changesin the Firebird Engine

Module Availability

Modules available to the UDR engine should be in a directory listed by way of the path attribute of the corre-
sponding plugin_config tag. By default, a UDR module should be on <fbroot>/plugins/udr, in accordance with
its path attribute in <fbroot>/plugins/udr_engine.conf.

The user library should include FirebirdUdr.h (or FirebirdUdrCpp.h) and link with the udr_enginelibrary. Rou-
tinesare easily defined and registered, using some macros, but nothing preventsyou from doing things manually.

Note

A sample routine library isimplemented in exanpl es/ udr , showing how to write functions, selectable pro-
cedures and triggers. It also shows how to interact with the current attachment through the legacy API.

Scope

The state of aUDR routine (i.e., its member variables) is shared among multiple invocations of the same routine
until it is unloaded from the metadata cache. However, it should be noted that the instances are isolated “per
session”.

Character Set

By default, UDR routines use the character set that was specified by the client.

Note

In future, routines will be able to modify the character set by overriding the getChar Set method. The chosen
character set will be valid for communication with the ISC library [ADRIANO: which library do you refer to
here?] aswell as the communications passed through the FirebirdExternal API.

Enabling UDRs in the Database

Enabling an external routine in the database involves a DDL command to “create” it. Of course, it was already
created externally and (we hope) well tested.

Syntax Pattern

{ CREATE [OR ALTER] | RECREATE | ALTER } PROCEDURE <nane>
[(<paraneter list>)]
[RETURNS (<paraneter list>)]
EXTERNAL NAME ' <external name>" ENG NE <engi ne>

{ CREATE [OR ALTER] | RECREATE | ALTER } FUNCTI ON <nane>
[<paraneter list>]
RETURNS <data type>
EXTERNAL NAME ' <external name>" ENG NE <engi ne>

14

Changesin the Firebird Engine

{ CREATE [OR ALTER] | RECREATE | ALTER } TRI GGER <nane>

EXTERNAL NAME ' <external name>'" ENG NE <engi ne>

Examples

create procedure gen_rows (
start_n integer not null,
end_n integer not nul
) returns (
n integer not nul
) external nanme 'udrcpp_exanpl el gen_rows'
engi ne udr;

create function wait_event (
event _nanme varchar(31) character set ascii
) returns integer
ext ernal nane 'udrcpp_exanpl e!wait_event'
engi ne udr;

create trigger persons_replicate
after insert on persons
external nane 'udrcpp_exanple!replicate! dsl'
engi ne udr;

How it Works

The external names are opague strings to Firebird. They are recognized by specific external engines. External
engines are declared in configuration files, possibly in the same file as a plug-in, as in the sample library is
implemented in exanpl es/ pl ugi ns.

<ext er nal _engi ne UDR>
p! ugi n_nodul e UDR_engi ne
</ ext ernal _engi ne>

<pl ugi n_nmodul e UDR_engi ne>
filename $(this)/udr_engine
pl ugi n_config UDR config

</ pl ugi n_nodul e>

<pl ugi n_config UDR config>
path $(this)/udr
</ pl ugi n_confi g>

When Firebird wants to load an external routine (function, procedure or trigger) into its metadata cache, it gets
(see note below)the external engine through the plug-in external engine factory and asks it for the routine. The
plug-in used is the one referenced by the attribute plugin_module of the external engine.

Note

Depending on the server architecture (Superserver, Classic, etc) and implementation details, Firebird may get
external engineinstances* per database” or “per connection”. Currently, it always getsinstances* per database”.

15

Changesin the Firebird Engine

Miscellaneous Improvements

Miscellaneous engine improvements include.-

Internal Debug Info Made Human-readable
Vlad Khorsun

A new BLOB filter trandates internal debug information into text.

A Silly Message is Replaced
Claudio Vaderrama C.

A silly message sent by the parser when areference to an undefined object was encountered was replaced with
onethat tellsit likeit realy is.

New Pseudocolumn RDB$RECORD VERSION

Adriano dos Santos Fernandes

A pseudocolumn named RDB$RECORD_VERSION returns the number of the transaction that created the cur-
rent record version.

Itisretrieved the sasmeway asRDB$DB_KEY, i.e, select RDB$SRECORD VERSION from aTablewhere...

systemd init Scripts
Alex Peshkov

systemd init scripts are availablein Firebird 3 POSIX installers. See Tracker ticket CORE-4085.

16

http://tracker.firebirdsql.org/browse/CORE-4085

Changes to the
Firebird APl and ODS

ODS (On-Disk Structure) Changes

New ODS Number

Firebird 3.0 creates databases with an ODS (On-Disk Structure) version of 12.

Implementation ID is Deprecated
Alex Peshkov

The Implementation ID in the ODS of a database is deprecated in favour of a new field in database headers
describing hardware details that need to match in order for the database to be assumed to have been created by
a compatible implementation.

The old Implementation ID is replaced with a 4-byte structure consisting of hardware ID, operating system 1D,
compiler ID and compatibility flags. Thethree ID fields are just for information: the ODS does not depend upon
them directly and they are not checked when opening the database.

The compatibility flags are checked for a match between the database and the engine opening it. Currently we
have only one flag, for endianness. As previously, Firebird will not open a database on little-endian that was
created on big-endian, nor vice versa.

Sample gstat Output

./gstat -h enployee
Dat abase “/usr/hone/firebird/trunk/gen/ Debug/firebird/ exanpl es/ enpbuil d/ enpl oyee. f db”
Dat abase header page information:

| npl enent ati on HWEAMD/ I ntel / x64 littl e-endi an OS=Li nux CC=gcc

The purposeisto makeit easier to do ports of Firebird for new platforms.

Maximum Page Size

The maximum page size remains 16 KB (16384 bytes).

17

Changesto the Firebird APl and ODS

Maximum Number of Page Buffers in Cache

The maximum number of pages that can be configured for the database cache depends on whether the database
isrunning under 64-bit or 32-bit Firebird:

« 64-bit :: 2831 -1 (2,147,483,647) pages

e 32-hit :: 128,000 pages, i.e., unchanged from V.2.5

Changes to System Tables

RDB$SYSTEM_FLAG
Claudio Valderrama C.

RDB$SY STEM_FLAG has been made NOT NULL in all tables.

CORE-2787.

RDBS$TYPES
Dmitry Y emanov

Missing entries were added to RDB$TY PES. They describe the numeric values for these columns:

RDB$PARAVETER TYPE (tabl e RDB$PROCEDURE PARANMETERS)

RDBS$| NDEX_| NACTI VE (tabl e RDB$I NDI CES)

RDB$UNI QUE_FLAG (tabl e RDB$I NDI CES)

RDB$TRI GGER | NACTI VE (tabl e RDB$TRI GGERS)

RDB$GRANT _OPTI ON (tabl e RDB$USER PRI VI LEGES)
RDB$PAGE_TYPE (tabl e RDB$PAGES)

RDB$PRI VATE_FLAG (tabl es RSB$PROCEDURES and RDB$FUNCTI ONS)
RDB$LEGACY FLAG (tabl e RDB$FUNCTI ONS)

RDB$DETERM NI STI C_FLAG (t abl e RDB$FUNCTI ONS)

Application Programming Interfaces

A new public API replacesthelegacy onein new applications, especially object-oriented ones. Theinterface part
can be found in the header file Pr ovi der . h inthedirectory / i ncl ude/ fi r ebi r d benesth the installation
root directory.

Note

POSIX installations have a symlink pointingto/ usr/i ncl ude/ firebird/ Provider.h

The new public API can be also used inside user-defined routines (UDR, g.v.) for callbacks inside the engine,
allowing a UDR to select or modify something in the database, for example.

18

http://tracker.firebirdsql.org/browse/CORE-2787

Changesto the Firebird APl and ODS

The main difference between the new API and the legacy one is that UDRs can query and modify datain the
same connection or transaction context asthe user query that called that UDR. It isnow possibleto write external
triggers and procedures, not just external functions (UDFs).

Interfaces and the New Object-oriented API
Alex Peshkov

Firebird needed a modernised API for a number of compelling reasons.

High on the list was the limitation of the 16-bit integer pervading the legacy API, encompassing message
size, SQL operator length, BLOB data portions, to name afew examples. While 16-bit was probably adequate
when that old API cameto life, in today's environmentsit is costly to work around.

A trivial solution might beto add new functionsthat support 32-bit variables. The big downsideisthe obvious
need to retain support for the old API by having pairs of functions with the same functionality but differing
integer sizes. In fact, we did something like this to support 64-bit performance counters, for no better reason
than being pressed to provide for it without having a more elegant way to implement it.

Another important reason, less obvious, derives from the era when Firebird's predecessor, InterBase, did
not support SQL. It used a non-standard query language, GDML, to manage databases. Data requests were
transported between client and server using messages whose formats were defined at request compilation
timein BLR (binary language representation). In SQL, the operator does not contain the description of the
message format so the decision was taken to surround each message with a short BLR sequence describing
itsformat.

For some reason, that rule was followed so slavishly that every fetch of data from the server now required
sending the BLR for it, not just the formatting BLR that was sent at SQL compile time.

The reason for such apparent strangeness was the SQLDA layer (XSQLDA) that rides on top of the mes-
sage-based API, invented as an attempt to work around the inefficiency of sending the BLR at every turn.

The trap with the XSQLDA solution is that it encapsulates both the location of the data and their format,
making it possible to change location or format (or both) between fetch calls. Hence, the need for the BLR
wrapping in every fetch call—notwithstanding, this potential capability to change the data format between
fetches was broken in the network layer before Firebird existed.

Thissysteminvolving calls processing datathrough multiplelayersishard to extend and wastes performance;
the SQLDA is not simple to use; the desire to fix it was strong.

Other reasons—numerous but perhaps less demanding—for changing the API included enhancing the status
vector and optimizing dynamic library loading. Interfaces also make it so much easier and more comfortable
to use the messages API.

The Non-COM Choice

The new interfaces are not compatible with COM, deliberately, and the reasons have to do with future perfor-
mance enhancement.

At the centre of the Providers architecture in Firebird 3.0 is the y-valve, which is directed at dispatching API
callsto the correct provider. Amongst the potential providers are older ones with potentially older interfaces. If
we used COM, we would haveto call the method | Unknown for each fetch call, just to ensure that the provider

19

Changesto the Firebird APl and ODS

really had some newer APl method. Along with that comes the likelihood of future additions to the catal ogue
of API callsto optimize performance. A COM-based solution does not play well with that.

Firebird interfaces, unlike COM, support multiple versions. The interface version is determined by the total
number of virtual functions it encompasses and it can be upgraded.

“Upgradable”’ does not imply that the older interface gets the full functionality of the new, though. After the
upgrade, the virtual function table is expanded to include a function defined by the upgrade caller that will
reasonably, if minimally, emulate the upgraded behaviour: return an error from a provider, for example, or
“place-hold” a specific piece of content with an empty string.

Although the* poor man'supgrade’ isno prettier than what would happen with lUnknown without it, the Firebird
3 solution provides the means to incorporate other methods that would be more appropriate.

The Hierarchy of Interfaces

A detailed discussion of all the functions presented by all the interfaces is outside the scope of this overview.
The general schematic looks like this:

|Versioned IPluginFactory

IService

|IPluginBase ExternalEngine

|Provider

The base of the structure is | Versioned. It is the interface that enables a version upgrade. A lot of interfaces
not requiring additional lifetime control are based directly on IVersioned. IMaster is one example aready
mentioned. Others include a number of callback interfaces whose lifetimes must match the lifetimes of the
objects from which they were to be used for callback.

Two interfaces deal with lifetime control: I Disposable and | RefCounted. The latter is especialy active in the
creation of other interfaces: | Plugin isreference counted, as are many other interfacesthat are used by plug-ins.
These include the interfaces that describe database attachment, transaction management and SQL statements.

Not everything needs the extra overhead of areference-counted interface. For example, IMaster, the main inter-
face that calls functions available to the rest of the API, has unlimited lifetime by definition. For others, the API

20

Changesto the Firebird APl and ODS

is defined strictly by the lifetime of a parent interface; the |Status interface is non-threaded. For interfaces with
limited lifetimesit is of benefit to have asimple way to destroy them, that is, a dispose() function.

Each plug-in has one and only one main interface—I Plugin—which is responsible for basic plug-in function-
aity. Infact, alot of plugins have only that interface, although that is not a requirement.

Finally, thereis|Provider, akind of “main” plug-inintheFirebird API. | Provider isderived from | Plugin and
must beimplemented by every provider. If you want to write your own provider you must implement | Provider .
It is implemented also by the y-valve: it is the y-valve implementation that is returned to the user when the
getDispatcher () function from the master interface is called.

IProvider contains functions enabling creation of an attachment to a database (attach and create) or to the
Services Manager.

Interfaces Q & A
Q. We access new API using IMaster. But how to get accessto IMaster itself?

» A. Thisisdone using the only one new API function fb_get_master_interface(). It is exported by the f b-
client library.

Q. The non-use of COM-based interfaces was said to be to avoid working with [lUnknown methods and that
this is done due to performance issues. Instead you have to upgrade interfaces. Why is that faster than using
IUnknown?

» A.Upgradinganinterfacerequiressomework. In acasewheretheversion matchesthe caller'srequirements, it
isnot so big—just acheck. When areal upgradeisneeded, more CPU cycleswill be spent. Themain difference
with the COM approach is that an upgrade is performed for the interface only once, after its creation, but
IUnknown methods must be called each time we are going to call an interface with unknown version (or
that version should be stored separately and later checked). For a Firebird interface, once upgraded, thereis
absolutely no waste of time when performing callsto it during all itslifetime.

Other New APIs

Other new APIs support various plug-ins by declaring the interfaces between the engine and the plug-in. Besides
pluggabl e authentication and pluggabl e encryption, Firebird 3 supports “external engines’, bridges between the
engine and the execution environments that can run UDRSs: native code, Java and others. By and large they are
intended for use by third-party solution providers, rather than for client application devel opment.

For creating custom plug-ins and bridges, the relevant interface (API) needs to be implemented in the plug-
in code.

Available Interface (Header) Files

Authentication
Aut h. h

Encryption
Crypt.h

21

Changesto the Firebird APl and ODS

External engines
Ext er nal Engi ne. h

APl Improvements

Improvements to the legacy API include.-

Better Error Reports for String Overflows
Alex Peshkov

Include expected and actual string length in the error message for string overflows (SQLCODE -802).

More Detail in “Wrong Page Type” Error Reports
Alex Peshkov

More details in the error message "wrong page type", i.e., identifying expected and encountered page types by
name instead of numerical type.

New Services Tag for Overriding LINGER
Alex Peshkov

The Services APl now includes thetag isc_spb_prp_nolinger, for example (in one line):

fbsvcngr host:service_ngr user sysdba password xxx
action_properties dbnanme enpl oyee prp_nolinger

For information regarding LINGER, see the write-up in the DDL chapter.

22

Chapter 5

Reserved Words and Changes

New Reserved Words in Firebird 3.0

DETERMINISTIC
OVER

RETURN
SCROLL
SQLSTATE

23

Chapter 6

Configuration
Additions and Changes

Thefileal i ases. conf isrenamedtodat abases. conf.Anoldal i ases. conf fromapreviousversion
can simply be renamed and the new engine will just continue to useit as before. However, dat abases. conf
can now include some configuration information for individual databases.

Scope of Parameters

Some parameters are marked as configurable per-database or per-connection.
» Per-database configuration isdonein dat abases. conf .

» Per-connection configuration is primarily for client tool use and is done using the DPB parameter
isc_dpb_config or, for Services, the SPB parameter isc_spb_config.

* Inthe case of Embedded, the DPB can be used to tune per-database entries on first attaching to a database.

Macro Substitution

A number of predefined macros (syntax $(name)) is available for use in the configuration files to substitute for
adirectory name:

$(root)
Root directory of Firebird instance

$(install)
Directory where Firebird isinstalled

$(this)
Directory where current configuration file islocated

$(dir_conf)
Directory where firebird.conf and databases.conf are located

$(dir_secdb)
Directory where the default security database is |ocated

$(dir_plugins)
Directory where plugins are located

24

Configuration Additions and Changes

$(dir_udf)
Directory where UDFs are located by default

$(dir_sample)
Directory where samples are located

$(dir_sampledb)
Directory where sample DB (employee.fdb) islocated

$(dir_intl)
Directory where international modules are located

$(dir_msg)
Directory where the messages file (firebird.msg) islocated

Includes

One configuration file can be included in another by using an “include” directive, e.g.,
include some file.conf

A relative path istreated asrelative to the enclosing configuration file. So, if our example aboveisinside/ opt /
confi g/ mast er. conf thenour includerefersto thefile/ opt / confi g/ sone_fil e. conf.

Wildcards

The standard wildcards * and ? may be used in an include directive, to include al matching files in undefined
order. For example,

include $(dir_plugins)/config/* .conf

Expression of Parameter Values
Integer byte values were traditionally specified by default in bytes and other integer values were digital. How-

ever, now you can optionally specify them in Kilobytes, Megabytes or Gigabytes, as appropriate, by adding K,
M or G (case-insensitive). For example, 24M isread as 25165824 (24 * 1024 * 1024).

Boolean values are expressed as non-zero (true)|zero (false) by default, but you may now use the quoted strings
'y', 'yes or 'true' instead of a non-zero digit.

“Per-database” Configuration

Custom configuration at database level is achieved with formal entriesin dat abases. conf .

25

Configuration Additions and Changes

Format of Configuration Entries

To come.

Parameters Available

Thefollowing parameters can be copy/pasted to dat abases. conf and used as overridesfor specific databas-
es. Asterisk pairs (**) mark parametersthat can aternatively be configured at the client connection viathe DPB/
SPB. Please refer back to Scope of Parameters at the beginning of this chapter if you do not understand these
differences.

Table 6.1. Parameter s available in databases.conf

ExternalFileAccess DefaultDbCachePages DatabaseGrowthl ncrement
FileSystemCacheThreshold ** AuthClient

UserManager CryptPlugin ** Providers

Deadlock Timeout MaxUnflushedWrites MaxUnflushedWriteTime
**only ConnectionTimeout WireCrypt **only DummyPacketInterval
**only RemoteServiceName **only RemoteServicePort **only RemoteA uxPot
**only TCPNoNagle LockMemSize LockAcquireSpins
LockHashSlots EventMemSize GCPolicy

SecurityDatabase **only IpcName **only RemotePipeName
SharedCache SharedDatabase

New Parameters

New parametersadded tof i r ebi r d. conf are:

SecurityDatabase

Defines the name and location of the security database that stores login user names and passwords used by the
server to validate remote connections. By default, inf i r ebi rd. conf ,itis$(root)/security3. fdb.It
can be overridden for a specific database by a configuration in dat abases. conf .

AuthServer and AuthClient

Two parameters that determine what authentication methods can be used by the network server and the client
redirector. The enabled methods are listed as string symbols separated by commas, semicolons or spaces.

26

Configuration Additions and Changes

» Secure remote passwords (Srp), using the plug-in isthe default, using the OS-appropriate plug-in (I i bSr p.
sO | Srp.dll | Srp.dylib)

* On Windows, the Security Support Provider Interface (Sspi) is used when no login credentials are supplied
» Client applications can use legacy authentication (Legacy_ Auth) to talk to old servers.

For AuthServer, Srp and Win_Sspi are listed; for AuthClient, Srp, Win_Sspi and Legacy Aduth.

To disable a method, erase the comment marker (#) and remove the unwanted method from the list.

Both parameters can be used in dat abases. conf . They can both be used in the DPB or the SPB for a con-
nection-specific configuration.

WireCrypt

Sets whether the network connection should be encrypted. It has three possible values: Required (=1) | Enabled
(=2) | Disabled (=0). The default is set such that encryption is Required for connections coming in to the server
and Enabled for connections outgoing to a client. [Ed.: more comprehension wanted here?]

UserManager

Sets the plug-in that will operate on the security database. It can be alist with blanks, commas or semicolons
as separators: the first plug-in from thelist is used.

The default plug-inisSrp (I'i bSrp.s0 | Srp.dll | Srp.dylib).

The UserManager parameter can be used in dat abases. conf for a database-specific override.

TracePlugin

Specifies the plug-in used by Firebird's Trace facility to send trace data to the client app or audit data to the
log file.

The default plug-inisfbtrace(l i bf btrace.s0 | fbtrace.dll | fbtrace.dylib).

CryptPlugin

Note

This parameter name is considered confusing and will be changed after theinitial Alpharelease.

A crypt plug-inis used to encrypt and decrypt data transferred over the network.

The installation default Arc4 implies use of an Alleged RC4 plug-in. For Linux, an example plug-in named
I'i bDbCrypt _exanpl e. so canbefoundinthe/ pl ugi ns/ sub-directory.

in the API for a specific connection viathe DPB or the SPB.

27

Configuration Additions and Changes

Tip

For information about configuring plug-ins, see Configuring Plug-ins in the Engine chapter.

KeyHolderPlugin

This parameter would represent some form of temporary storage for database encryption keys. Nothing isim-
plemented as a default plug-in but a sample Linux plug-innamed | i bCr ypt KeyHol der _exanpl e. so can
befoundin/ pl ugi ns/ .

Providers

List of allowed transports for accessing databases, discussed in the Engine chapter.

SharedCache and SharedDatabase

Two parameters that, together, determine the execution mode of the server (“server model”). Discussed in the
Engine chapter.

RemoteAccess

Parameter in fi rebi rd. conf and dat abases. conf provides an efficient, configurable replacement for
hard-coded rules limiting access to securi t y3. f db. It can also be used to configure limited remote access
to any other database, including non-default security databases.

Config detail currently unpublished.

Parameters Removed or Deprecated

The following parameters have been removed or deprecated:

RootDirectory

In older version, this parameter provided a superfluous option for recording the file system path to Firebird's
“root” files (firebird.conf, the security database and so on).

LegacyHash

This parameter used to make it possible to usethe old securi ty. f db from Firebird 1.X installations after it
had been subjected to an upgrade script and thence to enable or disable use of the obsolete DES hash encrypting
algorithm. It is no longer supported.

28

Configuration Additions and Changes

OldSetClauseSemantics

This parameter enabled temporary support for an implementation fault in certain sequences of SET clausesin
versions of Firebird prior to v.2.5. It isno longer available.

OldColumnNaming
This parameter temporarily enabled legacy code support for an old InterBase/Firebird 1.0 bug that generated

unnamed columns for computed output which was not explicitly aliased in the SELECT specification. It is no
longer available.

LockGrantOrder
This parameter used to allow the option to have Firebird's Lock Manager emulate InterBase v3.3 lock allocation

behaviour, whereby locks would be granted in no particular order, as soon as soon as they were available, rather
than by the normal order (first-come, first-served). The legacy option is no longer supported.

Obsolete Windows priority settings

UsePriorityScheduler, PrioritySwitchDelay and PriorityBoost, which were marginally relevant to obsolete pro-
cessors on obsolete Windows versions, are no longer supported.

29

Chapter 7

Security

Security improvements in Firebird 3 include:

Location of User Lists
Alex Peshkov

CORE-685

Firebird now supports an unlimited number of security databases. Any database may act as a security database
and can be a security database for itself.

Usedat abases. conf to configure a non-default security database. This example configures/ mt / st or -
age/ private. security. fdb asthesecurity database for the first and second databases:

first = /mt/storage/first.fdb

{

SecurityDat abase = /mt/storage/private.security.fdb
}
second = / mt/storage/ second. fdb
{

SecurityDat abase = /mt/storage/private.security.fdb
}

Here we use third database as its own security database:

third = /mt/storage/third. fdb

{
SecurityDatabase = third
}
Note
The value of the SecurityDatabase parameter can be a database alias or the actual database path.
Database Encryption
Alex Peshkov
CORE-657

30

http://tracker.firebirdsql.org/browse/CORE-685
http://tracker.firebirdsql.org/browse/CORE-657

Security

With Firebird 3 comes the ability to encrypt data stored in database. Not all of the database file is encrypted:
just data, index and blob pages.

To make it possible to encrypt a database you need to obtain or write a database crypt plug-in.

Note

The sample crypt plug-in in exanpl es/ dbcr ypt does not perform real encryption, it is merely a sample
of how to go about it.

Secret Key
The main problem with database encryption is how to store the secret key. Firebird provides a helper to transfer

that key from the client but that does not imply that storing the key on aclient isthe best way: it isno more than
apossible aternative. A very bad option is to keep the key on the same disk as the database.

Tasks

To separate encryption and key access efficiently, a database crypt plug-in is split into two parts. encryption
itself and the secret key holder. This may be an efficient approach for third-party plug-inswhen you want to use
some good encryption algorithm but you have your own secret way to store akey.

Once you have decided on acrypt plug-in and akey, you can enable them with:

ALTER DATABASE ENCRYPT W TH <PLUG N_NAME>

Encryption will start right after this statement commits and will be performed in background. Normal database
activity is not disturbed during encryption.

Tip

Encryption progress may be monitored using the field MONSCRYPT_PAGE in the pseudo-table MON
$DATABASE or watching the database header page using gst at - he.

To decrypt the database do:

ALTER DATABASE DECRYPT

New Authentication Method in Firebird 3
Alex Peshkov

All of the code related to authentication is plug-in-enabled. Though Firebird performs the generic work, like
extracting authentication data from a network message or putting it into such messages as appropriate, al the

31

Security

activity related to calculating hashes, storing data in databases or elsewhere, using specific prime numbers and
so on isdone by plug-ins.

Firebird 3 has new method of user authentication implemented as a default plugin: secure remote password
(SRP) protocol. Quoting from Wikipedia:

“The SRP protocol creates a large private key shared between the two parties in a manner similar to Diffie-
Hellman key exchange, then verifies to both parties that the two keys are identical and that both sides have
the user's password. In cases where encrypted communications as well as authentication are required, the SRP
protocol is more secure than the alternative SSH protocol and faster than using Diffie-Hellman key exchange
with signed messages. It is also independent of third parties, unlike Kerberos.”

SSH needs key pre-exchange between server and client when placing apublic key on the server to make it work.
SRP does not need that. All aclient needs are login and password. All exchange happens when the connection
is established.

Moreover, SRP is resistant to “man-in-the-middle’ attacks.

I mportant

Use of the new authentication method is not compatible with old security databases and passwords from them.
There is no way to migrate users from Firebird 2.

Use of an old security database can be supported with the Legacy Auth authentication plug-in, but this kills
the security benefits of Firebird 3.

The Firebird 3 client is built to make it possible to talk to old servers with the default configuration.

SSL/TLS Support

CORE-3251

So, the answer to the question “Does Firebird use SSL/TL Sfor password validation?” is*yesand no”. The“No”
answer comes because, by default, SSL is not used. That is due to a minor licensing incompatibility between

Firebird and OpenSSL, the most popular SSL implementation.

The“Yes' applies because anyone is free to write an authentication plug-in that uses SSL and TLS.

Increased Password Length
CORE-1898.
Implementation of SRP in our plugin has increased the password length from 8 bytes. Because of the use of

SHA1 for hashes, it iseffectively limited to 20 bytes. A custom SRP plug-in can be built quite easily with longer
passwords using another hash.

Tip

The increased length limit means the default SY SDBAS password is the full ‘'masterkey’ string (9 chars), no
longer 'masterke’ (8 chars) asin older versions!

32

http://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
http://tracker.firebirdsql.org/browse/CORE-3251
http://tracker.firebirdsql.org/browse/CORE-1898

Security

Support for the L egacyHash and Authentication parametersin firebird.conf has been dropped. Authentication
is overtaken by an AuthServer parameter in firebird.conf or elsewhere.

The Authentication Plug-in

The Authentication plug-in comprises three parts:

» Client—prepares data at the client to be sent to server on client
» Server—validates password for correctness

» User Manager—adds, modifiesand deletesuserson the server. It isnot needed if some external authentication
method, such as Windows trusted authentication, is used.

All three parts are actually separate plug-ins which should be configured separately inf i r ebi rd. conf . Let's
look at an example of configuring a server to accept connections from old clients. The default setting are:

Aut hServer = Srp, Wn_Sspi
User Manager = Srp

To enable access from old clients, AuthServer needs to be changed:

Aut hServer = Srp, Wn_Sspi, Legacy_Auth

If we also want to manage the list of usersin the old format we must add:

User Manager = Legacy_User Manager

Multiple User Managers

In the Alpha releases only one User Manager is possible. Later, it is planned to make it possible to enumerate
more than one and add gsec support to work with all of them.

"Over the wire" Connection Encryption
Alex Peshkov

CORE-672 ...

All network traffic in Firebird 3 may be optionally encrypted. As with authentication, plug-ins are used for
encrypting and decrypting network traffic.

The default plug-in is arc4 (Alleged RC4). It is eminently possible to write your own crypt plug-in to encrypt
data travelling over the wire. Whatever you use for your plug-in, it is necessary to use the Firebird 3 version
of thef bcl i ent library.

33

http://tracker.firebirdsql.org/browse/CORE-672

Security

The Secret Session Key

The challenge with use of asymmetric cypher iswhereto get akey for it. Firebird assumesthat such akey, also
called asecret session key, is produced by the authentication plug-in at the connection establishment phase. SRP
meets this requirement just fine by producing a cryptographically strong session key.

Tip

If you want to use encryption with an authentication plug-in that does not provide the session key and agree to
use some pre-defined key, say, one stored at the client side as a file and on the server in the security database
for that specific client, then make that plug-in inform Firebird that it does have a session key.

SQL-driven User Management
Alex Peshkov

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus improving
the capability to manage (add, modify or delete) usersin asecurity database from aregular database attachment.

Important

From Firebird 3.0, multiple security databases are supported. This capability is not supported by either the gsec
utility or the Services API. Use of both of these methods is deprecated.

Syntax Forms

CREATE USER nane {PASSWORD ' password'} [options]

[TAGS (tag [, tag [, tag ...]]) 1]
ALTER USER name SET [PASSWORD ' password'] [options]

[TAGS (tag [, tag [, tag ...]]) 1]
ALTER CURRENT USER SET [PASSWORD ' password'] [options]

[TAGS (tag [, tag [, tag ...]]) 1]
CREATE OR ALTER USER nane SET [PASSWORD ' password'] [options]

[TAGS (tag [, tag [, tag ...]]) 1]
DROP USER nane;

OPTIONS s a (probably empty) list with the following options:

FI RSTNAME ' string val ue'
M DDLENAME ' string val ue'
LASTNAME 'string val ue'
ACTI VE

| NACTI VE

Each TAG may have one of two forms:

NAME = 'string val ue'

Security

or the DROP NAME tag form to remove a user-defined attribute entirely:

DROP NANME

Note

Thisisthe NAME side of the name/value pair can be any valid SQL identifier.

Usage Detalils

The CREATE USER, CREATE OR ALTER USER and DROP USER clauses are available only for SY SDBA
or another user granted the RDB$ADMIN role in security database (and logged in under that role, of course.)

The PASSWORD clause is required when creating a new user.

Anordinary user can ALTER his own password, real name attributes and tags. Any attempt to modify another
user will fail, aswill an attempt to make “self” inactive or active.

If you want to modify “self”, you can use the simplified form ALTER CURRENT USER.

At least one of PASSWORD, FIRSTNAME, MIDDLENAME, LASTNAME, ACTIVE, INACTIVE or TAGS
must be present in an ALTER USER or CREATE OR ALTER USER statement.

Itisnot arequirement to use any of the clauses FIRSTNAME, MIDDLENAME and LASTNAME. Any of them
may be |eft empty or used to store short information about the user.

The INACTIVE clause is used to disable the user's login capability without dropping it. The ACTIVE clause
restores that ability.

TAGSisalist of end-user defined attributes. The length of the string value should not exceed 255 bytes.

Setting alist of tags for the user retains previoudly set tagsif they are not mentioned in the current list.

Note

A UID or GID that was entered by the deprecated gsec utility istreated as atag in the SQL interface.

Examples

Generic:

CREATE USER superhero PASSWORD 'test';

ALTER USER superhero SET FI RSTNAME ' Cl ark' LASTNAME ' Kent';
CREATE OR ALTER USER superhero SET PASSWORD ' | dCX A" ;

DROP USER super her o;

ALTER CURRENT USER SET PASSWORD ' Somret hi ngLongEnough' ;

Working with tags:

ALTER USER superhero SET TAGS (a='a', b="b");
NANVE VAL UE

35

Security

A a
B b
ALTER USER superhero SET TAGS (b='x', c="d");
NAVE VALUE
A a
B X
C d
ALTER USER superhero SET TAGS (drop a, c='sanple');
NAVE VALUE
B X
c sanpl e

Pseudo-Tables with List of Users
CORE-2639.

To accesslists of users and attributes, query the virtual tables SECSUSERS and SECSUSER_ATTRIBUTES.

I mportant

Thisfeature depends highly on the user management plug-in. Takeinto an account that someoptionsareignored
when using the legacy user management plug-in.

The pseudo-tables are much like the MONS$ family tables used for monitoring the server. The table is created
on demand when you run the statement

SELECT * FROM SEC$USERS
or
SELECT * FROM SECSUSER_ATTRI BUTES

The output lists the users (or their attributes) in the security database that is configured for the current database
and available for management to the current user.

New Object Rights

Dmitry Y emanov

Some new object rights have been added to the sets of SQL privileges.

GRANT EXECUTE Privileges for UDFs

CORE-2554: EXECUTE permission is now supported for UDFs (both legacy and PSQL based ones).

36

http://tracker.firebirdsql.org/browse/CORE-2639
http://tracker.firebirdsql.org/browse/CORE-2554

Security

Syntax Pattern

GRANT EXECUTE ON FUNCTI ON <nane> TO <grantee |ist>
[<grant option> <granted by cl ause>]

REVOKE EXECUTE ON FUNCTI ON <nane> FROM <grantee |ist>
[<granted by cl ause>]

Note

Theinitial EXECUTE permission is granted to the function owner (user who created or declared the function).

Privileges to Protect Other Metadata Objects

New SQL-2008 compliant USAGE permission isintroduced to protect metadata objects other than tables, views,
procedures and functions.

Syntax Pattern

GRANT USAGE ON <obj ect type> <nane> TO <grantee |ist>
[<grant option> <granted by cl ause>]

REVOKE USAGE ON <obj ect type> <nane> FROM <grantee |ist>
[<granted by cl ause>]

<obj ect type> ::= {DOMAIN | EXCEPTION | GENERATOR | SEQUENCE | CHARACTER SET | COLLATI ON}

Notes
Theinitial USAGE permission is granted to the object owner (user who created the object).

In Firebird 3.0 Alpha 1, only USAGE permissions for exceptions (CORE-2884) and generators/sequences
(gen_id, next value for: CORE-2553) are enforced. Permissions for other object types will be validated in
subsequent releases.

37

http://tracker.firebirdsql.org/browse/CORE-2884
http://tracker.firebirdsql.org/browse/CORE-2553

Chapter 8

Data Definition
Language (DDL)

Quick Links

BOOLEAN Data Type

IDENTITY-Style Column

Manage Nullability in Domains and Columns
Modify Generators (Sequences)

Alter Default Character Set

Grant/Revokes GRANTED BY Specified User
Revoke ALL Privilegeson ALL Users

DDL Enhancements

The following enhancements have been added to the SQL data definition language lexicon:

New Data Types

A fully-fledged Boolean typeisintroduced in thisrelease, along with asurfaced emulation of the Microsoft-style
“identity” column.

BOOLEAN Data Type
Adriano dos Santos Fernandes

The SQL-2008 compliant BOOLEAN data type (8 bits) comprises the distinct truth values TRUE and FAL SE.
Unless prohibited by a NOT NULL constraint, the BOOLEAN data type also supports the truth value UN-
KNOWN as the null value. The specification does not make a distinction between the NULL value of this data
type and the truth value UNKNOWN that is the result of an SQL predicate, search condition, or boolean value
expression: they may be used interchangeably to mean exactly the same thing.

Aswith many programming languages, the SQL BOOLEAN values can be tested with implicit truth values. For
example, field1 OR field2 and NOT field1 are valid expressions.

The IS Operator

Predi cations use the operator IS[NOT] for matching. For example, field1 ISFAL SE, or field1 ISNOT TRUE.

38

Data Definition Language (DDL)

Note

Equivalence operators (“=", “!=", “<>" and so on) are valid in all comparisons.

Examples

CREATE TABLE TBOCOL (I D I NT, BVAL BOOLEAN);
COW T;

I NSERT | NTO TBOCL VALUES (1, TRUE);
I NSERT | NTO TBOCOL VALUES (2, 2 = 4);
I NSERT | NTO TBOCL VALUES (3, NULL = 1);

COW T;
SELECT * FROM TBOOL
I D BVAL
1 <true>
2 <fal se>
3 <null >

-- Test for TRUE val ue
SELECT * FROM TBOOL WHERE BVAL
ID BVAL

1 <true>

-- Test for FALSE val ue
SELECT * FROM TBOOL WHERE BVAL | S FALSE
I D BVAL

2 <fal se>

-- Test for UNKNOMWN val ue
SELECT * FROM TBOOL WHERE BVAL | S UNKNOMN
ID BVAL

3 <null <

-- Bool ean val ues in SELECT |i st
SELECT ID, BVAL, BVAL AND ID < 2
FROM TBOCOL
ID BVAL

1 <true> <true>
2 <fal se> <fal se>
3 <null> <fal se>

-- PSQL Declaration with start val ue
DECLARE VARI ABLE VAR1 BOOLEAN = TRUE;

-- Valid syntax, but as with a conparison
-- with NULL, will never return any record
SELECT * FROM TBOOL WHERE BVAL = UNKNOMN

SELECT * FROM TBOOL WHERE BVAL <> UNKNOWN

39

Data Definition Language (DDL)

Notes
¢ Represented in the APl with the FB_BOOL EAN type and FB_TRUE and FB_FAL SE constants.
e Thevalue TRUE is greater than the value FAL SE.

e Although BOOLEAN is not implicitly convertible to any other datatype, it can be explicitly converted to
and from string with CAST.

» For compatibility reasons, the non-reserved keywords INSERTING, UPDATING and DELETING continue
to behave as Boolean expressionswhen used in context in PSQL , while behaving asvaluesif they are column
or variable namesin non-Boolean expressions.

The following example uses the word INSERTING in all three ways:

SELECT

INSERTING, -- value

NOT INSERTING -- keyword
FROM TEST
WHERE

INSERTING -- keyword

AND INSERTING IS TRUE -- value

Identity Column Type
Adriano dos Santos Fernandes

An identity column is a column associated with an internal sequence generator. Its value is set automatically
when the column is omitted in an INSERT statement.

Syntax Patterns

<colum definition> ::=
<nane> <type> GENERATED BY DEFAULT AS IDENTITY [(START W TH <val ue>)]<constrai nts>

When defining a column, the optional START WITH clause allows the generator to be initialised to a value
other than zero. See Tracker ticket CORE-4199.

<alter colum definition> ::=
<name> RESTART [W TH <val ue>]

A column definition can be altered to modify the starting value of the generator. RESTART alone resets the
generator to zero; the option WITH <value> clauselet allows the restarted generator to start at a value other than
zero. See Tracker ticket CORE-4206.

Rules

» The data type of an identity column must be an exact number type with zero scale. Allowed types are thus
SMALLINT, INTEGER, BIGINT, NUMERIC(x,0) and DECIMAL (x,0).

e Anidentity column cannot have DEFAULT or COMPUTED value.

40

http://tracker.firebirdsql.org/browse/CORE-4199
http://tracker.firebirdsql.org/browse/CORE-4206

Data Definition Language (DDL)

Notes
* Anidentity column cannot be altered to become aregular column. The reverseis also true.
¢ ldentity columns are implicitly NOT NULL (non-nullable).

« Uniquenessis not enforced automatically. A UNIQUE or PRIMARY KEY constraint is required to guar-
antee uniqueness.

Example

create table objects (
idinteger generated by default as identity primary key,
name var char (15)

)

insert into objects (nane) values (' Table');

insert into objects (name) val ues ('Book');

insert into objects (id, name) values (10, 'Conputer');

sel ect * from objects;

10 Conput er

Implementation Details

Two new columns have been inserted in RDB$SRELATION_FIELDS to support identity columns. RDB
$GENERATOR_NAME and RDB$IDENTITY _TY PE.

+ RDB$GENERATOR_NAME stores the automatically created generator for the column. In RDB$GENER-
ATORS, the value of RDB$SY STEM_FLAG of that generator will be 6.

* Currently, RDB$IDENTITY_TY PE aways stores the value 0 (GENERATED BY DEFAULT) for identity
columns and NULL for non-identity columns. In the future this column will be able to store the value 1
(GENERATED ALWAY S) when that type of identity column is supported by Firebird.

Manage Nullability in Domains and Columns
A. dos Santos Fernandes

ALTER syntax is now available to change the nullability of atable column or adomain

Syntax Pattern

ALTER TABLE <t abl e name> ALTER <field name> [NOT] NULL

ALTER DOVAI N <domai n nane> [NOT] NULL

41

Data Definition Language (DDL)

Notes

The success of achange in atable column from NULL to NOT NULL is subject to afull data validation on the
table, so ensure that the column has no nulls before attempting the change.

A change in a domain subjects all the tables using the domain to validation.

An explicit NOT NULL on acolumn that depends on a domain prevails over the domain. In this situation, the
changing of the domain to make it nullable does not propagate to the column.

Modify Generators (Sequences)

More statement options have been added for maodifying generators (sequences). Where previously in SQL the
only option was ALTER SEQUENCE <sequence name> RESTART WITH <value>, now afull lexicon is
provided and GENERATOR and SEQUENCE are synonyms for the full range of commands.

RESTART can now be used on itsown to restart the sequence at its previous start or restart value. A new column
RDB$I NI TI AL_VALUE is added to the system table RDBSGENERATORS to store that value.

Syntax Forms

{ CREATE | RECREATE } { SEQUENCE | GENERATOR } <sequence name> [START W TH <val ue>]
CREATE OR ALTER { SEQUENCE | GENERATOR } <sequence nanme> { RESTART | START W TH <val ue> }

ALTER { SEQUENCE | GENERATOR } <sequence nanme> RESTART [W TH <val ue>]

Alter the Default Character Set
A. dos Santos Fernandes

ALTER DATABASE

SET CHARACTER SET <new_char set >

The ateration does not change any existing data. The new default character set isused only in subsequent DDL
commands and will assume the default collation of the new character set.

BLOB in COMPUTED BY Expressions

Adriano dos Santos Fernandes

For Example

ALTER TABLE ATABLE
ADD ABLOB
COVPUTED BY (SUBSTRI NG(BLOB_FI ELD FROM 1 FCR 20))

42

Data Definition Language (DDL)

Improved Management of SQL Privileges
A. Peshkov

Some improvements will make it simpler to implement detailed management of SQL privileges.

GRANT/REVOKE Rights GRANTED BY Specified User

Previously, the grantor or revoker of SQL privileges was always the current user. This change makesiit so that
adifferent grantor or revoker can be specified in GRANT and REVOK E commands.

Syntax Pattern

grant <right>to <object> [{ granted by | as } [user] <usernane>]
revoke <right> from<object> [{ granted by | as } [user] <usernane>]

The GRANTED BY clause form is recommended by the SQL standard. The alternative form using AS is
supported by Informix and possibly some other servers and isincluded for better compatibility.

Example (working as SY SDBA)

create role ri;
grant rl to userl with admi n option;
grant rl to public granted by useri;

-- (inisql)

show grant;

/* Grant permissions for this database */
GRANT R1 TO PUBLI C GRANTED BY USER1
GRANT R1 TO USER1 W TH ADM N OPTI ON

REVOKE ALL ON ALL

When auser isremoved from the security database or another authentication source, this new command is useful
for revoking its accessto all objectsin the database.

Syntax Pattern

REVOKE ALL ON ALL FROM [USER] user namne
REVOKE ALL ON ALL FROM [ROLE] rol enare

Example

gsec -del guest

isqgl enpl oyee

fbs bin # ./isql enployee

Dat abase: enpl oyee

SQL> REVCOKE ALL ON ALL FROM USER guest;

sQL>

43

Data Definition Language (DDL)

“Linger” Database Closure for Superserver

Sometimes it is desirable to have the Superserver engine keep the database open for a period after the last
attachment is closed, i.e, to have it “linger” a while. It can help to improve performance at low cost, under
conditions where the database is opened and closed frequently, by keeping resources “warm” for next time it
is reopened.

Firebird 3.0 introduces an enhancement to ALTER DATABASE to manage this optional LINGER capability
for databases running under Superserver.

Syntax Form

ALTER DATABASE SET LI NGER TO {seconds};
ALTER DATABASE DROP LI NGER;

Usage

To set linger for the database do:

ALTER DATABASE SET LINGER TO 30; -- sets linger interval to 30 seconds

Either of the following forms will clear the linger setting and return the database to the normal condition (no
linger):

ALTER DATABASE DROP LI NGER;
ALTER DATABASE SET LI NGER TO 0;

Note

Dropping LINGER is not an ideal solution for the occasional need to turn it off for some once-only condition
where the server needs aforced shutdown. The gfix utility now hasthe-NoLinger switch, which will closethe
specified database immediately the last attachment is gone, regardless of the LINGER setting in the database.
The LINGER setting is retained and works normally the next time.

The same one-off override is also available through the Services API, using the tag isc_spb_prp_nolinger,

e.g. (inoneline):

fbsvcengr host:service_ngr user sysdba password Xxxx
action_properties dbnane enpl oyee prp_nolinger

See also Tracker ticket CORE-4263 for some discussion of the development of this feature.

SQL-driven User Management

The SQL set of DDL commands for managing user accounts has been enhanced in Firebird 3, thus improving
the capability to manage (add, modify or delete) usersin asecurity database from aregular database attachment.

44

http://tracker.firebirdsql.org/browse/CORE-4263

Data Definition Language (DDL)

For the details, refer to the topic of the same name in the chapter on Security.

45

Data Manipulation
Language (DML)

In this chapter are the additions and improvements that have been added to the SQL data manipulation language
subset in Firebird 3.0.

Quick Links

» Supplemental SQL 2008 Features for MERGE

* Window (Analytical) Functions

* SUBSTRING With Regular Expressions

» Advanced PLAN Output

* New Internal Functions. Inverse Hyperbolic Trig Functions
* TRIM() BLOB Arguments Lose 32 KB limit

» Alternatives for Embedding Quotesin String Literals

» Prohibit Edgy Mixing of Implicit/Explicit Joins

* RETURNING Clause Can be Aliased

* RETURNING Clause from Positioned Updates and Deletes
» Cursor Stability

* Improvements for Global Temporary Tables

* Improvements for DML Strings

* SIMILAR TO Performance Improvement

* OR'ed Parameter in WHERE Clause

* A Little Dialect 1 Accommodation

Supplemental SQL 2008 Features for MERGE

Adriano dos Santos Fernandes
In summary, support for MERGE was supplemented with the introduction of these features:
» Addition of the DELETE extension (CORE-2005)

» Enabling the use of multiple WHEN MATCHED | NOT MATCHED clauses (CORE-3639) and ability to
apply conditionsto WHEN MATCHED | NOT MATCHED

» Addition of the RETURNING ... INTO ... clause (CORE-3020)

The purpose of MERGE isto read data from the source and INSERT or UPDATE in the target table according
to acondition. It isavailable in DSQL and PSQL.

Syntax Pattern

46

http://tracker.firebirdsql.org/browse/CORE-2005
http://tracker.firebirdsql.org/browse/CORE-3639
http://tracker.firebirdsql.org/browse/CORE-3020

Data Manipulation Language (DML)

<nerge statenent> ::=

MERGE
I NTO <table or view> [[AS] <correlation name>]
USI NG <tabl e or view or derived table> [[AS] <correlation nanme>]

ON <condi tion>
<mer ge when>. ..
<returning cl ause>

<merge when> ::=
<mer ge when mat ched> |
<mer ge when not mat ched>

<mer ge when matched> :: =
WHEN MATCHED [AND <condition>] THEN
{ UPDATE SET <assignnent |ist> | DELETE }

<nerge when not nmatched> ::=

VWHEN NOT MATCHED [AND <condition>] THEN

INSERT [<left paren> <columm list> <right paren>]
VALUES <l eft paren> <value list> <right paren>

Rules

At least one of <merge when matched> or <merge when not matched> should be specified.

Example

MERGE | NTO custonmers c

USI NG
(SELECT * FROM custoners_delta WHERE id > 10) cd
ON (c.id = cd.id)

WHEN MATCHED THEN
UPDATE SET nane = cd. nane

WHEN NOT MATCHED THEN
I NSERT (id, nane)
VALUES (cd.id, cd.name)

Notes

A right join is made between the INTO (left-side) and USING tables using the condition. UPDATE is called
when arecord existsin the left table (INTO), otherwise INSERT is called.

As soon as it is determined whether or not the source matches a record in the target, the set formed from the
corresponding (WHEN MATCHED / WHEN NOT MATCHED) clauses is evaluated in the order specified,
to check their optional conditions. The first clause whose condition evaluates to true is the one which will be
executed, and the subsequent ones will be ignored.

If no record is returned in the join, INSERT is not called.

Window (Analytical) Functions
Adriano dos Santos Fernandes

47

Data Manipulation Language (DML)

According to the SQL specification, window functions (also know as analytical functions) are akind of aggre-
gation, but one that does not “filter” the result set of a query. The rows of aggregated data are mixed with the
guery result set.

Thewindow functions are used with the OV ER clause. They may appear only inthe SELECT list or the ORDER
BY clause of aquery.

Besides the OVER clause, Firebird window functions may be partitioned and ordered.

Syntax Pattern

<wi ndow function> ::= <wi ndow function name>([<expr> [, <expr> ...]]) OVER (
[PARTI TI ON BY <expr> [, <expr> ...]]
[ORDER BY <expr>
[<direction>]
[<null's pl acenment >]
[, <expr> [<direction>] [<nulls placenent>] ...]

)
<direction> ::= {ASC | DESC}

<nul l's placenment> ::= NULLS {FIRST | LAST}

Aggregate Functions Used as Window Functions
All aggregate functions may be used as window functions, adding the OVER clause.

Imagine a table EMPLOY EE with columns ID, NAME and SALARY, and the need to show each employee
with his respective salary and the percentage of his salary over the payroll.

A normal query could achieve this, as follows:

sel ect
id,
depart nent,
sal ary
salary / (select sum(salary) from enpl oyee) percentage
from enpl oyee
order by id;

Results

id departnment salary percentage

1 R &D 10. 00 0. 2040
2 SALES 12. 00 0. 2448
3 SALES 8. 00 0. 1632
4 R &D 9. 00 0. 1836
5 R &D 10. 00 0. 2040

The query isrepetitive and lengthy to run, especialy if EMPLOY EE happened to be a complex view.

The same query could be specified in amuch faster and more elegant way using awindow function:

48

Data Manipulation Language (DML)

sel ect
id,
depart nent,
sal ary
salary / sum(sal ary) OVER () percentage
from enpl oyee
order by id;

Here, sum(salary) over () is computed with the sum of all SALARY from the query (the employee table).

Partitioning

Like aggregate functions, that may operate alone or in relation to a group, window functions may also operate
on agroup, whichis called a*“partition”.

Syntax Pattern

<wi ndow function>(...) OVER (PARTITION BY <expr> [, <expr> ...])

Aggregation over a group could produce more than one row, so the result set generated by a partition isjoined
with the main query using the same expression list as the partition.

Continuing the employee example, instead of getting the percentage of each employee's salary over the al-
employeestotal, we would like to get the percentage based on just the employees in the same department:

sel ect
id,
depart nent,
sal ary
salary / sun(sal ary) OVER (PARTI TI ON BY departnent) percentage
from enpl oyee
order by id;

Results

id departnment salary percentage

1 R & D 10. 00 0. 3448

2 SALES 12. 00 0. 6000

3 SALES 8. 00 0. 4000

4 R & D 9. 00 0. 3103

5 R & D 10. 00 0. 3448
Ordering

The ORDER BY sub-clause can be used with or without partitions and, with the standard aggregate functions,
make them return the partial aggregations as the records are being processed.

Example

49

Data Manipulation Language (DML)

sel ect
id,
sal ary,
sum(sal ary) over (order by salary) cunul _sal ary
from enpl oyee
order by sal ary;

Theresult set produced:

id salary cunul_salary

3 8. 00 8. 00
4 9. 00 17.00
1 10. 00 37.00
5 10. 00 37.00
2 12. 00 49. 00

Then cumul_salary returns the partial/accumulated (or running) aggregation (of the SUM function). It may
appear strange that 37.00 is repeated for the ids 1 and 5, but that is how it should work. The ORDER BY keys
are grouped together and the aggregation is computed once (but summing the two 10.00). To avoid this, you
can add the ID field to the end of the ORDER BY clause.

It's possible to use multiple windows with different orders, and ORDER BY partslike ASC/DESC and NULLS
FIRST/LAST.

With a partition, ORDER BY works the same way, but at each partition boundary the aggregation is reset.

All aggregation functions, other than LIST(), are usable with ORDER BY .

Exclusive window functions

Beyond aggregate functions are the exclusive window functions, currently divided into ranking and navigational
categories. Both sets can be used with or without partition and ordering, although the usage does not make much
sense without ordering.

Ranking Functions

The rank functions compute the ordinal rank of a row within the window partition. In this category are the
functions DENSE_RANK, RANK and ROW_NUMBER.

Syntax
<ranki ng wi ndow function> ::=
DENSE_RANK() |
RANK() |
ROW NUMBER()

The ranking functions can be used to create different type of incrementa counters. Consider SUM (1) OVER
(ORDER BY SALARY) as an example of what they can do, each of them in a different way. Following is an
example query, aso comparing with the SUM behavior.

50

Data Manipulation Language (DML)

sel ect

id,
sal ary,
dense_rank() over (order by salary),
rank() over (order by salary),
row_nunber () over (order by salary),
sun(1l) over (order by salary)

from enpl oyee

order by sal ary;

Theresult set:

id salary dense_rank rank row_number sum

3 8. 00 1 1 1 1
4 9. 00 2 2 2 2
1 10. 00 3 3 3 4
5 10. 00 3 3 4 4
2 12. 00 4 5 5 5

Thedifference between DENSE RANK and RANK isthat thereisagap related to duplicate rows (relativeto the
window ordering) only in RANK. DENSE_RANK continues assigning sequential numbers after the duplicate
salary. On the other hand, ROW_NUMBER aways assigns sequential numbers, even when there are duplicate
values.

Navigational Functions

The navigational functions get the simple (non-aggregated) value of an expression from another row of the
guery, within the same partition.

Syntax

<navi gati onal w ndow function> ::=
FI RST_VALUE(<expr>) |
LAST_VALUE(<expr>) |
NTH_VALUE(<expr>, <offset>) [FROM FIRST | FROM LAST] |
LAG(<expr> [[, <offset> [, <default>]]) |
LEAD(<expr> [[, <offset> [, <default>1]])

Important to Note

FIRST VALUE, LAST VALUE and NTH_VALUE aso operate on awindow frame. Currently, Firebird al-
ways frames from the first to the current row of the partition, not to the last. Thisis likely to produce strange
resultsfor NTH_VALUE and especially LAST_VALUE.

Example

sel ect
id,
sal ary,

51

Data Manipulation Language (DML)

first_value(salary) over (order by salary),
| ast _val ue(sal ary) over (order by salary),
nth_val ue(sal ary, 2) over (order by salary),
| ag(sal ary) over (order by salary),
| ead(sal ary) over (order by salary)

from enpl oyee

order by sal ary;

Theresult set:
id salary first_value |last_value nth_value | ag | ead
3 8. 00 8. 00 8.00 <null> <null> 9. 00
4 9.00 8. 00 9.00 9.00 8.00 10.00
1 10. 00 8. 00 10. 00 9.00 9.00 10.00
5 10. 00 8. 00 10. 00 9.00 10.00 12.00
2 12. 00 8. 00 12. 00 9.00 10.00 <null>

FIRST VALUE and LAST_VALUE get, respectively, thefirst and last value of the ordered partition.

NTH_VALUE gets the n-th value, starting from the first (default) or the last record, from the ordered parti-
tion. An offset of 1 from first would be equivalent to FIRST _VALUE; an offset of 1 from last is equivalent
to LAST_VALUE.

LAG looks for a preceding row, and LEAD for a following row. LAG and LEAD get their values within a
distance respective to the current row and the offset (which defaults to 1) passed.

In acasewherethe offset pointsoutside the partition, the default parameter (which defaultsto NULL) isreturned.

Advanced Plan Output

Dmitry Y emanov

PLAN output can now be output in a more structured and comprehensible form, e.g.

SELECT st at enent
-> First [10]
-> Sort [SUM O ORDERDATE]
-> Aggregate
-> Sort [L_ORDERKEY, O CRDERDATE, O SH PPRI ORI TY]
-> I nner Loop Join
-> Filter
-> Tabl e #ORDERS# Access By ID
-> Bitmap
-> | ndex #ORDERS_ORDERDATE# Range Scan
-> Filter
-> Tabl e #CUSTOVER# Access By ID
-> Bitmap
-> I ndex #CUSTOVER_PK# Uni que Scan
-> Filter
-> Tabl e #LI NEI TEM# Access By ID
-> Bitmap
-> I ndex #LI NEI TEM PK# Uni que Scan

52

Data Manipulation Language (DML)

Advanced PLAN Output in isql

New syntax SET EXPLAIN [ON | OFF] has been added to the isqgl utility to surface this option. For details,
refer to SET EXPLAIN Extensions for Viewing Detailed Plans in the Utilities chapter.

Internal Functions

Additions and enhancements to the internal functions set are;

SUBSTRING with Regular Expressions

Adriano dos Santos Fernandes
A substring search can now use aregular expression.

Sear ch Pattern

SUBSTRI NG <string> [NOT] SIMLAR TO <pattern> ESCAPE <char >)

Discussion: TrackerCORE-2006

For moreinformation about the use of SIMILAR TO expressions, refer to READVE. si mi | ar _t o. t xt inthe/
doc/ subdirectory of your Firebird installation.

New Inverse Hyperbolic Trigonometric Functions
Claudio VaderramaC.

The six inverse hyperbolic trigonometric functions have been implemented internally. They are:

ACOH
Returns the hyperbolic arc cosine of a number (expressed in radians). Format: ACOSH (<number>)

ASNH
Returns the hyperbolic arc sine of a number (expressed in radians). Format: ASINH(<number>)

ATANH
Returns the hyperbolic arc tangent of a number (expressed in radians). Format: ATANH(<number>)

COsH
Returns the hyperbolic cosine of an angle (expressed in radians). Format: COSH(<number>)

SINH
Returns the hyperbolic sine of an angle (expressed in radians). Format: SINH(<number>)

TANH
Returns the hyperbolic tangent of an angle (expressed in radians). Format: TANH (<number>)

53

http://tracker.firebirdsql.org/browse/CORE-2006

Data Manipulation Language (DML)

TRIM() BLOB Arguments Lose 32 KB limit
Adriano dos Santos Fernandes

In prior versions, TRIM (substring from string) allowed BLOBs for both arguments, but the first argument had
to be smaller than 32 KB. Now both arguments can take BLOBs of >= 32 KB.

Some Useful DML Improvements

A collection of useful DML improvements is released with Firebird 3.

Alternatives for Embedding Quotes in String Literals
Adriano dos Santos Fernandes

It isnow possible to use a character, or character pair, other than the doubled (escaped) apostrophe, to embed a
guoted string inside another string. The keyword g or Q preceding aquoted string informs the parser that certain
left-right pairs or pairs of identical characters within the string are the delimiters of the embedded string literal.

Syntax

<alternate string literal> ::=
{ 9| Q} <quote> <alternate start char> [{ <char>}...] <alternate end char> <quote>

Rules

When <alternate start char> is'(, '{', [' or '<', <dternate end char> is paired up with its respective “partner”,
viz.")', '}, '] and '>". In other cases, <alternate end char> is the same as <aternate start char>.

Inside the string, i.e., <char> items, single (not escaped) quotes could be used. Each quote will be part of the

result string.
Examples
sel ect qg' {abc{def}ghi}' fromrdb$database; -- result: abc{def}ghi
select g'!That's a string!' from rdb$dat abase; -- result: That's a string

Prohibit Edgy Mixing of Implicit/Explicit Joins
Dmitry Y emanov

Whilemixing of implicit and explict join syntaxesisnot recommended at al, the parser still allowsthem. Certain
“mixes’ actually cause the optimizer to produce unexpected results, including “No record for fetch” errors. The
same edgy styles are prohibited by other SQL engines and now they are prohibited in Firebird.

To visit some discussion on the subject, see the Tracker ticket CORE-2812.

54

http://tracker.firebirdsql.org/browse/CORE-2812

Data Manipulation Language (DML)

Left-side Parameters Supported
Adriano dos Santos Fernandes

The following style of subquery, with the parameter in the left side of a WHERE...IN (SELECT...) condition,
would fail with the error “ The data type of the parameter is unknown”.

SELECT <colums> FROMtable 1 t1
WHERE <conditions on table_1>
AND (? IN (SELECT sone_col FROMtable_ 2 t2 WHERE t1.id =t2.ref_id))

Note

Better SQL coding practice would be to use EXISTS in these cases; however, devel opers were stumbling over
this problem when using generated SQL from Hibernate, which used the undesirable style.

Enhancements to the RETURNING Clause
Adriano dos Santos Fernandes

Two usage enhancements were added to the RETURNING clause:

RETURNING Clause Value Can be Aliased

When using the RETURNING clause to return a value to the client, the value can now be passed under an alias.

Example Without and With Aliases

UPDATE T1 SET F2 = F2 * 10

RETURNI NG OLD. F2, NEWF2; -- without aliases
UPDATE T1 SET F2 = F2 * 10
RETURNI NG OLD. F2 OLD_F2, NEWF2 AS NEWF2; -- with aliases
Note

The keyword ASis optional.

RETURNING Clause from Positioned Updates and Deletes

Support has been added for a RETURNING clause in positioned (WHERE CURRENT OF) UPDATE and
DELETE statements.

Example

UPDATE T1 SET F2 = F2 * 10 WHERE CURRENT OF C

55

Data Manipulation Language (DML)

RETURNI NG NEW F2;

Cursor Stability
Vlad Khorsun

Until this release, Firebird suffered from an infamous bug whereby a data modification operation could loop
infinitely and, depending on the operation, delete all the rows in atable, continue updating the same rows ad
infinitum or insert rows until the host machineran out of resources. All DML statementswere affected (INSERT,
UPDATE, DELETE, MERGE). It occurred because the engine used an implicit cursor for the operations.

To ensure stability, rows to be inserted, updated or deleted had to be marked in some way in order to avoid
multiple visits. Another workaround was to force the query to have a SORT inits plan, in order to materialize
the cursor.

From Firebird 3, engine uses the Undo log to check whether a row was already inserted or modified by the
current cursor.

Important

This stabilisation does NOT work with SUSPEND loopsin PSQL.

An Improvement for GTTs
Vlad Khorsun

Global temporary tables (GTTs) are now writable even in read-only transactions. The effect is as follows.-

Read-only transaction in read-write database
Writable in both ON COMMIT PRESERVE ROWS and ON COMMIT DELETE ROWS

Read-only transaction in read-only database
Writablein ON COMMIT DELETE ROWS only

Also
* Rollback for GTT ON COMMIT DELETE ROWS s faster
* Rows do not need to be backed out on rollback

» Garbage collectionin GTT is not delayed by active transactions of other connections

Note

The same refinements were al so backported to Firebird 2.5.1.

An Improvement for DML Strings
Adriano dos Santos Fernandes

56

Data Manipulation Language (DML)

Strings in DML queries are now transformed or validated to avoid passing malformed strings to the engine
internals, for example, to the MON$STATEMENTS.MONS$SQL_TEXT column.

The solution adopted depends on the character set of the attachment.-
* NONE—non-ASCII characters are transformed to question marks

» Others—the string is checked for malformed characters

Optimizations

Optimizations made for this release included.-

SIMILAR TO
Adriano dos Santos Fernandes

The performance of SIMILAR TO was improved.

OR'ed Parameter in WHERE Clause
Dmitry Y emanov

Performance for (table.field = :param or :param = -1) in the WHERE clause was enhanced.

Better Choices for Navigation
Dmitry Y emanov

Previously, when ORDER plan was in the game, the optimizer would choose the first index candidate that
matched the ORDER BY or GROUP BY clause. This“first come” approach is not the best when multiple index
choicesareavailable. The Firebird 3 engine surveysall of the availabl e choices and picksthe most suitableindex.

See Tracker ticket CORE-4285.

Plainer Execution Path for UNION Queries
Dmitry Y emanov

Previoudly, the execution path for UNION queries was hierarchical, often causing redundant reads. This opti-
mization replaces the hierarchical execution path with a plainer one that improves performance.

See Tracker ticket CORE-4165.

Index Walk for Compound Index
Dmitry Y emanov

The optimizer now alows an index walk (ORDER plan) when a suitable compound index (A, B) is available
for aquery condition of the style WHERE A =? ORDER BY B.

See Tracker ticket CORE-1846.

57

http://tracker.firebirdsql.org/browse/CORE-4285
http://tracker.firebirdsql.org/browse/CORE-4165
http://tracker.firebirdsql.org/browse/CORE-1846

Data Manipulation Language (DML)

Performance Improvement for SET STATISTICS INDEX
Vlad Khorsun

BTR_selectivity() would walk the whole leaf level of given index b-treeto calculate index selectivity. Through-
out the process, the only rescheduling would happen at adisk I/O operation. The effect wasto impose long waits
for AST requests from concurrent attachments, such as page lock requests, monitoring, cancellation, etc. An
improvement in Firebird 3 seems to solve that problem.

See Tracker ticket CORE-1846.

Dialect 1 Interface
Adriano dos Santos Fernandes

Selection of SQL_INT64, SQL_DATE and SQL_TIME in dialect 1 was enabled.

See Tracker CORE-3972

58

http://tracker.firebirdsql.org/browse/CORE-1846
http://tracker.firebirdsql.org/browse/CORE-3972

Chapter 10

Procedural SQL (PSQL)

Advancementsin procedural SQL (PSQL) include:

Quick Links

» PSQL Stored Functions

» PSQL Subroutines

» Packages

» DDL Triggers

» Exceptions with Parameters

* CONTINUE in Looping Logic

» PSQL Cursor Stabilization

» SQLSTATE in Exception Trap

» Some Size Limits Removed Using New API

PSQL Stored Functions

Dmitry Y emanov
It isnow possible to write ascalar function in PSQL and call it just like an internal function.

Syntax for the DDL

{CREATE [ORALTER] | ALTER | RECREATE} FUNCTION <name>
[(paraml[, ...])]

RETURNS It;type>

AS

BEGIN

END

Tip

The CREATE statement isthe declaration syntax for PSQL functions, parallel to DECLARE for legacy UDFs.

Example

CREATE FUNCTI ON F(X I NT) RETURNS | NT
AS

59

Procedural SQL (PSQL)

BEG N
RETURN X+1;
END;
SELECT F(5) FROM RDB$DATABASE;

PSQL Sub-routines

Adriano dos Santos Fernandes

The header of a PSQL module (stored procedure, stored function, trigger, executable block) can now accept
sub-procedure and sub-function blocks in the header declarations for use within the body of the module.

Syntax for Declaring a Sub-procedure

DECLARE PROCEDURE <name> [(paraml[, ...])]
[RETURNS (param1 [, ...])]
AS

Syntax for declaring a Sub-function

DECLARE FUNCTION <name> [(paraml [, ...])]
RETURNS <type>
AS

Examples

SET TERM #;

-- Sub-function in EXECUTE BLOCK

EXECUTE BLOCK RETURNS (N I NT)
AS
DECLARE FUNCTI ON F(X I NT) RETURNS | NT
AS
BEG N
RETURN X+1;
END
BEG N
N = F(5);
SUSPEND,;
END 7

-- Sub-function inside a stored function

CREATE OR ALTER FUNCTI ON FUNCL (nl1 I NTEGER, n2 | NTECER)
RETURNS | NTEGER
AS
DECLARE FUNCTI ON SUBFUNC (nl1 I NTEGER, n2 | NTECER)

60

Procedural SQL (PSQL)

RETURNS | NTEGER
AS
BEG N
RETURN nl + n2;
END
BEG N
RETURN SUBFUNC(N1, n2);
END 7

sel ect funcl(5, 6) fromrdb$database *

Packages
A. dos Santos Fernandes

Note

This feature was sponsored with donations gathered at the Fifth Brazilian Firebird Developers Day

A package is a group of procedures and functions managed as one entity. The notion of “packaging” the code
components of a database operation addresses several objectives:

Modularisation
The ideais to separate blocks of interdependent code into logical modules, as programming languages do.

In programming it is well recognised that grouping code in various ways, in namespaces, units or classes,
for example, is a good thing. With standard procedures and functions in the database this is not possible.
Although they can be grouped in different script files, two problems remain:

1. Thegrouping is not represented in the database metadata.

2. Scripted routines all participate in aflat namespace and are callable by everyone (we are not referring
to security permissions here).

To facilitate dependency tracking
We want a mechanism to facilitate dependency tracking between a collection of related internal routines, as
well as between this collection and other routines, both packaged and unpackaged.

Firebird packages come in two parts. a header (keyword PACKAGE) and a body (keyword PACKAGE
BODY). Thisdivisionisvery similar to a Delphi unit, the header corresponding to the interface part and the
body corresponding to the implementation part.

The header is created first (CREATE PACKAGE) and the body (CREATE PACKAGE BODY) follows.

Whenever a packaged routine determinesthat it uses a certain database object, adependency onthat objectis
registered in Firebird system tables. Thereafter, to drop, or maybe alter that object, you first need to remove
what depends on it. As it is a package body that depends on it, that package body can just be dropped,
even if some other database object depends on this package. When the body is dropped, the header remains,
allowing you to recreate its body once the changes related to the removed object are done.

To facilitate permission management
It is good practice in general to create routines to require privileged use and to use roles or users to enable
the privileged use. As Firebird runs routines with the caller privileges, it is necessary to grant also resource

61

Procedural SQL (PSQL)

usage to each routine when these resources would not be directly accessible to the caller. Usage of each
routine to needs to be granted to users and/or roles.

Packaged routines do not have individual privileges. The privileges act on the package. Privileges granted
to packages are valid for all package body routines, including private ones, but are stored for the package
header.

For example:

GRANT SELECT ON TABLE secret TO PACKAGE pk_secret;
GRANT EXECUTE ON PACKAGE pk_secret TO ROLE rol e_secret;

To enable” private scope”
This objectivewasto introduce private scopeto routines, viz., to make them available only for internal usage
within the defining package.

All programming languages have the notion of routine scope, which is not possible without some form of
grouping. Firebird packages also work like Delphi units in this regard. If aroutine is not declared in the
package header (interface) and is implemented in the body (implementation), it becomes a private routine.
A private routine can only be called from inside its package.

Packaging Syntax

<package_header> :: =
{ CREATE [OR ALTER] | ALTER | RECREATE } PACKAGE <nane>
AS
BEG N
[<package_itenr ...]
END

<package_itenp ::=
<function_decl > ; |
<pr ocedur e_decl > ;

<function_decl> ::=
FUNCTI ON <nanme> [(<paraneters>)] RETURNS <type>

<procedure_decl > ::=
PROCEDURE <name> [(<parameters>) [RETURNS (<paraneters>)]]

<package_body> :: =
{ CREATE | RECREATE } PACKACGE BODY <nane>

AS
BEG N

[<package_itenr ...]

[<package_body_itenr ...]
END

<package_body_itenr ::=
<function_i mpl > |
<pr ocedur e_i npl >

<function_inpl> ::=
FUNCTI ON <nanme> [(<paraneters>)] RETURNS <type>
AS

62

Procedural SQL (PSQL)

BEG N

END

I
FUNCTI ON <nane> [(<paranmeters>)] RETURNS <type>
EXTERNAL NAME ' <nane>' ENG NE <engi ne>

<procedure_inmpl> ::=
PROCEDURE <nane> [(<paranmeters>) [RETURNS (<paraneters>)]]
AS
BEG N

END

I
PROCEDURE <nane> [(<paraneters>) [RETURNS (<paraneters>)]]
EXTERNAL NAME ' <nane>' ENG NE <engi ne>

<dr op_package_header> :: =
DROP PACKAGE <nanme>

<dr op_package_body> :: =
DROP PACKAGE BODY <nane>

Syntax rules

» A package body should implement all routines declared in the header and in the body start, with the same
signature. { ADRIANO, this terminology needs explanation.-Ed.]

» Default value for procedure parameters could not be redefined (be informed in <package item> and
<package body_item>). That means, they can be in <package body_item> only for private procedures not
declared. [ADRIANO, sorry, | cannot make any sense of this.-Ed.]

Notes
DROP PACKAGE drops the package body before dropping its header.

UDF declarations (DECLARE EXTERNAL FUNCTION) are currently not supported inside packages.

Simple Packaging Example

SET TERM #;
-- package header, declarations only
CREATE OR ALTER PACKAGE TEST
AS
BEG N
PROCEDURE P1(1 INT) RETURNS (O INT); -- public procedure
END

-- package body, inplenmentation
RECREATE PACKAGE BODY TEST

AS

BEG N
FUNCTI ON F1(1 INT) RETURNS INT; -- private function
PROCEDURE P1(1 I NT) RETURNS (O I NT)
AS

63

Procedural SQL (PSQL)

BEG N
END
FUNCTI ON F1(1 I NT) RETURNS | NT
AS
BEG N
RETURN O;
END
END 7

Note

More examples can be found in the Firebird installation, in ../examples/package/.

DDL triggers
A. dos Santos Fernandes

Note

This feature was sponsored with donations gathered at the Fifth Brazilian Firebird Developers Day

The purpose of a“DDL trigger” is to enable restrictions to be placed on users who attempt to crezte, alter or
drop aDDL object.

Syntax Pattern

<database-trigger> ::=
{CREATE | RECREATE | CREATE OR ALTER}
TRIGGER <name>
[ACTIVE | INACTIVE]
{BEFORE | AFTER} <ddl event>
[POSITION <n>]
AS
BEGIN

END
<ddl event> ::=

ANY DDL STATEMENT
| <ddl event item> [{ OR <ddl event item>}...]

<ddl event item> ::=

CREATE TABLE

| ALTER TABLE

| DROP TABLE

| CREATE PROCEDURE

| ALTER PROCEDURE

| DROP PROCEDURE

| CREATE FUNCTION

| ALTER FUNCTION

Procedural SQL (PSQL)

| DROP FUNCTION

| CREATE TRIGGER

| ALTER TRIGGER

| DROP TRIGGER

| CREATE EXCEPTION
| ALTER EXCEPTION
| DROP EXCEPTION

| CREATE VIEW

| ALTER VIEW

| DROP VIEW

| CREATE DOMAIN

| ALTER DOMAIN

| DROP DOMAIN

| CREATE ROLE

| ALTER ROLE

| DROP ROLE

| CREATE SEQUENCE
| ALTER SEQUENCE

| DROP SEQUENCE

| CREATE USER

| ALTER USER

| DROP USER

| CREATE INDEX

| ALTER INDEX

| DROP INDEX

| CREATE COLLATION
| DROP COLLATION

| ALTER CHARACTER SET

| CREATE PACKAGE
| ALTER PACKAGE
| DROP PACKAGE

| CREATE PACKAGE BODY
| DROP PACKAGE BODY

Important Rule

The event type [BEFORE | AFTER] of aDDL trigger cannot be changed.

BEFORE triggers are fired before changesto the system tables. AFTER triggers arefired after system table

When a DDL statement fires a trigger that raises an exception (BEFORE or AFTER, intentionally or un-
intentionally) the statement will not be committed. That is, exceptions can be used to ensure that a DDL

operation will fail if the conditions are not precisely as intended.

Semantics
1
changes.
2.
3.

DDL trigger actions are executed only when committing the transaction in which the affected DDL com-
mand runs. Never overlook the fact that what is possible to do in an AFTER trigger is exactly what is
possible to do after a DDL command without autocommit. Y ou cannot, for example, create atable in the
trigger and use it there.

65

Procedural SQL (PSQL)

4. With“CREATE OR ALTER” statements, atrigger isfired onetime at the CREATE event or the ALTER
event, according to the previous existence of the object. With RECREATE statements, atrigger isfired for
the DROP event if the object exists, and for the CREATE event.

5. ALTER and DROP events are generally not fired when the object name does not exist. For the exception,
see point 6.

6. Theexceptiontorule5isthat BEFORE ALTER/DROP USER triggers fire even when the user name does
not exist. This is because, underneath, these commands perform DML on the security database and the
verificationis not done before the command onitisrun. Thisislikely to be different with embedded users,
so do not write code that depends on this.

7. If some exception is raised after the DDL command starts its execution and before AFTER triggers are
fired, AFTER triggers will not be fired.

8. Packaged procedures and triggers do not fire individual {CREATE | ALTER | DROP} {PROCEDURE
| FUNCTION} triggers.

Support in Utilities

A DDL trigger is a type of database trigger, so the parameters -nodbtriggers (GBAK and ISQL) and -T
(NBACKUP) apply to them. Remember that only the database owner and SY SDBA can use these switches.

Permissions

Only the database owner and SY SDBA can create, alter or drop DDL triggers.

DDL_TRIGGER Context Namespace

The introduction of DDL triggers brings with it the new DDL_TRIGGER namespace for use with RDB
$GET_CONTEXT. Itsusageis valid only when a DDL trigger is running. Itsuseis valid in stored procedures
and functions called by DDL triggers.

The DDL_TRIGGER context works like a stack. Before a DDL trigger is fired, the values relative to the exe-
cuted command are pushed onto this stack. After the trigger finishes, the values are popped. So in the case of
cascade DDL statements, when an user DDL command fires a DDL trigger and this trigger executes another
DDL command with EXECUTE STATEMENT, the values of the DDL_TRIGGER namespace are the ones
relative to the command that fired the last DDL trigger on the call stack.

Elements of DDL_TRIGGER Context
« EVENT_TYPE: event type (CREATE, ALTER, DROP)
« OBJECT_TYPE: object type (TABLE, VIEW, etc)

e DDL_EVENT: event name (<ddl event item>), where <ddl_event item> is EVENT _TYPE || ' ' ||
OBJECT_TYPE

66

Procedural SQL (PSQL)

e OBJECT_NAME: metadata object name
e SQL_TEXT: sql statement text
ExamplesUsing DDL Triggers

Here is how you might use aDDL trigger to enforce a consistent naming scheme, in this case, stored procedure
names should begin with the prefix “SP_":

create exception e_invalid_sp_nane 'Invalid SP nanme (should start with SP_)";

set term!;

create trigger trig_ddl _sp before CREATE PROCEDURE

as
begi n
if (rdb$get_context (' DDL_TRI GGER , ' OBJECT_NAME') not starting 'SP_') then
exception e_invalid_sp_nang;
end!
-- Test

create procedure sp_test
as

begi n

end!

create procedure test

as

begi n

end!

-- The last conmand raises this exception and procedure TEST is not created
-- Staterment failed, SQSTATE = 42000

-- exception 1

-- -E_I NVALI D_SP_NAME

-- -lnvalid SP nane (should start with SP)

-- -At trigger '"TRIGDDL_SP' line: 4, col: 5

set term ;!

Implement custom DDL security, in this case restricting the running of DDL commands to certain users:

create exception e_access_deni ed ' Access denied';
set term!;

create trigger trig_ddl before any ddl statenent

as
begi n
if (current_user <> 'SUPER USER) then
exception e_access_deni ed;
end!
-- Test

create procedure sp_test
as

67

Procedural SQL (PSQL)

begi n
end!

-- The last conmand rai ses this exception and procedure SP_TEST is not created
-- Statenment failed, SQ.STATE = 42000

-- exception 1

-- -E_ACCESS DEN ED

-- -Access denied

-- -At trigger '"TRIGDDL' line: 4, col: 5

set term ;!

Use atrigger to log DDL actions and attempts:

create sequence ddl _seq;

create table ddl _Iog (
id bigint not null primry key,
nonent tinestanp not null,
user _name varchar(31) not null,
event _type varchar(25) not null,
obj ect _type varchar(25) not null,
ddl _event varchar(25) not null,
obj ect _nanme varchar (31) not null,
sql _text blob sub_type text not null,
ok char (1) not null

)
set term!;

create trigger trig_ddl_| og_before before any ddl statenent

as
declare id type of columm ddl _|l og.id;
begi n
-- W do the changes in an AUTONOMOUS TRANSACTI ON, so if an exception happens
-- and the command didn't run, the log will survive.
i n aut ononmpus transaction do
begi n
insert into ddl _log (id, noment, user_nane, event_type, object_type,
ddl _event, object_nanme, sqgl_text, ok)
val ues (next value for ddl _seq, current_tinestanp, current_user,
rdb$get _context (' DDL_TRIGGER , ' EVENT_TYPE'),
rdb$get _context (' DDL_TRI GGER , ' OBJECT_TYPE'),
rdb$get _context (' DDL_TRIGGER , 'DDL_EVENT'),
rdb$get _context (' DDL_TRI GGER , ' OBJECT_NAME'),
rdb$get _context (' DDL_TRIGEGER , 'SQ_TEXT'),
'N)
returning id into id;
rdb$set _context (' USER_SESSION', 'trig_ddl _log_ id, id);
end
end!

-- Note: the above trigger will fire for this DDL conmand. It's good idea to
-- use -nodbtriggers when working with them
Create trigger trig_ddl _log_after after any ddl statement
as
begi n
-- Here we need an AUTONOMOUS TRANSACTI ON because the original transaction
-- will not see the record inserted on the BEFORE trigger autonompus
-- transaction if user transaction is not READ COVM TTED.

68

Procedural SQL (PSQL)

i n aut ononpbus transaction do
update ddl | og set ok ='Y
where id = rdb$get _context (' USER SESSION , 'trig _ddl log_ id);
end!

commt!
set term ;!

-- Delete the record about trig_ddl _|og after creation.
del ete from ddl _| og;
commi t;

-- Test

-- This will be | ogged one tine
-- (as T1 did not exist, RECREATE acts as CREATE) with OK =Y.
recreate table t1 (

nl integer,

n2 integer

)

-- This will fail as Tl already exists, so OK will be N
create table t1 (

nl integer,

n2 integer

)

-- T2 does not exist. There will be no | og.
drop table t2;

-- This will be |ogged tw ce
-- (as T1 exists, RECREATE acts as DROP and CREATE) with OK =Y.
recreate table t1 (

n integer

)

conm t;

select id, ddl_event, object_nane, sqgl_text, ok
fromddl _| og order by id;

| D DDL_EVENT OBJECT_NAME SQL_TEXT K
2 CREATE TABLE T1 80:3 Y
SQL_TEXT:
recreate table t1 (
nl i nteger,
n2 integer
)
3 CREATE TABLE T1 80:2 N

SQL_TEXT:

create table t1 (
nl i nteger,
n2 integer

Procedural SQL (PSQL)

4 DROP TABLE T1 80:6 Y

SQL_TEXT
recreate table t1 (
n integer

5 CREATE TABLE T1 80:9 Y

SQL_TEXT
recreate table t1 (
n integer

Exceptions with parameters
Adriano dos Santos Fernandes

An exception can now be defined with a message containing slots for parameters which are filled and passed
when raising the exception, using the syntax pattern

EXCEPTION <name> USING (<valuelist>)
Examples

create exception e_invalid_val 'Invalid value @1 for the field @2';

if (val < 1000) then

thing = val;
el se

exception e_invalid_val using (val, 'thing');
end

CREATE EXCEPTION EX_BAD_SP NAME
'‘Name of procedures must start with "@1" : "@2";

CREATE TRl GGER TRG SP_CREATE BEFORE CREATE PROCEDURE
AS
DECLARE SP_NAME VARCHAR(255) ;
BEG N
SP_NAME = RDB$GET_CONTEXT(' DDL_TRI GGER , ' OBJECT_NAME);

| E (SP_NAME NOT STARTING 'SP ')
THEN EXCEPTI ON EX_BAD SP_NAME USING (' SP_', SP_NAME);
END;

70

Procedural SQL (PSQL)

Notes

The status vector is generated using this code combination: isc_except, <exception number>,
isc_formatted exception, <formatted exception message>, <exception parameters>

Since a new error code (isc_formatted exception) is used, the client must be v.3.0, or at least use thefi r e-
bi r d. nsg filefrom v.3.0, in order to trandate the status vector to a string.

Considering, in left-to-right order, each parameter passed in the exception-raising statement as “the Nth”, with
N starting at 1:

« If an Nth parameter is not passed, the text is not substituted.
e |f NULL ispassed, it isreplaced by the string "*** null ***',
 If more parameters are passed than are defined in the exception message, the surplus ones are ignored.

» Thetotal length of the message, including the values of the parameters, is still limited to 1053 bytes.

CONTINUE in Looping Logic

Adriano dos Santos Fernandes

CONTINUE is a complementary command to BREAK/LEAVE, alowing flow of control to break (leave) and
start of the next iteration of a FOR/WHILE loop.

Syntax

CONTI NUE [<l abel >];

Example

FOR SELECT A, D FROM ATABLE | NTO : achar, :ddate
DO BEG N
|F (ddate < current_data - 30) THEN
CONTI NUE;
ELSE
[* do stuff */

END

PSQL Cursor Stabilization
Vlad Khorsun

PSQL cursors without SUSPEND inside are now stable:

FOR SELECT ID FROM T WHERE VAL | S NULL INTO : 1D

DO BEG N
UPDATE T SET VAL =1
VWHERE ID = :ID

71

Procedural SQL (PSQL)

END

Previously, this block would loop interminably. Now, the loop will not select the value if it was set within the
loop.

Note

This could change the behaviour of legacy code.

If thereisa SUSPEND inside the block, the old instability remains#this query still produces the infinite loop:

FOR SELECT ID FROM T INTO : D
DO BEG N
INSERT INTO T (1D) VALUES (:1D);
SUSPEND;
END

Some Size Limits Removed Using New API
Dmitry Y emanov

If and only if the new APl isin use:

» Thesizeof thebody of astored procedure or atrigger can exceed thetraditional limit of 32 KB. Thetheoretical
limit provided by the new API is4GB. At the moment, as a security measure, the hardcoded limit is 10MB.
It may change before the final release.

» Thetotal size of al input or output parameters for a stored procedure or a user-defined DSQL query is no
longer limited to the traditional size of (64KB - overhead).

SQLSTATE in Exception Handler

Dmitry Y emanov

Beforethefinal release of Firebird 3an SQLSTATE codewill becomeavalid condition for trapping an exception
with aWHEN statement. It is not implemented in the Alpha 1 release.

72

Chapter 11

Command-line Utilities

No new utilities are released with Firebird 3.0. Existing utilities have undergone afew improvements.

Monitoring
Dmitry Y emanov

New information is now availablein MONSATTACHMENTS, viz.
» Operating system user name. See Tracker CORE-3779.

» Protocol and client library version. See Tracker CORE-2780.
 Client host name. See Tracker CORE-2187.

« authentication method used for connection (MON$AUTH_METHOD). See Tracker CORE-4222.

Database owner (MON$OWNER) added to MON$SDATABASE. See Tracker CORE-4218.

Isql

SET EXPLAIN Extensions for Viewing Detailed Plans
Dmitry Y emanov

A new SET optionisadded: SET EXPLAIN [ON | OFF]. It extendsthe SET PLAN option to report the explained
plan instead of the standard one.

If SET PLAN isomitted, then SET EXPLAIN turnsthe plan output on. SET PLANONLY works asin previous
versions.

Usage options

SET PLAN = simple plan + query execution

SET PLANONLY = simple plan, no query execution

SET PLAN + SET EXPLAIN = explained plan + query execution

SET PLAN + SET EXPLAIN + SET PLANONLY = explained plan, no query execution
SET EXPLAIN = explained plan + query execution

SET EXPLAIN + SET PLANONLY = explained plan, no query execution

73

http://tracker.firebirdsql.org/browse/CORE-3779
http://tracker.firebirdsql.org/browse/CORE-2780
http://tracker.firebirdsql.org/browse/CORE-2187
http://tracker.firebirdsql.org/browse/CORE-4222
http://tracker.firebirdsql.org/browse/CORE-4218

Command-line Utilities

Metadata Extract
Claudio Valderrama C.

The metadata extract tool (-[€]x[tract] switch) wasimproved to create a script that takes the dependency order
of objects properly into account.

Path to INPUT Files

Adriano dos Santos Fernandes

The INPUT command will now use a relative path based on the directory of the last-opened, unclosed file in
the chain to locate the next file.

Command Buffer Size Increase
Adriano dos Santos Fernandes

The size of the isgl command buffer has increased from 64 KB to 10 MB to match the new engine limits. See
Tracker ticket CORE-4148.

fb_lock print

Input Arguments
Dmitry Y emanov

fb_lock_print now accepts 32-bit integers asthe input argumentsfor seconds and intervals. Previously they were
limited to SMALLINT.

Useability Improvements
Vlad Khorsun

A few other small improvements:

1. More detailed usage help is available from the command line (-help).

2. Events history and list of owners are no longer output by default: they may be requested explicitly if re-
quired. Header-only is the new default.

3. New -o[wnerg] switch to print only owners (locks) with pending requests

74

http://tracker.firebirdsql.org/browse/CORE-4148

Command-line Utilities

gfix

-NoLinger Switch
Alex Peshkov

gfix has a new switch -NoL inger to provide a one-off override to the LINGER setting of a database.

For information regarding LINGER, see the write-up in the DDL chapter.

Other Tweaks

Some implementation annoyances were cleared up in several utilities.

All Command-line Utilities

Resolution of Database Path
Alex Peshkov

All utilitiesresolve database pathsin dat abases. conf when they need to access a database file directly. But
not all of them would follow the same rules when expanding a database name. Now, they do.

Help and Version Information
Claudio VaderramaC.

All command-line utilitiesexcept gpreand gli now present help and version informationin aunified and coherent
way.

No info yet at CORE-2540.

War on Hard-coded Messages
Claudio Vaderrama C.

Hard-coded messages were replaced with the regular parameterised-style ones in tracemanager and nbackup.

War on Arbitrary Switch Syntax
Claudio VaderramaC.

Switch optionsin gli and nbackup were made to check the correctness (or not) of the abbreviated switch options
presented.

75

http://tracker.firebirdsql.org/browse/CORE-2540

Chapter 12

Bugs Fixed

Firebird 3.0 Second Alpha Release

The following improvements and bug fixes were reported as fixed prior to the v.3.0.0 release:

Core Engine
(CORE-4302) Descending index could be very inefficient for some keys
fixed by V. Khorsun

(CORE-4289) A NOT NULL field from a derived table could become NULL when referred to from
outside the derived table

fixed by D. Yemanov

(CORE-4281) TY PE OF arguments of stored functions could cause the server to hang if depending on
adomain or column that had been changed

fixed by A. dos Santos Fernandes

(CORE-4270) A subquery involving awindowed function and awhere <fiel d> | N(select ...)
condition could cause an error

fixed by D. Yemanov

(CORE-4265) An unexpected lock conflict error could be raised while connecting to a heavily loaded
database

fixed by D. Yemanov

(CORE-4262) Context parsing errors could occur with derived tables and CA SE functions

fixed by D. Yemanov

76

http://tracker.firebirdsql.org/browse/CORE-4302
http://tracker.firebirdsql.org/browse/CORE-4289
http://tracker.firebirdsql.org/browse/CORE-4281
http://tracker.firebirdsql.org/browse/CORE-4270
http://tracker.firebirdsql.org/browse/CORE-4265
http://tracker.firebirdsql.org/browse/CORE-4262

Bugs Fixed

(CORE-4261) JOIN result could be wrong when joined fields had been created viather ow_nunber ()
function

fixed by D. Yemanov

(CORE-4258) The boundary for the minimum value for BIGINT/DECIMAL (18) was wrong

fixed by A. dos Santos Fernandes

(CORE-4251) The Guardian service could write garbage after the end of amessage in the Event Log
fixed by V. Khorsun

(CORE-4250) Access violation could occur in Guardian at process shutdown

fixed by V. Khorsun

(CORE-4237) M etadata being reported from system table queries for UDF return arguments was different
to that returned in Firebird 2.5

fixed by A. dos Santos Fernandes

(CORE-4234) I F (subfunc()) would throw an error when subfunc returned a Boolean

fixed by A. dos Santos Fernandes

(CORE-4229) Bidirectional cursor was not being positioned by thefirst call of FETCH LAST

fixed by D. Yemanov

(CORE-4227) A parser conflict was causing wrong evaluation of BETWEEN and Boolean expressions
fixed by A. dos Santos Fernandes

(CORE-4216) Memory leak with TRIGGER ON TRANSACTION COMMIT

fixed by V. Khorsun

77

http://tracker.firebirdsql.org/browse/CORE-4261
http://tracker.firebirdsql.org/browse/CORE-4258
http://tracker.firebirdsql.org/browse/CORE-4251
http://tracker.firebirdsql.org/browse/CORE-4250
http://tracker.firebirdsql.org/browse/CORE-4237
http://tracker.firebirdsql.org/browse/CORE-4234
http://tracker.firebirdsql.org/browse/CORE-4229
http://tracker.firebirdsql.org/browse/CORE-4227
http://tracker.firebirdsql.org/browse/CORE-4216

Bugs Fixed

(CORE-4211) The embedded engine would hang for 5 seconds when closing, with errors about timeout
in shutdown process and invalid mutex being writtenintof i r ebi r d. | og

fixed by A. Peshkov
(CORE-4201) A computed field would return NULL inside a BEFORE INSERT trigger
fixed by D. Yemanov

(CORE-4198) An incorrect “token unknown” error would occur when an SQL string ended with a hex
number literal

fixed by A. dos Santos Fernandes

(CORE-4177) Some Boolean expressions were not being allowed
fixed by A. dos Santos Fernandes

(CORE-4159) Incorrect memory statistics were being reported
fixed by D. Yemanov

(CORE-4156) RDB$GET_CONTEXT/RDB$SET_CONTEXT parameters were being described incor-
rectly as CHAR NOT NULL instead of VARCHAR NULLABLE

fixed by A. dos Santos Fernandes

(CORE-3689) Bad performance and slow response were exhibited when many concurrent sorts were
executed

fixed by D. Yemanov

(CORE-3291) With bugcheckabort=1 and sweep starting at gap ~21000, “Bugcheck 186 (record disap-
peared)” and 100% CPU |load would occur

fixed by V. Khorsun
(CORE-2165) Unnecessary index reads could occur when using a strict inequality condition

fixed by V. Khorsun

78

http://tracker.firebirdsql.org/browse/CORE-4211
http://tracker.firebirdsql.org/browse/CORE-4201
http://tracker.firebirdsql.org/browse/CORE-4198
http://tracker.firebirdsql.org/browse/CORE-4177
http://tracker.firebirdsql.org/browse/CORE-4159
http://tracker.firebirdsql.org/browse/CORE-4156
http://tracker.firebirdsql.org/browse/CORE-3689
http://tracker.firebirdsql.org/browse/CORE-3291
http://tracker.firebirdsql.org/browse/CORE-2165

Bugs Fixed

Server Crashes

(CORE-4293) The server could crash on a SELECT with along or complex list of compound AND/
OR'd predicates

fixed by D. Yemanov

(CORE-4271) Recreation of an errant package body could cause the engine to crash
fixed by A. dos Santos Fernandes

(CORE-4268) Disconnecting from a database could cause a server crash

fixed by D. Yemanov

(CORE-4267) Sweeping a database could cause a server crash

fixed by D. Yemanov

(CORE-4225) The server could crash when trace activity was attempted on a database having a database-
level trigger

fixed by V. Khorsun
(CORE-4185) Server crashes could occur, reporting “invalid lock id (NNNNN)”

fixed by A. Peshkov

API/Remote Interface

(CORE-4283) “Resource temporarily unavailable” errors could occur while events were being registered
simultaneously

fixed by A. Peshkov

(CORE-4236) Database shutdown was being reported as successfully completed before all active connec-
tions had actually been interrupted

fixed by D. Yemanov

79

http://tracker.firebirdsql.org/browse/CORE-4293
http://tracker.firebirdsql.org/browse/CORE-4271
http://tracker.firebirdsql.org/browse/CORE-4268
http://tracker.firebirdsql.org/browse/CORE-4267
http://tracker.firebirdsql.org/browse/CORE-4225
http://tracker.firebirdsql.org/browse/CORE-4185
http://tracker.firebirdsql.org/browse/CORE-4283
http://tracker.firebirdsql.org/browse/CORE-4236

Bugs Fixed

(CORE-4178) The new API was till returning obscure historical definition artifacts of datafields, instead
of proper metadata properties that would make the interface actually usable

fixed by A. Peshkov
(CORE-4162) Warnings were not being returned from calls to attachDatabase()

fixed by A. Peshkov

Security/User Management
(CORE-4241) Log-in could succeed with an empty password
fixed by A. Peshkov

(CORE-4200) An uncommitted SELECT from the pseudo table sec$user s would block new database
connections

fixed by A. Peshkov

Procedural Language

(CORE-4247) Positioned DELETE (WHERE CURRENT OF <CURSOR>) could fail for tables with
newly added fields

fixed by A. dos Santos Fernandes
(CORE-4244) Creating aprocedure could be aproblemif it involved adding text in DOS864 character set
fixed by A. dos Santos Fernandes

(CORE-4184) An error would be raised while executing an empty EXECUTE BLOCK with NOT NULL
output parameter

fixed by A. dos Santos Fernandes
(CORE-4160) A parameterized exception would mishandle non-ASCI| characters passed as the parameter

fixed by A. dos Santos Fernandes

80

http://tracker.firebirdsql.org/browse/CORE-4178
http://tracker.firebirdsql.org/browse/CORE-4162
http://tracker.firebirdsql.org/browse/CORE-4241
http://tracker.firebirdsql.org/browse/CORE-4200
http://tracker.firebirdsql.org/browse/CORE-4247
http://tracker.firebirdsql.org/browse/CORE-4244
http://tracker.firebirdsql.org/browse/CORE-4184
http://tracker.firebirdsql.org/browse/CORE-4160

Bugs Fixed

(CORE-4145) Preparing an EXECUTE BLOCK that used domains was causing a memory leak

fixed by A. dos Santos Fernandes

Data Definition Language

(CORE-4214) Global temporary tables were able to reference permanent relations, which they should
not be able to do

fixed by V. Khorsun

(CORE-4212) Dropping aforeign key on a Global temporary table would cause a server crash
fixed by V. Khorsun

(CORE-4203) Packaged routines with CHAR or VARCHAR parameters could not be created
fixed by A. dos Santos Fernandes

(CORE-4180) CREATE COLLATION was not verifying the base collation character set
fixed by A. dos Santos Fernandes

(CORE-4173) Setting a generator value twice in a single transaction would set it to zero

fixed by D. Yemanov

(CORE-4155) External routines DDL in packages was wrongly reporting termination with semi-colon
asan error

fixed by A. dos Santos Fernandes

Data Manipulation Language

(CORE-4269) Wrong output would be produced when a field with the result of a windowed function was
used in aquery with a useless WHERE 0=0 and GROUP BY clause

fixed by D. Yemanov

81

http://tracker.firebirdsql.org/browse/CORE-4145
http://tracker.firebirdsql.org/browse/CORE-4214
http://tracker.firebirdsql.org/browse/CORE-4212
http://tracker.firebirdsql.org/browse/CORE-4203
http://tracker.firebirdsql.org/browse/CORE-4180
http://tracker.firebirdsql.org/browse/CORE-4173
http://tracker.firebirdsql.org/browse/CORE-4155
http://tracker.firebirdsql.org/browse/CORE-4269

Bugs Fixed

(CORE-4255) Parameterized queries using RDB$DB_KEY would not work
fixed by D. Yemanov

(CORE-4240) Recursive query would return incorrect results if passage through more than one branch
was requested

fixed by D. Yemanov
(CORE-4158) LIKE with escape was not working

fixed by A. dos Santos Fernandes

Utilities

gfix
(CORE-4297) gf i x would crash when the size of the description of alimbo transaction waslarger than 1 KB

fixed by V. Khorsun

fbsvemgr
(CORE-4298) f bsvengr was not recognising sts_record_versions and other sts switches

fixed by A. Peshkov

isql

(CORE-4259) Bug inthei sql command setlocale(LC_CTYPE, "") on Windows due to a reference
to editline, which is not available on that platform

fixed by F. Schlottmann-Goedde
(CORE-4205) ISQL -x wasfailing to output the START WITH clause of generators/sequences

fixed by A. dos Santos Fernandes

82

http://tracker.firebirdsql.org/browse/CORE-4255
http://tracker.firebirdsql.org/browse/CORE-4240
http://tracker.firebirdsql.org/browse/CORE-4158
http://tracker.firebirdsql.org/browse/CORE-4297
http://tracker.firebirdsql.org/browse/CORE-4298
http://tracker.firebirdsql.org/browse/CORE-4259
http://tracker.firebirdsql.org/browse/CORE-4205

Bugs Fixed

(CORE-4149) New permission types were not being displayed by isql
fixed by D. Yemanov
(CORE-362) It was impossible to enter certain charactersin isgl

fixed by F. Schlottmann-Goedde

gbak
(CORE-4202) Backup/restore from an older version to v.3.0 would fail with aBLR error
fixed by D. Yemanov

(CORE-4168) A backup containing procedures or triggers that selected from external tables could not
be restored with Exter nalFileAccess = None

fixed by D. Yemanov
(CORE-4164) Owner name was missing for generators and exceptions restored from a backup

fixed by D. Yemanov

nbackup
(CORE-2648) nBackup's deltafile was ignoring the Forced Writes setting of the database

fixed by V. Khorsun

Database Monitoring (MONS$)
(CORE-4235) Deadlock could occur while accessing the monitoring tables under concurrent load
fixed by D. Yemanov & V. Khorsun

(CORE-4176) Monitoring tables were returning incomplete information in Classic and Superclassic
configurations

83

http://tracker.firebirdsql.org/browse/CORE-4149
http://tracker.firebirdsql.org/browse/CORE-362
http://tracker.firebirdsql.org/browse/CORE-4202
http://tracker.firebirdsql.org/browse/CORE-4168
http://tracker.firebirdsql.org/browse/CORE-4164
http://tracker.firebirdsql.org/browse/CORE-2648
http://tracker.firebirdsql.org/browse/CORE-4235
http://tracker.firebirdsql.org/browse/CORE-4176

Bugs Fixed

fixed by D. Yemanov

Trace
(CORE-4219) Regular expressions with double-slash would fail in trace

fixed by A. Peshkov

(CORE-4163) Configuration filef bt r ace. conf contained syntax errors

fixed by A. Peshkov

International Language Support

Installation Issues

(CORE-4153) Attempting to use Legacy Auth directly after install would not work without restarting
the service

fixed by P. Reeves

Firebird 3.0 First Alpha Release

The following improvements and bug fixes were reported as fixed prior to the v.3.0.0 release:

Core Engine

(CORE-4135) Sweep was blocking the establishment of concurrent attachments in Superserver.
fixed by V. Khorsun

(CORE-4134) A race condition could occur when auto-sweep was started.

fixed by V. Khorsun

(CORE-4074) COMPUTED BY columns and POSITION function could produce garbled resuilts.

84

http://tracker.firebirdsql.org/browse/CORE-4219
http://tracker.firebirdsql.org/browse/CORE-4163
http://tracker.firebirdsql.org/browse/CORE-4153
http://tracker.firebirdsql.org/browse/CORE-4135
http://tracker.firebirdsql.org/browse/CORE-4134
http://tracker.firebirdsql.org/browse/CORE-4074

Bugs Fixed

fixed by A. dos Santos Fernandes

(CORE-4027) Creating atablewith computed fields containing SELECT FIRST could produce a corrupted
result.

fixed by A. dos Santos Fernandes

(CORE-3973) The SQLDA for an aiased column in agrouped query was missing the original table name,
column name and owner.

fixed by A. dos Santos Fernandes

(CORE-3947) Wrong results were produced when a column in the WHERE clause used the collation
option (NUMERIC-SORT=1).

fixed by A. dos Santos Fernandes
(CORE-3941) A unique expression index would exhibit a memory alignment problem.
fixed by A. dos Santos Fernandes

(CORE-3929) The invalid error “attempted update of read-only column” would appear when selecting
MINVALUE from alist of more than 255 elements.

fixed by A. dos Santos Fernandes

(CORE-3894) When an attempt was made to reduce the size of a CHAR or VARCHAR column, the
numbers delivered in the error message were incorrect.

fixed by A. dos Santos Fernandes

(CORE-3874) A computed column would appear in non-existent rows output from aleft join.
fixed by A. dos Santos Fernandes

(CORE-3820) Some character sets were duplicated in the system table RDB$TY PES.

fixed by A. dos Santos Fernandes

(CORE-3754) SIMILAR TO was not working correctly.

85

http://tracker.firebirdsql.org/browse/CORE-4027
http://tracker.firebirdsql.org/browse/CORE-3973
http://tracker.firebirdsql.org/browse/CORE-3947
http://tracker.firebirdsql.org/browse/CORE-3941
http://tracker.firebirdsql.org/browse/CORE-3929
http://tracker.firebirdsql.org/browse/CORE-3894
http://tracker.firebirdsql.org/browse/CORE-3874
http://tracker.firebirdsql.org/browse/CORE-3820
http://tracker.firebirdsql.org/browse/CORE-3754

Bugs Fixed

fixed by A. dos Santos Fernandes

(CORE-3735) An unprivileged user could delete from the system tables RDB$SDATABASE, RDB$COL -
LATIONS and RDB$CHARACTER_SETS.

fixed by D. Yemanov

(CORE-3694) “Internal consistency check” would occur in a query with grouping by subquery+stored
proceduret+aggregate.

fixed by A. dos Santos Fernandes

(CORE-3672) It was not possible to use the SUBSTRING function to create a computed index for large
columns.

fixed by A. dos Santos Fernandes

(CORE-3638) Some collation tweaking: FR_CA_CIl_AlI collation was introduced; FR_FR was changed
to beidentical to FR_CA and FR_FR_CI_AI was changed to be identical to the new FR_CA_CI_Al.

fixed by A. dos Santos Fernandes

(CORE-3476) The LIST function was concatenating binary blobs as though they were text.

fixed by A. dos Santos Fernandes

(CORE-3401) Collation errors could occur with the use of [type of] <domain> and type of <column>.
fixed by A. dos Santos Fernandes

(CORE-3373) It was possible to store a string of length 31 charactersinto aVARCHAR(25) column.
fixed by A. dos Santos Fernandes

(CORE-3338) Regression: Code changes had disabled support for expression indexes with COALESCE,
CASE and DECODE.

fixed by A. dos Santos Fernandes

(CORE-3317) Success of row deletion depended on the order of insertion of the rows.

86

http://tracker.firebirdsql.org/browse/CORE-3735
http://tracker.firebirdsql.org/browse/CORE-3694
http://tracker.firebirdsql.org/browse/CORE-3672
http://tracker.firebirdsql.org/browse/CORE-3638
http://tracker.firebirdsql.org/browse/CORE-3476
http://tracker.firebirdsql.org/browse/CORE-3401
http://tracker.firebirdsql.org/browse/CORE-3373
http://tracker.firebirdsql.org/browse/CORE-3338
http://tracker.firebirdsql.org/browse/CORE-3317

Bugs Fixed

fixed by V. Khorsun

(CORE-3310) A complex expression involving RDB$SGET_CONTEXT and BETWEEN worked in DSQL
but failed with a conversion error when selected in aview definition.

fixed by A. dos Santos Fernandes
(CORE-3260) Interlock.h was not portable.
fixed by A. Peshkov

(CORE-3250) The Firebird server could not be started under any user name other than “root”, “firebird”,
“interbas’ or “interbase”.

fixed by A. Peshkov

(CORE-3239) The collation UTF8 UNICODE_CI could not be used in acompound index.
fixed by A. dos Santos Fernandes

(CORE-3204) A constraint violation error involving CAST was not being raised inside views.
fixed by A. dos Santos Fernandes

(CORE-3052) Comparisons involving multiple index segments could produce wrong result sets.
fixed by A. dos Santos Fernandes

(CORE-2988) The concurrent transaction number was not being reported when alock timeout occurred.
fixed by N. Samofatov

(CORE-2957) COUNT(*) from abig table could return a negative result.

fixed by D. Yemanov

(CORE-2952) Character class names in SIMILAR TO expressions could be case-sensitive or case-
insensitive, depending on the collation of the left part, whereas they should be unequivocally case-insensitive.

fixed by D. Sbiryakov

87

http://tracker.firebirdsql.org/browse/CORE-3310
http://tracker.firebirdsql.org/browse/CORE-3260
http://tracker.firebirdsql.org/browse/CORE-3250
http://tracker.firebirdsql.org/browse/CORE-3239
http://tracker.firebirdsql.org/browse/CORE-3204
http://tracker.firebirdsql.org/browse/CORE-3052
http://tracker.firebirdsql.org/browse/CORE-2988
http://tracker.firebirdsql.org/browse/CORE-2957
http://tracker.firebirdsql.org/browse/CORE-2952

Bugs Fixed

(CORE-2932) An ALTER TABLE..ALTER COLUMN..ALTER POSITION operation could result in
wrong column positions.

fixed by A. dos Santos Fernandes

(CORE-2922) The character set used in a constant was not being registered as a dependency.
fixed by A. dos Santos Fernandes

(CORE-2913) COLLATE expressions were being applied incorrectly.

fixed by A. dos Santos Fernandes

(CORE-2798) Plan output lacked the names of views when selecting from views that contained procedure
cals.

fixed by D. Yemanov

(CORE-2796) DB_KEY was aways zero for rows in external tables.

fixed by D. Yemanov

(CORE-2678) A full outer join could not use available indices, resulting in very slow execution sometimes.
fixed by D. Yemanov

(CORE-2508) Use of certain choices of character in double-quoted index names, for example a bracket
character, could defeat the parsing logic when generating a human-readable plan.

fixed by D. Yemanov

(CORE-2155) A join of a stored procedure with a view or atable could fail with the error “No current
record for fetch operation”.

fixed by D. Yemanov

(CORE-1712) A buffer overrun error was being caught erroneously in a DOUBLE PRECISION to
VARCHAR conversion in aDialect 1 database.

fixed by C. Valderrama C.

88

http://tracker.firebirdsql.org/browse/CORE-2932
http://tracker.firebirdsql.org/browse/CORE-2922
http://tracker.firebirdsql.org/browse/CORE-2913
http://tracker.firebirdsql.org/browse/CORE-2798
http://tracker.firebirdsql.org/browse/CORE-2796
http://tracker.firebirdsql.org/browse/CORE-2678
http://tracker.firebirdsql.org/browse/CORE-2508
http://tracker.firebirdsql.org/browse/CORE-2155
http://tracker.firebirdsql.org/browse/CORE-1712

Bugs Fixed

(CORE-1605) An aggregated query was causing " Bugcheck 232 (invalid operation)”.
fixed by A. dos Santos Fernandes

(CORE-1550) An unnecessary index scan was executed when the same index is mapped to both WHERE
and ORDER BY clauses.

fixed by D. Yemanov

API/Remote Interface

(CORE-3718) Thecient library could hang after an unsuccessful attempt to connect to the remote auxiliary
(events) port.

fixed by A. Peshkov

(CORE-3475) Parameters inside the CAST function were being wrongly described in the SQLDA as
non-nullable.

fixed by A. dos Santos Fernandes
(CORE-3269) The client would perform detach incorrectly when the server became unavailable.
fixed by A. Peshkov

(CORE-2484) An erroneous “ Success’ message would be returned in the error status vector when failing
to connect to atrash database file.

fixed by C. Valderrama C.
(CORE-2431) String values in error messages were not converted to the connection character set.

fixed by A. dos Santos Fernandes

Procedural Language

(CORE-4018) Use of asystem domain in declarations of arguments or return values in a stored procedure
could prevent the procedure from being modifiable.

89

http://tracker.firebirdsql.org/browse/CORE-1605
http://tracker.firebirdsql.org/browse/CORE-1550
http://tracker.firebirdsql.org/browse/CORE-3718
http://tracker.firebirdsql.org/browse/CORE-3475
http://tracker.firebirdsql.org/browse/CORE-3269
http://tracker.firebirdsql.org/browse/CORE-2484
http://tracker.firebirdsql.org/browse/CORE-2431
http://tracker.firebirdsql.org/browse/CORE-4018

Bugs Fixed

fixed by A. dos Santos Fernandes

(CORE-3737) EXECUTE BLOCK parameter definitions were not being respected and could cause wrong
behavior with respect to character sets.

fixed by A. dos Santos Fernandes

(CORE-3545) Validation of domain CHECK constraintswhen used in PSQL declarations wasinconsi stent:
it was using the type of the expression, instead of the type of the variable.

fixed by A. dos Santos Fernandes

(CORE-3055) The names of variables or arguments could be wrong or absent in error messages when
more than 256 variables were used.

fixed by A. dos Santos Fernandes
(CORE-3047) Resolution of EXECUTE BLOCK parameter collations was using wrong logic.
fixed by A. dos Santos Fernandes

(CORE-2204) Constraints on stored procedure output parameters were checked even when the procedure
returned no rows.

fixed by A. dos Santos Fernandes

(CORE-1620) Incorrect error message (an absurd column number) was returned if an empty SQL string
was prepared for EXECUTE STATEMENT.

fixed by D. Yemanov

Data Definition Language
(CORE-3114) Attempting to drop a non-existent generator (sequence) would result in a serious exception.
fixed by A. dos Santos Fernandes

(CORE-3056) Problems could occur if further DDL commands were issued in the same transaction
following a CREATE COLLATION command.

90

http://tracker.firebirdsql.org/browse/CORE-3737
http://tracker.firebirdsql.org/browse/CORE-3545
http://tracker.firebirdsql.org/browse/CORE-3055
http://tracker.firebirdsql.org/browse/CORE-3047
http://tracker.firebirdsql.org/browse/CORE-2204
http://tracker.firebirdsql.org/browse/CORE-1620
http://tracker.firebirdsql.org/browse/CORE-3114
http://tracker.firebirdsql.org/browse/CORE-3056

Bugs Fixed

fixed by A. dos Santos Fernandes

(CORE-2696) The ALTER TABLE command alowed the addition of a column with a NOT NULL
definition, allowing a non-savvy DBAdmin to wreck the table.

fixed by A. dos Santos Fernandes

(CORE-1748) Unrestorable backup: a problem which would occur if ALTER TABLE...ADD COLUMN
added a column with aNOT NULL constraint. The fix for CORE-2696 has now made it impossible to do this.

fixed by A. dos Santos Fernandes

(CORE-1518) Adding anon-nullable column to a popul ated table would render the table inconsistent. The
fix for CORE-2696 has now made it impossible to do this.

fixed by A. dos Santos Fernandes

(CORE-1355) Client tools tended to be confused about how to interpret a NULL that is returned from
a non-nullable column. The fix for CORE-2696 has now made it impossible to add a non-nullable column to
apopulated table.

It is not clear, though, whether this part of the fix makes it mandatory to specify a default value for a non-
nullable column.

fixed by A. dos Santos Fernandes

(CORE-634) Bad behaviour of DELETE when the WHERE clause was a subquery involving FIRST/
SKIP: the operation would zap every row in the table.

fixed by V. Khorsun
(CORE-304) Any user could alter or drop generators and exceptionsta metadata security hole.

fixed by D. Yemanov

Data Manipulation Language & DSQL

(CORE-4144) When when preparing a query with UNION, the error “context already in use (BLR error)”
was wrongly being thrown.

fixed by V. Khorsun

91

http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1748
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1518
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-1355
http://tracker.firebirdsql.org/browse/CORE-2696
http://tracker.firebirdsql.org/browse/CORE-634
http://tracker.firebirdsql.org/browse/CORE-304
http://tracker.firebirdsql.org/browse/CORE-4144

Bugs Fixed

(CORE-4005) Recursive CTESs were returning a wrong error message.
fixed by V. Khorsun

(CORE-3416) Inserting aword containing the 8-bit character 'd into a CHARACTER SET ASCII column
would succeed instead of throwing atranditeration error.

fixed by A. dos Santos Fernandes

(CORE-3201) The internal function ATANZ2 was returning an incorrect value with arguments (0, 0).
fixed by A. dos Santos Fernandes

(CORE-3174) An expression index involving TRIM could lead to an incorrect indexed |ookup.

fixed by A. dos Santos Fernandes

(CORE-2699) A common table expression context could be used with parameters.

fixed by A. dos Santos Fernandes

(CORE-2606) A multi-byte CHAR value requested as VARCHAR was returned with padded spaces.
fixed by A. dos Santos Fernandes

(CORE-2238) With UTF8 and large varchar fields, IS DISTINCT FROM would cause the error “Imple-
mentation limit exceeded”.

fixed by D. Yemanov

(CORE-1188) STARTING WITH ? (where the parameter value supplied is an empty string) would fail
if the plan used a compound index.

fixed by A. dos Santos Fernandes

(CORE-92) Infinite insertion cycle: INSERT INTO THIS _TABLE SELECT ... FROM THIS TABLE
would loop forever until resources were exhausted.

fixed by V. Khorsun

92

http://tracker.firebirdsql.org/browse/CORE-4005
http://tracker.firebirdsql.org/browse/CORE-3416
http://tracker.firebirdsql.org/browse/CORE-3201
http://tracker.firebirdsql.org/browse/CORE-3174
http://tracker.firebirdsql.org/browse/CORE-2699
http://tracker.firebirdsql.org/browse/CORE-2606
http://tracker.firebirdsql.org/browse/CORE-2238
http://tracker.firebirdsql.org/browse/CORE-1188
http://tracker.firebirdsql.org/browse/CORE-92

Bugs Fixed

Command-line Utilities

(CORE-2547) Utilities did not always honour the minimum number of characters required to recognise
an option.

fixed by C. Valderrama C.

Other old bugs that were fixed in utilities:

FbGuard

(CORE-2784) Guardian would keep creating more and more threads each time FBServer died.
fixed by C. Valderrama C.

(CORE-1595) Firebird Guardian's tray icon would disappear after a Windows Explorer crash.

fixed by C. Valderrama C.

isql

(CORE-4137) isgl was generating metadata script output with syntax errors in the CHARACTER SET
clause, e.g., CHARACTER SETI SC8859 1.

fixed by A. dos Santos Fernandes

(CORE-3431) isgl was padding UTF-8 dataincorrectly.

fixed by A. dos Santos Fernandes

(CORE-2788) isgl would extract the array dimensions after the character set name.

fixed by C. Valderrama C.

gbak

(CORE-3575) gbak did not support backup volumes of size greater than 4GB.

93

http://tracker.firebirdsql.org/browse/CORE-2547
http://tracker.firebirdsql.org/browse/CORE-2784
http://tracker.firebirdsql.org/browse/CORE-1595
http://tracker.firebirdsql.org/browse/CORE-4137
http://tracker.firebirdsql.org/browse/CORE-3431
http://tracker.firebirdsql.org/browse/CORE-2788
http://tracker.firebirdsql.org/browse/CORE-3575

Bugs Fixed

fixed by A. Peshkov

(CORE-2740) gbak would restore invalid views without any warning to the user.
fixed by C. Valderrama C.

(CORE-2545) Several validations were lacking in gbak.

fixed by C. Valderrama C.

nbackup
(CORE-2543) nbackup could hide the real cause of afailure.

fixed by C. Valderrama C.

International Language Support
(CORE-4136) The“Sharp-S’ character was being treated incorrectly in the UNICODE_CI_Al collation.

fixed by A. dos Santos Fernandes

94

http://tracker.firebirdsql.org/browse/CORE-2740
http://tracker.firebirdsql.org/browse/CORE-2545
http://tracker.firebirdsql.org/browse/CORE-2543
http://tracker.firebirdsql.org/browse/CORE-4136

Chapter 13

Firebird 3.0 Project Teams

Table 13.1. Firebird Development Teams

Developer Country Major Tasks
Dmitry Y emanov Russian Full-time database engineer/implementor, core team |leader
Federation
Alex Peshkov Russian Full-time security features coordinator; buildmaster; porting
Federation | authority
Claudio Vaderrama Chile Code scrutineer; bug-finder and fixer; ISQL enhancements;
UDF fixer, designer and implementor
Vladyslav Khorsun Ukraine Full-time DB engineer, SQL feature designer/implementor
Adriano dos San- Brazil International character-set handling; text and text BLOB en-
tos Fernandes hancements; new DSQL features; code scrutineering
Roman Simakov Russian Engine contributions
Federation
Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds
Pavel Cisar Czech Re- | QA tools designer/coordinator
public
Philippe Makowski France QA tester
Paul Reeves France Win32 installers and builds
Mark Rotteveel The Nether- | Jaybird implementor and co-coordinator
lands
Jiri Cincura Czech Re- | Developer and coordinator of .NET providers
public
Alexander Potapchenko Russian Developer and coordinator of ODBC/JDBC driver for Fire-
Federation | bird
Stephen Boyd Canada GPRE contributions
Alexey Kovyazin Russian Website coordinator
Federation
Paul Vinkenoog The Nether- | Coordinator, Firebird documentation project; documentation
lands writer and tools devel oper/implementor
Norman Dunbar U.K. Documentation writer

95

Firebird 3.0 Project Teams

Developer Country Major Tasks
Pavel Mensnhchikov Russian Documentation transl ator
Federation
Tomneko Hayashi Japan Documentation transl ator
Umberto (Mimmo) Masotti Italy Documentation translator
Helen Borrie Australia | Release notes editor; Chief of Thought Police

96

Appendix A:
Licence Notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense’); you may only use this Documentation if you comply with the terms of this Licence. Copies of the
Licence are available at http://www.firebirdsgl.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsgl.org/
manual/pdl.html (HTML).

The Original Documentation is entitled Firebird 3.0 Release Notes.

The Initial Writer of the Original Documentation is: Helen Borrie. Persons named in attributions are Contrib-
utors.

Copyright (C) 2004-2013. All Rights Reserved. Initial Writer contact: helebor at users dot sourceforge dot net.

97

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

	Firebird 3.0 Release Notes
	Table of Contents
	General Notes
	
	Bug Reporting
	Documentation

	New About Firebird 3.0
	Summary of Features

	Changes in the Firebird Engine
	Remodelled Architecture
	Working Modes (“Models”)
	Execution Modes

	Providers
	The Providers Architecture
	The Components
	Failure Response

	Other Providers
	Custom Providers

	Providers Q & A

	Plug-Ins
	What is a Plug-In?
	Plug-In Types
	Technical Details
	Features of a Plug-In
	Configuring Plug-ins
	plugins.conf

	Plug-Ins Q & A

	External Engines
	External Names
	Module Availability
	Scope
	Character Set
	Enabling UDRs in the Database
	How it Works

	Miscellaneous Improvements
	Internal Debug Info Made Human-readable
	A Silly Message is Replaced
	New Pseudocolumn RDB$RECORD_VERSION
	systemd init Scripts

	Changes to the Firebird API and ODS
	ODS (On-Disk Structure) Changes
	New ODS Number
	Implementation ID is Deprecated
	Maximum Page Size
	Maximum Number of Page Buffers in Cache
	Changes to System Tables
	RDB$SYSTEM_FLAG
	RDB$TYPES

	Application Programming Interfaces
	Interfaces and the New Object-oriented API
	The Non-COM Choice
	The Hierarchy of Interfaces
	Interfaces Q & A

	Other New APIs
	Available Interface (Header) Files

	API Improvements
	Better Error Reports for String Overflows
	More Detail in “Wrong Page Type” Error Reports
	New Services Tag for Overriding LINGER

	Reserved Words and Changes
	New Reserved Words in Firebird 3.0

	Configuration Additions and Changes
	Scope of Parameters
	Macro Substitution
	Includes
	Wildcards

	Expression of Parameter Values
	“Per-database” Configuration
	Format of Configuration Entries
	Parameters Available

	New Parameters
	SecurityDatabase
	AuthServer and AuthClient
	WireCrypt
	UserManager
	TracePlugin
	CryptPlugin
	KeyHolderPlugin
	Providers
	SharedCache and SharedDatabase
	RemoteAccess

	Parameters Removed or Deprecated
	RootDirectory
	LegacyHash
	OldSetClauseSemantics
	OldColumnNaming
	LockGrantOrder
	Obsolete Windows priority settings

	Security
	Location of User Lists
	Database Encryption
	Secret Key
	Tasks

	New Authentication Method in Firebird 3
	SSL/TLS Support
	Increased Password Length
	The Authentication Plug-in
	Multiple User Managers

	"Over the wire" Connection Encryption
	The Secret Session Key

	SQL-driven User Management
	Usage Details
	Pseudo-Tables with List of Users

	New Object Rights
	GRANT EXECUTE Privileges for UDFs
	Privileges to Protect Other Metadata Objects

	Data Definition Language (DDL)
	Quick Links
	DDL Enhancements
	New Data Types
	BOOLEAN Data Type
	The IS Operator

	Identity Column Type
	Implementation Details

	Manage Nullability in Domains and Columns
	Modify Generators (Sequences)
	Alter the Default Character Set
	BLOB in COMPUTED BY Expressions
	Improved Management of SQL Privileges
	GRANT/REVOKE Rights GRANTED BY Specified User
	REVOKE ALL ON ALL

	“Linger” Database Closure for Superserver
	SQL-driven User Management

	Data Manipulation Language (DML)
	Quick Links
	Supplemental SQL 2008 Features for MERGE
	Window (Analytical) Functions
	Aggregate Functions Used as Window Functions
	Partitioning
	Ordering
	Exclusive window functions
	Ranking Functions
	Navigational Functions

	Advanced Plan Output
	Advanced PLAN Output in isql

	Internal Functions
	SUBSTRING with Regular Expressions
	New Inverse Hyperbolic Trigonometric Functions
	TRIM() BLOB Arguments Lose 32 KB limit

	Some Useful DML Improvements
	Alternatives for Embedding Quotes in String Literals
	Prohibit Edgy Mixing of Implicit/Explicit Joins
	Left-side Parameters Supported
	Enhancements to the RETURNING Clause
	RETURNING Clause Value Can be Aliased
	RETURNING Clause from Positioned Updates and Deletes

	Cursor Stability
	An Improvement for GTTs
	An Improvement for DML Strings
	Optimizations
	SIMILAR TO
	OR'ed Parameter in WHERE Clause
	Better Choices for Navigation
	Plainer Execution Path for UNION Queries
	Index Walk for Compound Index
	Performance Improvement for SET STATISTICS INDEX

	Dialect 1 Interface

	Procedural SQL (PSQL)
	Quick Links
	PSQL Stored Functions
	PSQL Sub-routines
	Packages
	Packaging Syntax
	Simple Packaging Example

	DDL triggers
	Support in Utilities
	Permissions
	DDL_TRIGGER Context Namespace
	Elements of DDL_TRIGGER Context

	Exceptions with parameters
	CONTINUE in Looping Logic
	PSQL Cursor Stabilization
	Some Size Limits Removed Using New API
	SQLSTATE in Exception Handler

	Command-line Utilities
	Monitoring
	isql
	SET EXPLAIN Extensions for Viewing Detailed Plans
	Metadata Extract
	Path to INPUT Files
	Command Buffer Size Increase

	fb_lock_print
	Input Arguments
	Useability Improvements

	gfix
	-NoLinger Switch

	Other Tweaks
	All Command-line Utilities
	Resolution of Database Path
	Help and Version Information

	War on Hard-coded Messages
	War on Arbitrary Switch Syntax

	Bugs Fixed
	Firebird 3.0 Second Alpha Release
	Core Engine
	Server Crashes
	API/Remote Interface
	Security/User Management
	Procedural Language
	Data Definition Language
	Data Manipulation Language
	Utilities
	gfix
	fbsvcmgr
	isql
	gbak
	nbackup
	Database Monitoring (MON$)
	Trace

	International Language Support
	Installation Issues

	Firebird 3.0 First Alpha Release
	Core Engine
	API/Remote Interface
	Procedural Language
	Data Definition Language
	Data Manipulation Language & DSQL
	Command-line Utilities
	FbGuard
	isql
	gbak
	nbackup

	International Language Support

	Firebird 3.0 Project Teams
	A. Licence Notice

