Firebird 4.0 Release Notes

Firebird Project: Core Developers
Edited by Helen Borrie

13 February 2019 - Document v.0400-19 - for Firebird 4.0 Beta 1 Release

Firebird 4.0 Release Notes

13 February 2019 - Document v.0400-19 - for Firebird 4.0 Beta 1 Release
by Firebird Project: Core Developersand Helen Borrie

Table of Contents

T 0T = I N (o] (S TSP PPRPTI 1
210 To T (= 0] 1 (] oo SRR 1
Dol N[0 1< g1 = 1 o] o SRR RTTPRI 1
P22 N = T o T T = o (o 5 LR PR 2
SUMMEANY OF NEW FEELUMESoeeeiiieiiiieeee e ettt e e e e e e e e e e e e s e e et e e e e e e e s s seantrbeeeeaeeeeeennnnranees 2
(0o Tn0To = (I 1 I =1 = U PRSI 2
Compatibility With Older VEISIONScuviiiiiiie it e e s e e e e e s ennaaeeeeaeas 4
3. Changes in the FIrebird ENQINGooo i e e e e e e e e e 5
Extended Maximum Page SIZEuuiiiiiie it 5
External Functions (UDFS) Feature DePreCatedlcviveeeiiiiiiiiiiieie et e e st e e e e 5
Support for INternational TIME ZONEScccuiiiiiiii et e e e e e e e e e e e e s raeeeaeeas 6
SESSION TIME ZOME ...ttt ettt e ettt e e e bt et e e e aab et e e e e sbb e e e e annbe e e e e anbaeeeeann 6
TIME ZONE FOIMMEALeeiiiiieiie ettt e e st e e et e e e e et e e e snba e e e e annnneee s 6
Data Types for Time ZONE SUPPOITuvuiiiieeeei it e e e e s eee e e e e e s e s e e e e e e e e e e entnraaeeaaeeeas 6
APl SUPPOIT FOr TIME ZONESvveeiiee ettt e e e e e e e e e e s st e e e e e e e s e ensaaaeeeeas 7
Time Zone Statements and EXPreSSIONSccocivriiiiiieeeee ittt ee e e e e e ssseirraereea e e s s sserreaeeaaeeeeaans 7
Virtua table RDBSTIME_ZONESoooiiiiiiiiiiiiiiie ittt 7
Package RDBSTIME_ZONE_UTIL ..oooiuiiiiiiiiiiiie ittt 8
Updating the Time Zone Databasecuueiiieeiiiiiiiieiee et e e e e e e 9
Firebird REPIICALIONccceiiiiiiiieei et e e e e e e s e e e e e e e e e s s anntbreeeeaaeeeaanns 9
REPIICALION MOUES ...t e e e e e e e e e st e e e e e e s s anntbraeeeaaeeeaanns 10
AACCESS IMOOESoiiiteiie ettt ettt et e e ettt e e e bbbt e e e bbbt e e e s bbb e e e e eabb e e e e e nbre e e e nnnees 10
I o114 0= g PP 10
o g (= oo (] 0o P PEPRR 11
Setting Up REPIICALIONcoiiiieiiiiieie e e e e s e s s e e e e e e e e e aaanes 11
Pooling of EXternal CONNECLIONSceiieiiiiiiiiiiee e et e e e e e e e e e e e st e e e e e e s s e nnnreaeeeeas 15
Key Characteristics of Connection POOIINGc.ceeiiiiiuiiiiieiiee et 15
How the Connection POOI WOTKSuiiiiiiiiie et 15
Managing the ConneCtion POOIooiiiiiiiiiiir e e e 16
Querying the CONNECLION POOIccciiiiiiiiiiiiiee e a e e e s 17
Parameters for Configuring the Connection POooviveiiiiiiiiieiee e 17
TIMEOULS @ TWO TEVEIS ..t sbree e e e 17
[A1€ SESSION TIIMEOULSeeiieiiiiiieeiiieie e ettt e sttt ettt e ettt e e s sttt e e s asbb e e e et e e e e s anbb e e e e ananeee s 17
SEAEMENE TIMEOULS ...eeiiieeiee ettt e e bb et e e st e e e st e e e s sbbe e e e s annneeas 20
Commit Order for Capturing the Database SNapsholooooiiiiiiiee e 24
The 'Commit Order' APPIrOBCH ... e e e e e e s e s be e e e e aeeeaaas 24
Read Consistency for Statements in Read-Committed Transactions...........cccccveeveeeeeivcciivineennn. 26
Garbage COIECHIONuiieiieiie e e e e e s e e e e e e e e s s asntaaeeeeaeeeeananes 28
Precision Improvement for NUMERIC and DECIMAL ... 29
Increased NUmMber Of FOrMatS fOr VIBWSooiiiiiiiiiiiiiie e 29
Optimizer Improvement for GROUP BY ...ttt e e 30
xinetd Support on LinuX REPIBCEAovviiiiiiie e e e e e e e e e e e 30
Support for RISC V.64 PlatfOrmeuiiiiiie e e e a e e e eaneees 30
4. Changes to the Firebird APl @and ODSouiiiiiiei i a e e s e et rraaeeeeaans 31
ODS (ON-Disk StrUCLUIE) ChaNGESvvveiieeeeiiiiiiieeieeee e e e s eettee e e e e e e s e s st ae e e e e e e s aaarbreaeeaaeeesannsnenees 31
NEW ODS NUIMDEN ...ttt ettt e e sbb e e e s asbe e e e e ssbe e e e e anbbeeeeennbeeeeeanes 31
Application Programming INEEIFACESeeiiiiiiiiiiiiiiiie e e e e e e e e e e e s aanes 31
S Vo= @ == T o S RREPR 31

Firebird 4.0 Release Notes

Timeouts fOr SESSIONS & SEALEMENLSccvveieiiiiiiie e naaeee s 31
New Isolation Sub-level for READ COMMITTED TranSaCtionScccocveeeeinireeeesniieneennenn 32
Support for Batch Insert and Update Operations in the APloooiiiiiiiiiiiiieee e 32

APl SUPPOIT FOr TIME ZONES ...veeeiiiee ittt e e e e st e e e e e e s e e nnarraeeeeas 38

5. Configuration Additions and ChangESc.uuuiiiiiie e e e r e e e 40
Parameters fOr TIMEOULSuuiiiiiiiiie ettt e e e e s st e e e e bt e e e et e e e e s annneeeeannnneee s 40
CoNNECLIONIAIETIMEOULoeiiiiiiiieiiiiiee ettt st e e e et e e e s sbn e e e e anbe e e e s anrseeeeans 40

S 0= 01 10 T 0= | PR SPP 40
Parameters for External Connection POOIINGciiieiiiiiiiiiieiie e 40
EXICONNPOOISIZE ...ttt ettt e e et e e e et e e e e nnnne e e e e nees 40
EXTCONNPOOILITEIIME ...eoiiiiiiie et e et e s e e e 40
Parameters to Restrict Length of Object 1dentifiersvvveveeeeii i 41
MaxldentifierByteLengthooviiiii e 41
MaxIdentifierCharLengthcooiiiiiiiie e e e 41
Parameters Supporting Read Consistency in TranSaCtioNSceevieeiiiiiiiieeeeee e e ee e e e 41
TIPCACNEBIOCKSIZE ...t e e e e e e e e e e e e e s s arereeaaeas 42
REAACONSISLENCYcoiiceieiiiiiee e e e e ettt e e e e e s e e e e e e e e e s s et ae e e e eeeesssastbraaeeeaeesssannntrreeeeaesseannnes 42
SNAPSNOISMEIMSIZE ... e e e e e e e e e e e e s s e s b e e e e e e e e s annnneees 42
TempCacheLimit af Database LEVELuviiiiiiie e a e 42
LS = o] PRSPPI 43
Enhanced SYStem PriVIIEOESueeiiiii it a e e e e aa e 43
List of Valid SYysStem PriVIIEOESuvviiiiie it e e e e e e e enees 43

New Grantee Type SYSTEM PRIVILEGEccooiiiiiiiieiiiiiee e 44
Assigning System Privilegesto aROIEcuviiiiiiie e 44
Function RDBSSY STEM_PRIVILEGEc.cooiiiiiiiie et 45
Granting a ROIE t0 ANOLNEr ROIEovveiiiiieec e 45
The DEFAULT KE@YWOIiiiiiieiiee ettt e e st e e e e e s e st an e e e e e e e e e e nnnrnees 46
WITH ADMIN OPTION ClaUSEuvvviieiiiiiieeeiiiiee e siiiee e siiee e e ssbaee e e snssee e s snnseeeessnsaeeeesnnnneeas 46
Example Using a CumMUIGtVE ROIEcooiiiiie et e e 46
Revoking the DEFAULT Property of a Role ASSIgNMENTcovvveiiiiiiiiiiiieeee e cciiieeee e 46
Function RDBSROLE _IN_USEooiiiiiiiiee et 47

SQL SECURITY FEALUMEeeeiiiiiiiiee ettt ettt ettt sttt e e sttt e e st e e e et e e e s anbbe e e e anbaeeeesnnneeeeans 47
QI 10 1= £ PR 48
Examples Using the SQL SECURITY PrOPertYccccuviieiieeeei et e e 49
Built-in CryptographiC FUNCLIONScooiiiiiiiiiic e e e e e 51
ENCRYPT() @0 DECRY PT() .evveiiiiiiiieiiiiiieeseiiieee e sttt et e e sttt e s st e e s s snsaee e s snneeessnnnneeas 51
RSA_PRIVATE() etteteiiitiiie ittt ettt a ittt e e e sttt e e s ansb e e e e st e e e e snnteeeesannneee s 52
RSA_PUBLIC() etteteeititieeiaiieee ettt e sttt ettt e e sttt e e s s st e e e s st e e e s snsbe e e e sanseeeesanneeaeennseeeeenns 52

S N = N[O I TSP PPRP PRI 53

S N B T O o I T PRSPPI 53

S NS L€ PRSPPI 54

S YA = e T PP 54
BASE64 ENCODE() and BASEG4 DECODE()vvvviiiiiiiee ittt esieee et 55

(O (O 72 (PRSPPI 55
IMProvements t0 SECUNTY FEAIUIESuuiiiiee i ee e e e e e e e e e s s e e e e e e e e e enneees 56
User Managing Other USEFSooiiiiiiiiii ettt e e e e s st e e e e e e e s e s saabar e e e e e e e e ans 56

7. MaNagEMENT SEALEIMENTS .. .oiieeiiiiiie ettt e et e e e e e e e e et b e e e e et e e e tbbareeeeeeeeesetnnaeeeeeeeeennsnnnnes 57
Use of Management SEALEMENTSooiiiiiiiiie et e e s s e e e e e e e s s st e e e e e e e s s aannrbrereeaeeeeaannes 57
AULNOTTZBEION ...ttt ettt e e ettt e e e ettt e e e ensb et e e e snbbe e e e e nnbbeeeeanreeeeeanns 57
Management Statements for Use with Connections Poolingccccceeveeeiiiiiiiieeen e, 57
Management Statements Pertaining to Time Zone SUPPOITcvvvveeeeeeeiiiiiiieee e 59
Management Statements Pertaining t0 TIMEOULSeveeiieeiiiiiiiiieii e e e 60

Firebird 4.0 Release Notes

Statements to Set DECFLOAT PrOPErti€Scooiiiiiiiiiiee ettt 60

8. Data Definition Language (DDL)oociiiiiiieie ettt e e e s et e e e e e e e s st e e e e e e e e s eennnneees 61
QUICK LINKS ..o 61
Extended Length for ODJECt NAIMEScooviiiiiiiiieee e e e a e e e aneeees 61
ReStICtiNg the LeNQhoooii e a e 61

LT D = T 1Y 0= TS USRRRR 61
Data type DECFLOAT ..ottt et s et e e e sttt e e e e nb it e e e e annbe e e e s snsaeeaeans 62

DDL ENNBNCEMENES ...ttt ettt e e ettt e e s s st e e s amsb e e e e enbb e e e e snnn e e e s annaeeeas 64
Increased Precision for NUMERIC and DECIMAL TYPESccooviiiiiiieiiee e 64
Data Type Extensions for Time ZoNne SUPPOMccccuviieiereeeeee it e e e e e e e eeentvne e e e e e e e s seaanenes 65
Aliases for Binary StriNG TYPES ...uveieiiee it ee e e ceete et e e e s st e e e e e e e e seaab e e e e e e e e e s e eaneees 66
EXtensions t0 the IDENTITY TYPE ..coii oottt a e e e 66

9. Data Manipulation Language (DIML)eeeiiie oottt e e e e e et aae e e e e e e e e e ennnrnees 70
QUICK LINKS ..o 70
DEFAULT Context Vaue for Inserting and Updatingcccceveeeiiiiiiiiiiien e 70
DEFAULT VS DEFAULT VALUES ...ttt 71
OVERRIDING Clause for IDENTITY COIUMNSccoiiiiiiiiiiiiee e 71
Extension of SQL WiIiNAOWING FEAIUIEScciieiiiiiiiiiiiiiee ettt e s e e e e bane e e e e e e e 71
Frames for WIiNdOW FUNCLIONScooiiiiiiiiiiiiie ettt e e a e e nnneeeeeanes 72
NBMEA WINTOWS ...ttt et e e st e e e e sttt e e e s sb b e e e e ennb e e e e s antneeeeannnneeas 75
MOre WINAOW FUNCLIONSoiiiiiiiiieiiiiii ettt e st e e s st e e e e s e e e e nnsaeeeeanes 76
FILTER Clause for Aggregate FUNCLIONScooiiiiiiiiiiee et e e e 77
SyntaX fOr FILTER ClAUSESuuviiiiiii ettt e e st e e e e e e e e saaar e e e e e e e e s snnnneees 77
Optional AUTOCOMMIT for SET TRANSACTION ...ooiiiiiiieiiiiiiee et e e sieeee e 78
Expressions and BUilt-in FUNCLIONScccuiiiiiiei e a e e e re e e e 78
New FUNCtioNS and EXPrESSIONScccuviiiiiie e e e e et e e e e e e setree e e e e e e e s st e e e e e e e e s e eanbraeeeeeas 78
Changes to Built-in FUNCLions and EXPreSSIONScccvvvieiieeeeeiiiiiiiiee e e e e e e ceinreeee e e e e e e s ennnnes 83
SUBSTRINGI() +eveeeiuuteteeeitieeeeeaiteteeasiteeae s s stteeeesstteeaeasssaeeeeaasteeeeaassseeessnsbeeeesansaeeseannnseeeennnees 84
UDF ChANQgESeiiiiiiiie ettt e s ettt e e e e e e e et e e e e e e e s s aab b b e e e eeaeeeesanntabaeeeeaeessaannrenns 85
Miscellaneous DML IMPrOVEMENLScciiieiiiiiiiiiieii e e e e s ceiiee e e e e e e e s st e e e e e e e s e snnrbaeeeeeaeeessnnnnnnees 85
Improve Error Message for an Invalid Write Operationcccceeeeiiiiiiiiiieec e 85
Improved Failure Messages for EXPression INAEXESoeeeeeiiiiiiieiiie e 85
RETURNING * NOW SUPPOIEdcceeiieiiiiiiiiieiee e e ettt e e e st e e e e e e s e s bae e e e e e e e e s snnnnnes 86

10. Procedural SQL (PSQL) ..vveiieeeiiiiiiiieiee e e e e e ettt e e e e e e e s e e e e e e e s s et ae e e e eaeesssaaabrbaeeeeeeeseannerrneeeeas 87
RECUrSION fOF SUDFOULINESveiieiiiiiee ettt e ettt e et e et e e e et e e e et e e e ennte e e e s annneee s 87
A Helper for Logging CONLEXE EITOSeeiiiieiiiiiiiiiie e ettt e e s a e e e s s st e e e e e e e s e e nanneees 88
System FUNCtion RDBSERROR()uvvieitiieeiiieesiiieesiieessiieesiee e sieeesaeeesnseeessaeeesnseesnsseeaseeeanes 88
Allow Management Statements in PSQL BIOCKScooiiiiiiiiiiiiiiicc et 89
11. Monitoring & Command-liNg ULHHTIESccoiiiiiiiiiii e 91
1Y/ Ko Tl (o] oo [EEERR PP 91
nBackup: UUID-based Backup and IN-Place MErgeuvveeiieeeiiiiiiieeee et 91
MBKING BACKUPSvvveieiiee ettt e e e s et e e e e e e e e e et a e e e e e e e s s e nntbaeeeeaeeeesannssrnnes 92
Merging-in-Place from the BaCKUDcooiiiiiiiiiiiie e e e 92
Example of an On-line Backup and RESLOIEeeiiiiiiiiiiiiiiiee et e e 92

isgl: Support for StateMENt TIMEOULSociciviiiiiie et e e e e e e e e e e s e e e e e e s e e snrrraeeeeas 92
(010 SRR 93
Backup and Restore With ENCIYPLIONoooiiiiiiiii et e s e e e e 93
Enhanced Restore PerfOrManCeccuuiiiiiiiiiiieeiiie ettt 95
Friendlier “-fiX_fSS *” MESSAJESuvvriiiiieeeiiiiiiiiee e e e e e e ettt e e e e e e e e s st e e e e e e s s asntbraeeeaaeeeaaans 95

01 SRR PP 95
12, COMPALDITITY TSSUES ...vvveiiieeeiiiciiieiee ettt e e e e e et e e e e e e s e et e e e e e e e e s s saaab b b e e e e e eeessaanstraneeeaaeas 96
S | PP TUPRRTRR 96

Vi

Firebird 4.0 Release Notes

Deprecation of External FUNCLIONS (UDFS)cuvviiiiiieiiiiiiiiee ettt 96
Changesin DDL and DML Due to Timezone SUPPOITceveeeeeiieiiriieeieeeeeeessiiiireeeeeee e s eenenes 97

Prefaced Implicit Date/Time Literals NOW REECtEdoooeeiiiiiiiiiiiiiie e 98

T S TU o o3 o D= o SRR 100
Firebird 4.0 Beta 1 REEASE: BUG FIXESuviiiiiiiie ettt e e 100
(0o = = 0T 1 TR 100

SErVEr CrasheFHANG-UPS ..vveeeiieeiii ittt e e e e e e e e e e et e e e e e e e e e sanbrrereaaeeas 103

= o 1 PP PRPRRN 104

LU =PRSS 105

BUITA TSSUES ...ttt ettt e e et e e s st e e e e bt e e e enbb e e e e s nntaeeeens 105

Firebird 4.0 Alpha 1 REI€aSE: BUQ FIXESccccoi ittt e e e e 106

14. Firebird 4.0 ProJECE TEAIMSuvviiiiieeeiiiiiiieeeee e e e e e ettt e e e e e e s s ettt e e e e e e e e s s sasaaaeeeeaeesssanstbrnreeaaeeaaanns 109
APPENdiX A LICENCE NOLICE ...t e e e e e e e s e et e e e e e e e e s s aataraaeeaaeeeaans 111
AppendiX B: TiMe ZONE REGIONScoouiiiiiiiie ettt e e e e e e e e e e e e e e s e et b e e e e e e e e s s ennreees 112

Vii

List of Tables

11.1. Switches for Encrypted Backups/Restores
14.1. Firebird Development Teams

viii

Chapter 1

General Notes

Thank you for reviewing this Firebird 4.0 Beta release. We cordialy invite you to test it hard against your
expectations and engage with us in identifying and fixing any bugs you might encounter.

ODS13isintroduced and it'samajor ODS upgrade, so older databases cannot be opened with aFirebird 4 server.
At this point in development, nothing more than a backup/restore is needed if you want to upgrade an existing
database for your beta testing. The engine library is named engi nel3. dl | (Windows) and engi nel3. so
(POSIX). The security databaseisnamed secur i t y4. f db. Binaries layout and configuration are unchanged
from Firebird 3.

Known incompatibilities are detailed in Chapter 11, Compatibility | ssues.

Bug Reporting

Bugs fixed since Firebird 3 and the Firebird 4 Alpha release are listed and described in the chapter entitled
Bugs Fixed.

 If you think you have discovered a new bug in this release, please make a point of reading the instructions
for bug reporting in the article How to Report Bugs Effectively, at the Firebird Project website.

 If you think abug fix has not worked, or has caused aregression, please locate the original bug report in the
Tracker, reopen it if necessary, and follow the instructions below.

Follow these guidelines as you attempt to analyse your bug:

1. Write detailed bug reports, supplying the exact build number of your Firebird kit. Also provide details of
the OS platform. Include reproducible test data in your report and post it to our Tracker.

2. You are warmly encouraged to make yourself known as a field-tester of this beta by subscribing to the
field-testers list and posting the best possible bug description you can.

3. If youwant to start adiscussion thread about abug or an implementation, please do so by subscribing to the
firebird-devel list. In that forum you might also see feedback about any tracker ticket you post regarding
this Beta.

Documentation

You will find al of the README documents referred to in these notes—as well as many others not referred to
—in the doc sub-directory of your Firebird 4.0 installation.

--The Firebird Project

http://www.firebirdsql.org/en/how-to-report-bugs/
http://tracker.firebirdsql.org
mailto:firebird-test-request@lists.sourceforge.net?subject=subscribe
mailto:firebird-devel-request@lists.sourceforge.net?subject=subscribe

Chapter 2

New In Firebird 4.0

Summary of New Features

Thefollowing lists summarise the planned features and changes, with linksto the topics covering itemsavail able
to test in this Beta rel ease.

Complete In Beta 1

Support for international time zones
International time zone support from Firebird 4.0 onward comprises data types, functions and internal algo-
rithms to manage date/time detection, storage and cal culations involving international time zones based on
UTC (Adriano dos Santos Fernandes).

For full details, see Support for International Time Zonesin the Engine chapter.

Tracker tickets CORE-694 & CORE-909

Built-in replication
Built-in logical (row level) replication, both synchronous and asynchronous (Dmitry Yemanov & Roman
Simakov)

For details, see Firebird Replication in the Engine chapter.
Tracker ticket CORE-2021

New way to capture the database snapshot
Introducing anew methodology for the Firebird engine to capture the snapshotsfor retaining the consistency
of atransaction'sview of database state. The new approach enables read consi stency to be maintained for the
life of astatement in READ COMMITTED transactions and also allows more optimal garbage collection.
The changes are described in more detail in the chapter Changesin the Firebird Engine in the topic Commit
Order for Capturing the Database Snapshot.

Pooling of external connections
The external data source (EDS) subsystem has been augmented by a pool of external connections. The pool
retains unused external connections for a period to reduce unnecessary overhead from frequent connections
and disconnections by clients using the same connection strings (Vlad Khorsun).

For details, see Pooling of External Connectionsin the Engine chapter.
Tracker ticket CORE-5990

Physical standby solution
Physical standby solution (incremental restore via nbackup).

http://tracker.firebirdsql.org/browse/CORE-694
http://tracker.firebirdsql.org/browse/CORE-909
http://tracker.firebirdsql.org/browse/CORE-2021
http://tracker.firebirdsql.org/browse/CORE-5990

New In Firebird 4.0

The changes are described in more detail in the Utilities chapter in the topic nBackup: GUID-based Backup
and In-Place Merge.

Extended length of metadata identifiers
M etadata names longer than 31 bytes: new maximum length of object namesis 63 characters.
The changes are described in more detail in the chapter Data Definition Language, in the topic Extended
Length for Object Names.

Configurable time-outs
Timeout periods configurable for statements, transactions and connections.
The changes for statements and connections are described in more detail in the chapter Changes in the
Firebird Engine in the topic Timeouts at Two levels (Vlad Khorsun).

Tracker tickets CORE-658 and CORE-985

Extended precision for numerics
Fixed point numerics with precision up to 34 digits are now supported, along with improved intermediate
calculations for shorter numerics. For details, see Increased Precision for NUMERIC and DECIMAL Types
in the Data Definition Language chapter.

New DECFLOAT data type
The SQL:2016 standard-compliant high-precision numeric type DECFLOAT is introduced, along with re-
lated operational functions. It is described in detail in the the topic Datatype DECFLOAT in the Data Def-
inition Language chapter.

Enhanced system privileges
Predefined system roles, administrative permissions.
The changes are described in more detail in the Security chapter in the topic Enhanced System Privileges.

See aso the Management Statements chapter for some background about what the new system privileges
areintended for.

GRANT ROLE TO ROLE
Granting roles to other roles, described in detail in the Security chapter in the topic Granting a Role to
Another Role.

User groups
User groups and cumul ative permissions are described in detail in the Security chapter in the topic Granting
aRoleto Another Role.

Batch operationsin the API
Batch API operations, bulk load optimizations, support for passing BLOBsin-line.

Tracker ticket CORE-820
For details, see Support for Batch Insert and Update Operationsin the API.

Window functions extensions
Extensions to window functions are described in detail in the Data Manipulation Language chapter in the
topics Frames for Window Functions, Named Windows and More Window Functions.

FILTER Clause for Aggregate Functions
Tracker ticket CORE-5768

FILTER clause implemented for aggregate functions, see FILTER Clause for Aggregate Functions in the
DML chapter.

http://tracker.firebirdsql.org/browse/CORE-658
http://tracker.firebirdsql.org/browse/CORE-985
http://tracker.firebirdsql.org/browse/CORE-820
http://tracker.firebirdsql.org/browse/CORE-5768

New In Firebird 4.0

Enhanced RETURNING clause in DML to enable returning all current field values
Introducesthe RETURNI NG * syntax, and variants, to return acomplete set of field values after committing a
row that hasbeeninserted, updated or del eted (Adriano dos Santos Fernandes). For details, sce RETURNING
* Now Supported in the DML chapter.

Tracker ticket CORE-3808

Built-in functions FIRST_DAY and LAST_DAY
Tracker ticket CORE-5620

New date/time functions FIRST_DAY and LAST DAY, see Two New Date/Time Functions in the DML
chapter.

Built-in Cryptographic functions
Tracker ticket CORE-5970

New security-related functions, including eight cryptographic ones, see Built-in Cryptographic Functions
in the Security chapter.

Monitoring Compression and Encryption Status of Attachments
Compression and encryption status of a connection are now available in the monitoring table MON$AT-

TACHMENTS:

*+ MONS$WIRE_COMPRESSED (wire compression enabled = 1, disabled = 0)
« MONSWIRE_ENCRYPTED (wire encryption enabled = 1, disabled = 0)
Tracker ticket CORE-5536

Improve performance of gbak restore
The new Batch API was used to improve the performance of gbak restore, including parallel operations.

Tracker tickets CORE-2992 and CORE-5952

Backup and Restore with Encryption
Support for backing up and restoring encrypted databases using the crypt and keyholder plug-ins—see Back-
up and Restore with Encryption in the Utilities chapter.

Also available is compression and decompression of both encrypted and non-encrypted backups.

Compatibility with Older Versions

Notes about compatibility with older Firebird versions are collated in Chapter 12, “Compatibility |ssues’.

http://tracker.firebirdsql.org/browse/CORE-3808
http://tracker.firebirdsql.org/browse/CORE-5620
http://tracker.firebirdsql.org/browse/CORE-5970
http://tracker.firebirdsql.org/browse/CORE-5536
http://tracker.firebirdsql.org/browse/CORE-2992
http://tracker.firebirdsql.org/browse/CORE-5952

Chapter 3

Changes in the
Firebird Engine

The Firebird engine, V.4, presents no radical changesin architecture or operation. Improvements and enhance-
ments continue, including adoubling of the maximum database page size and the long-awaited ability to impose
timeouts on connections and statements that could be troublesome, master-slave replication and international
time zone support.

Firebird 4 creates databases with the on-disk structure numbered 13—*ODS 13". The remote interface protocol
number is 16.

Extended Maximum Page Size
Dmitry Y emanov

Tracker ticket CORE-2192

The maximum page size for databases created under ODS 13 has been extended from 16 Kb to 32 Kb.

External Functions (UDFs) Feature Deprecated

The original design of external functions (UDF) support has always been a source of security problems. The
most dangerous security holes, that occurred when UDFs and external tables were used simultaneously, were
fixed as far back as Firebird 1.5. Nevertheless, UDFs have continued to present vulnerability issues like server
crashes and the potentia to execute arbitrary code.

The use of UDFs has been aggressively deprecated in Firebird 4:

» The default setting for the configuration parameter Udf Access is NONE. In order to run UDFs at all will
now require explicit configuration to Rest ri ct UDF

» The UDF libraries (ib_udf, fbudf) are no longer distributed in the installation kits

* Most of the functions in the libraries previously distributed in the shared (dynamic) librariesi b_udf and
f budf had already been replaced with built-in functional analogs. A few remaining UDFs have been replaced
with either analog routinesin anew library of UDRs named udf _conpat or converted to stored functions.

Refer to Deprecation of External Functions (UDFs) in the Compatibility chapter for details and instructions
about upgrading to use the safe functions.

» Replacement of UDFswith UDRs or stored functionsis strongly recommended

http://tracker.firebirdsql.org/browse/CORE-2192

Changesin the Firebird Engine

Support for International Time Zones
Adriano dos Santos Fernandes

Tracker tickets CORE-909 and CORE-694

Time zone support from Firebird 4.0 onward consists of

» datatypesTI ME W TH TI ME ZONEand TI MESTAMP W TH TI ME ZONE; implicitly also TI ME W THOUT
TI ME ZONE and TI MESTAMP W THOUT TI ME ZONE

» expressions and statements to work with time zones

» conversion between data types without/with time zones

I mportant

The data types TIME W THOUT TI ME ZONE, TI MESTAVP W THOUT TI ME ZONE and DATE are
defined to use the session time zone when converting fromortoaTl ME W TH TI ME ZONE or TI MESTAMP
WTH TIME ZONE. TI ME and TI MESTAMP are synonymous to their respective W THOUT TI ME ZONE
data types.

Session Time Zone

Asthe nameimplies, the session time zone, can be different for each database attachment. It can be set explicitly
inthe DPB or SPB withtheitemi sc_dpb_sessi on_t i me_zone; otherwise, by default, it starts defined as
the same time zone used by the operating system Firebird process.

Subsequently, the time zone can be changed to agiven time zoneusing aSET TI ME ZONE statement or reset
toitsoriginal valuewith SET TI ME ZONE LOCAL.

Time Zone Format

A time zone is a string, either atime zone region (for example, 'America/Sao_Paulo’) or an hours:minutes dis-
placement from GMT (for example, '-03:00").

A time/timestamp with time zone is considered equal to another time/timestamp with time zone if their conver-
sionsto UTC are equivalent. For example, time ' 10: 00 -02' andtine '09: 00 -03' areequivaent,
since both arethesameasti ne ' 12: 00 GMVI.

I mportant

The same equivalence appliesin UNI QUE constraints and for sorting purposes.

Data Types for Time Zone Support

The syntax for declaring the datatypes TI MESTAMP and Tl ME has been extended to include arguments defining
whether the field should be defined with or without time zone adjustments, i.e.,

http://tracker.firebirdsql.org/browse/CORE-909
http://tracker.firebirdsql.org/browse/CORE-694

Changesin the Firebird Engine

TIME[{ WTHOUT | WTH } TIME ZONE]

TIMESTAMP [{ WTHOUT | WTH } TIME ZONE]

The default for both TI ME and TI MESTAMP is W THOUT Tl ME ZONE. For more details, see Data Type
Extensions for Time Zone Support in the DDL chapter.

APl Support for Time Zones
» Structures (structs)

* Functions

Time Zone Statements and Expressions

Additions and enhancements to syntax in DDL and DML are listed in this section. Follow the links indicated
to the detailsin the DDL and DML chapters.

Satement SET TI VE ZONE
Changes the session time zone

Satement SET TI ME ZONE BI ND
Changes the session time zone bind format for compatibility with old clients

Expression AT
Trandates atime/timestamp value to its corresponding value in another time zone

Expression EXTRACT
Two new arguments have been added to the EXTRACT expression: TI MEZONE HOUR and
TI MEZONE_M NUTE to extract the time zone hours displacement and time zone minutes displacement, re-
spectively.

Expression LOCALTI ME
Returnsthe current timeasa Tl VE W THOUT TI ME ZONE, i.e., in the session time zone

Expression LOCALTI MESTAMP
Returns the current timestamp asaTI MESTAMP W THOUT Tl ME ZONE, i.e., in the session time zone

Expressions CURRENT_TI ME and CURRENT _TI MESTAMP
In version 4.0, CURRENT _TI ME and CURRENT _TI MESTAMP now return TI ME W TH TI ME ZONE and
TI MESTAMP W TH TI ME ZONE, with the time zone set by the session time zone

Virtual table RDB$TIME_ZONES
A virtual table listing time zones supported in the engine. Columns:

RDBS$TIME_ZONE_ID type INTEGER

Changesin the Firebird Engine

RDBS$TIME_ZONE_NAME type CHAR(63)

Package RDB$TIME_ZONE_UTIL

A package of time zone utility functions and procedures:

Function DATABASE_VERSION

RDB$TI ME_ZONE_UTI L. DATABASE VERSI ON returns the version of the time zone database as a VAR-
CHAR(10) CHARACTER SET ASCI | .

Example

sel ect rdb$time_zone_util.database_version() fromrdb$database;

Returns:

DATABASE_VERSI ON

Procedure TRANSITIONS
RDB$TI ME_ZONE_UTI L. TRANSI TI ONS returns the set of rules between the start and end timestamps.
The input parameters are:

TI ME_ZONE_NAME type CHAR(63)
FROM TI MESTAMP type TI MESTAMP W TH TI ME ZONE
TO_TI MESTAMP type TI MESTAMP W TH Tl ME ZONE

Output parameters:

START_TI MESTAMP
type TI MESTAMP W TH TI ME ZONE—The start timestamp of the transition

END_TI MESTAVP
type TI MESTAMP W TH TI ME ZONE—The end timestamp of the transition

ZONE_OFFSET
type SMALLI NT—The zone's offset, in minutes

DST_OFFSET
type SMALLI NT—The zone's DST offset, in minutes

EFFECTI VE_OFFSET
type SMALLI NT—Effective offset (ZONE_OFFSET + DST_OFFSET)

Example

Changesin the Firebird Engine

sel ect *
fromrdb$ti me_zone_util.transitions(
" Ameri cal/ Sao_Paul o',
timestanp '2017-01-01",
timestanp '2019-01-01");

Returns:

START_TI MESTAMP END _TI MESTAMP ZONE_OFFSET DST_OFFSET EFFECTI VE_OFFSE
2016- 10- 16 03: 00: 00. 0000 GMT 2017-02-19 01:59:59. 9999 GMI -180 60 -120
2017-02-19 02: 00: 00. 0000 GMT 2017-10-15 02:59:59. 9999 GMI -180 0 -180
2017-10- 15 03: 00: 00. 0000 GMT 2018-02-18 01:59:59. 9999 GMI -180 60 -120
2018- 02- 18 02: 00: 00. 0000 GMT 2018-10-21 02:59:59. 9999 GMI -180 0 -180
2018- 10-21 03: 00: 00. 0000 GMT 2019-02-17 01:59:59.9999 GMI -180 60 -120

Updating the Time Zone Database

Time zones are often changed: of course, when it happens, it is desirable to update the time zone database as
soon as possible.

Firebird storesW TH Tl ME ZONE values trandated to UTC time. Suppose a value is created with one time
zone database and a later update of that database changes the information in the range of our stored value. When
that valueis read, it will be returned as different to the value that was stored initially.

Firebird uses the IANA time zone database through the ICU library. The ICU library presented in the Firebird
kit (Windows), or installed in a POSI X operating system, can sometimes have an outdated time zone database.

An update procedure is described in the online ICU user guide, in the article Updating the Time Zone Data.
The simplest way to update is to download the *. r es files into a directory and set the environment variable
| CU_TI MEZONE_FI LES_DI Rto point to it.

Firebird Replication

Dmitry Y emanov
Roman Simakov

Tracker ticket CORE-2021

Firebird 4 introduces built-in support for uni-directional (“ master-save”) logical replication. Logical here means
record-level replication, as opposed to physical (page-level) replication. Implementation is primarily directed
towards providing for high availability but it can be used for other tasks as well.

Eventsthat are tracked for replication include

* inserted/updated/del eted records

* seguence changes

* DDL statements

Replication is transactional and commit order is preserved. Replication can track changes either in all tables,
or in a customized subset of tables. Any table that is to be replicated must have a primary key or, at least, a
unique key.

http://www.iana.org/time-zones
http://userguide.icu-project.org/datetime/timezone#TOC-Updating-the-Time-Zone-Data
http://tracker.firebirdsql.org/browse/CORE-2021

Changesin the Firebird Engine

Replication Modes

Both synchronous and asynchronous modes are available.

Synchronous Mode

In synchronous replication, the primary (master) database is permanently connected to the replica (dave)
database(s) and changes are replicated immediately. Effectively the databases are in sync after every commit,
which could have an impact on performance due to additional network traffic and round-trips.

Note

Although some recent uncommitted changes may be buffered, they are not transmitted until committed.

More than one synchronous replication can be configured, if necessary.

Asynchronous Mode

In asynchronous replication, changes are written into local journal files that are transferred over the wire and
applied to the replica database. The impact on performance is much lower, but imposes a delay—replication
lag— while changes wait to be applied to the replica database; i.e. the replica database is always “ catching up”
to the master database.

Access Modes
There are two access modes for replica databases: read-only and read-write.

» With aread-only replica, only queries that do not modify data are allowed. Modifications are limited to the
replication process only.

Note

Global temporary tables can be modified, as they are not replicated.

» A read-write replicaallows execution of any query. In this access mode, potential conflicts must be resolved
by users.

Journalling

Asynchronousreplication isimplemented with journalling. Replicated changes are written into thejourna which
consists of multiple files, known as replication segments. The Firebird server writes segments continuously,
one after another. Every segment has a unique number which is generated sequentialy. This number, known as
a segment sequence, is combined with the database UUID to provide globally unique identification of journal
segments. Theglobal sequence counter isstored insidethereplicated database and isreset only when the database
is restored from backup.

10

Changesin the Firebird Engine

Segments are rotated regularly, a process that is controlled by either maximum segment size or timeout. Both
thresholds are configurable. Once the active segment reaches the threshold, it is marked as “full” and writing
switches to the next available segment.

Full segments are archived and then reused for subsequent writes. Archiving consists of copying the segment
in preparation for transferring it to the replica host and applying it there. Copying can be done by the Firebird
server itself or, alternatively, by a user-specified custom command.

On thereplicaside, journal segments are applied in the replication sequence order. The Firebird server period-
icaly scans for new segments appearing in the configured directory. Once the next segment is found, it gets
replicated. For each replication source, the replication stateis stored in alocal file named for the UUID and the
replication source. It contains markers for

» |atest segment sequence (LSS)

» oldest segment sequence (OSS)
« alist of active transactions started between the OSS and the LSS

About the LSS and OSS

LSSrefersto the last replicated segment. OSS refers to the segment that started the earliest transaction that was
incompl ete at the time L SS was processed.

These markers control two things:
1. what segment must be replicated next and
2. when segment files can be safely deleted

Segments with numbers between the OSS and the LSS are preserved in case the journal needs replaying after
the replicator disconnects from the replica database; for example, due to areplication error or an idle timeout.

If there are no active transactions pending and the LSS was processed without errors, all segments up to and
including the LSS are deleted.

If acritical error occurs, replication is temporarily suspended and will be retried after the timeout.

Error Reporting

All replication errors and warnings (such as detected conflicts) are writteninto ther epl i cati on. | og file. It
may also include detailed descriptions of the operations performed by the replicator.

Log filelocation

Thereplication. | og fileis stored in the Firebird log directory. By default, the Firebird log directory is
the root directory of the Firebird installation.

Setting Up Replication

Setup involves tasks on both the master and replica sides.

11

Changesin the Firebird Engine

Setting Up the Master Side

Replicationisconfigured using asingleconfigurationfile,r epl i cat i on. conf , onthehost serving the master
database. Both global and per-database settings are possible within the samefile. The available options arelisted
insider epl i cati on. conf, along with commented descriptions of each.

Per -database configurations

When configuring options at per-database level, the full database path must be specified within the the
{database} section. Aliases and wildcards are not accepted.

Defining a Custom Replication Set

Thetablesto be replicated can be customized using two settings: i ncl ude_fil ter andexcl ude_filter.
They are regular expressions that are applied to table names, defining the rules for including or excluding them
from the replication set.

Synchronous/Asynchronous Modes

Synchronous Mode
Synchronous replication can be turned on by setting thesync_r epl i ca specifying a connection string to
the replica database, prefixed with username and password. Multiple entries are allowed.

In the SuperServer and SuperClassic architectures, the replica database is attached internally when the first
user gets connected to the master database and is detached when the last user disconnects from the master
database.

Inthe Classic Server architecture, each server processkeepsits own active connection to the replica database.

Asynchronous Mode
For asynchronous replication the journalling mechanism must be set up. The primary parameter is
| og_di r ect ory which defineslocation of the replication journal. Specifying this location turns on asyn-
chronous replication and tells the Firebird server to start producing the journal segments.

A Minimal Configuration

A minimal master-side configuration would look like this:

dat abase = /data/ nydb. fdb

{
| og_directory = /dbl ogs/ nydb/
| og_archive_directory = /shiplogs/ nydb/

Archiving is performed by the Firebird server copying the segments from/ dbl ogs/ mydb/ to/ shi pl ogs/
mydb/ .

The same setup, but with user-defined archiving:

12

Changesin the Firebird Engine

dat abase = /data/ nydb. fdb

{

| og_directory = /dbl ogs/ nydb/

| og_archive_directory = /shiplogs/ nydb/

| og_archive_comand = "test ! -f $\(archpathnane\) && cp $(I| ogpat hnane) $(archpat hnane)"
}

—where $(| ogpat hnane) and $(ar chpat hnane) are built-in macros that provide the custom shell com-
mand with real file names.

About custom ar chiving

Custom archiving, through use of the setting | og_ar chi ve_command allows use of any system shell com-
mand, including scripts or batch files, to deliver segments to the replica side. It could use compression, FTP,
or whatever else is available on the server.

The actual transport implementation is up to the DBA: Firebird just produces segments on the master side and
expects them to appear at the replica side. If the replica storage can be remotely attached to the master host, it
becomes just a matter of copying the segment files. In other cases, some transport solution is required.

The same setup, with archiving performed every 10 seconds:

dat abase = /dat a/ nydb. fdb

{
| og_directory = /dbl ogs/ nydb/
| og_archive_directory = /shiplogs/ nydb/
| og_archive_comand = "test ! -f $(archpat hnane) && cp $(| ogpat hnane) $(archpat hnane)"”
| og_archive_tineout = 10
}

Readr epl i cati on. conf for other possible settings.

Applying the Master Side Settings

To apply any changes to the master-side settings, all users must be reconnected.

Setting Up the Replica Side

The same replication.conf file is used for setting up the replica side. Setting the parameter
| og_source_direct ory specifies the location that the Firebird server scans for the transmitted segments.
In addition, the DBA may specify explicitly which source database is accepted for replication, by setting the
parameter sour ce_gui d.

A Sample Replica Setup

A configuration for areplicacould looks like this:

dat abase = /dat a/ nydb. fdb
{

| og_source_directory = /incom ngl ogs/
source_guid = {6F9619FF- 8B86- D011- B42D- 00CF4FC964FF}

13

Changesin the Firebird Engine

Readr epl i cati on. conf for other possible settings.

Applying the Replica Side Settings

To apply changes to any replica-side settings, the Firebird server must be restarted.

Creating a Replica Database

Task 1—Make the initial replica

Inthe Beta 1 release, any physical copying method can be used to create an initial replicaof the source database:

File-level copy while the Firebird server is shut down
ALTER DATABASE BEG N BACKUP + file-level copy + ALTER DATABASE END BACKUP
nbackup -1 +filelevel copy + nbackup -n

nbackup -b 0

Task 2—Activate the replica access mode

Activating the access mode— for the copied database involves the command-line utility gfix with the new -
repl i ca switch and either r ead- onl y orr ead- wri t e asthe argument:

To set the database copy as aread-only replica

gfix -replica read-only <database>

If thereplicaisread-only then only the replicator connection can modify the database. Thisismostly intended
for high-availability solutions, as the replica database is guaranteed to match the master one and can be used
for fast recovery. Regular user connections may perform any operations allowed for read-only transactions:
select from tables, execute read-only procedures, write into global temporary tables, etc. Database mainte-
nance such as sweeping, shutdown, monitoring is also allowed.

A read-only replicacan beuseful for distributing read-only load, for example, analytics, away from the master
database.

Warning

Read-only connections have the potential to conflict with replication if DDL statements that are performed
on the master database are of the kind that requires an exclusive lock on metadata.

To set the database copy as aread-write replica

gfix -replica read-wite <database>

Read-write replicas allow both the replicator connection and regular user connectionsto modify the database
concurrently. With this mode, there is no guarantee that the replica database will be in sync with the master
one. Therefore, use of aread-write replica for high availability conditions is not recommended unless user
connections on the replica side are limited to modifying only tables that are excluded from replication.

14

Changesin the Firebird Engine

Task 3—Converting the replicato aregular database

A third gf i x -replica argument is available for “switching off” replication to a read-write replica when
conditions call for replication flow to be discontinued for some reason. Typically, it would be used to promote
the replica to become the master database after afailure; or to make physical backup copies from the replica.

gfix -replica none <database>

Pooling of External Connections
Vlad Khorsun

Tracker ticket CORE-5990

To avoid delays when external connections are being established frequently, the external data source (EDS)
subsystem has been augmented by a pool of external connections. The pool retains unused external connections
for a period to reduce unnecessary overhead from frequent connections and disconnections by clients using the
same connection strings.

Key Characteristics of Connection Pooling

The implementation of connection pooling in Firebird 4 eliminates the problem of interminable external con-
nections by controlling and limiting the number of idle connections. The same pool is used for al external con-
nectionsto all databasesand all local connections handled by a given Firebird process. It supportsaquick search
of al pooled connections using four parameters, described below in New Connections.

Terminology: Two terms recur in the management of the connection pool, in configuration, by DDL ALTER
statements during run-time and in new context variables in the SYSTEMnamespace:

Connection lifetime
The time interval allowed from the moment of the last usage of a connection to the moment after which it
will be forcibly closed. SQL parameter LI FETI Mg, configuration parameter Ext ConnPool Li f eTi ne,
context variable EXT_CONN_POOL_LI FETI ME.

Pool size
The maximum allowed number of idle connectionsin the pool. SQL parameter SI ZE, configuration param-
eter Ext ConnPool Si ze, context variable EXT_CONN_POCL_SI ZE.

How the Connection Pool Works

Every successful connection is associated with a pool, which maintains two lists—one for idle connections and
one for active connections. When a connection in the “active” list has no active requests and no active transac-
tions, it is assumed to be “unused”. A reset of the unused connection is attempted using an ALTER SESSI ON
RESET statement and,

« if the reset succeeds (no errors occur) the connection is moved into the “idle” list;

» f thereset fails, the connection is closed;

15

http://tracker.firebirdsql.org/browse/CORE-5990

Changesin the Firebird Engine

* if the pool has reached its maximum size, the oldest idle connection is closed.

* When the lifetime of an idle connection expires, it is deleted from the pool and closed.

New Connections

When the engine is asked to create a new external connection, the pool first looks for a candidate in the “idle’
list. The search, which is case-sensitive, involves four parameters:

1. connection string

2. username

3. password

4. role

If suitable connection isfound, it istested to check that it is still dive.

» If it failsthe check, it is deleted and the search is repeated, without reporting any error to the client

» Otherwise, the live connection is moved from the “idle” list to the “active” list and returned to the caller
* If there are multiple suitable connections, the most recently used oneis chosen

« |f thereisno suitable connection, a new oneis created and added to the “active” list.

Managing the Connection Pool

A new SQL statement has been introduced to manage the pool during run-time from any connection, between
Firebird restarts, i.e., changes made with ALTER EXTERNAL CONNECTI ONS POCL are not persistent.

Thisisthe syntax pattern:

ALTER EXTERNAL CONNECTI ONS POOL { <paraneter variants> }

Syntax Variants Available

ALTER EXTERNAL CONNECTIONSPOOL SET 9ZE <int>
Sets the maximum number of idle connections

ALTER EXTERNAL CONNECTIONSPOOL SET LIFETIME <int> <time_part>
Sets the lifetime of an idle connection, from 1 second to 24 hours. The<t i me_par t > can be SECOND |
M NUTE | HOUR.

ALTER EXTERNAL CONNECTIONSPOOL CLEARALL
Closes all idle connections and instigates dissociation of all active connections immediately they become
unused

ALTER EXTERNAL CONNECTIONSPOOL CLEAR OLDEST
Closea expired idle connections

16

Changesin the Firebird Engine

For full descriptions and examples of the variants, see ALTER EXTERNAL CONNECTIONS POOL Statement
in the chapter Management Satements.

Querying the Connection Pool
The state of the external connections pool can be queried using a set of new context variablesin the 'SY STEM'

namespace:

EXT_CONN_POOL_SI ZE Pool size
EXT_CONN_POOL_LI FETI ME Idl e connection lifetime, in seconds
EXT_CONN_POOL_| DLE_COUNT Count of currently inactive connections
EXT_CONN_POOL_ACTI VE_COUNT Count of active connections

associ ated with the pool

Parameters for Configuring the Connection Pool

Two new parameters, for fi r ebi rd. conf only, are for configuring the connection pool at process start. Fol-
low the links for details.

ExtConnPool Sze
Configures the maximum number of idle connections allowed in the pool

ExtConnPoolLifetime
Configures the number of seconds a connection should stay available after it has goneidle

Timeouts at Two levels
Vladyslav Khorsun

Tracker ticket CORE-5488

Firebird 4 introduces configurable timeouts for running SQL statements and for idle connections (sessions).

Idle Session Timeouts

An idle session timeout allows a user connection to close automatically after a specified period of inactivity.
The database admin could use it to enforce closure of old connections that have become inactive, to reduce
unnecessary consumption of resources. It could al so be used by application and tools devel opers as an dternative
to writing their own modules for controlling connection lifetime.

By default, the idle timeout is not enabled. No minimum or maximum limit is imposed but a reasonably large
period, such as afew hours, isrecommended.

How the Idle Session Timeout Works

17

http://tracker.firebirdsql.org/browse/CORE-5488

Changesin the Firebird Engine

When the user API call leaves the engine (returns to the calling connection) a special idle timer associated
with the current connection is started

* When another user API call from that connection enters the engine, theidle timer is stopped

+ Iftheidletimeisattained, theengineimmediately closesthe connection in the sameway aswith asynchronous
connection cancellation:

- dl active statements and cursors are closed

- al active transactions are rolled back

- The network connection remains open at this point, allowing the client application to get the exact error
code on the next API call. The network connection will be closed on the server side, after an error is
reported or in due course as aresult of a network timeout from a client-side disconnection.

Note

Whenever aconnectioniscancelled, the next user API call returnstheerrorisc_att_shutdown with asecondary
error specifying the exact reason. Now, we have

isc_att shut_idle: Idle timeout expired

in addition to

isc_att shut killed: Killed by database administrator
isc_att shut db down: Database is shut down

isc_att shut_engine: Engineis shut down

Setting the Idle Session Timeout

Note
Theidle timer will not start if the timeout period is set to zero.

An idle session timeout can be set;

» At database level the database administrator can set the configuration parameter Connectionl dleTimeout,
aninteger valuein minutes. The default value of zero means no timeout isset. It isconfigurable per-database,
so it may be set globally in firebird. conf and overridden for individual databases in dat abases.
conf asrequired.

The scope of this method isall user connections, except system connections (garbage collector, cache writer,
etc.).

 at connection level, the idle session timeout is supported by both the APl and a new SQL statement syntax.
The scope of thismethod is specific to the supplied connection (attachment). Itsvalueinthe API isin seconds.
In the SQL syntax it can be hours, minutes or seconds. Scope for this method is the connection to which
itisapplied.

Determining the Timeout that is In Effect

The effective idle timeout value is determined whenever a user API call leaves the engine, checking first at
connection level and then at database level. A connection-level timeout can override the value of a database-
level setting, aslong asthe period of timefor the connection-level setting isno longer than any non-zero timeout
that is applicable at database level.

18

Changesin the Firebird Engine

Important

Take note of the difference between the time units at each level. At database level, intheconf file, the default
unit for SessionTimeout is in seconds but can be configured in hours or minutes. In SQL, the default unit is
seconds but can be expressed in hours or minutes explicitly.

At the API level, the unit is milliseconds.

Absolute precision is not guaranteed in any case, especially when the system load is high, but timeouts are
guaranteed not to expire earlier than the moment specified.

SQL Syntax for Setting an Idle Session Timeout

The statement for setting an idle timeout at connection level can run outside transaction control and takes effect
immediately. The syntax pattern is as follows:

SET SESSI ON | DLE TI MEOUT <val ue> [HOUR | M NUTE | SECOND]

If the time unit is not set, it defaultsto MINUTE.

Support at API Level

Get/set idle connection timeout, seconds

interface Attachnent
ui nt getldl eTi neout (Status status);
voi d setldl eTinmeout (Status status, uint tineCQut);

The values of the idle connection timeout at both configuration and connection levels, along with the current
actual timeout, can be obtained using theisc_database info() APl with some new info tags:

fb_info_ses idle_timeout_db Value set at config level
fb_info_ses idle_timeout_att Value set at given connection level
fb_info_ses idle_timeout_run Actual timeout value for the given connection, evaluat-

ed considering the values set at config and connection
levels, see Determining the Timeout that is In Effect
above.

Notes regar ding remote client implementation
1. Attachment::setldleTimeout() issuesa“SET SESSION IDLE TIMEOUT” SQL statement
2. Attachment::getldieTimeout() callsisc_database info() with thefb_info_ses idle_timeout_att tag

3. If the protocol of the remote Firebird server islessthan 16, it does not support idle connection timeouts.
If that is the case,

« Attachment::setldleTimeout() will return the error isc_wish_list

» Attachment::getldleTimeout() will return zero and set the isc_wish_list error

 isc_database info() will return the usua isc_info_error tag in the info buffer

19

Changesin the Firebird Engine

Context Variable Relating to Idle Session Timeouts

The 'SYSTEM' context has a new variable: SESSI ON_| DLE_TI MEQUT. It contains the current value of idle
connection timeout that was set at connection level, or zero, if no timeout was set.

Idle Session Timeouts in the Monitoring Tables

In MONSATTACHMENTS:
MONS$IDLE_TIMEOUT Connection level idle timeout
MONS$IDLE_TIMER Idle timer expiration time

MONSIDLE _TIMEOUT contains timeout value set at connection level, in seconds. Zero, if timeout is not set.

MONS$IDLE_TIMER contains NULL if anidle timeout was not set or if atimer isnot running.

Statement Timeouts

The statement timeout feature enables the ability to set atimeout for an SQL statement, allowing execution of
a statement to be stopped automatically when it has been running longer than the given timeout period. It gives
the database administrator an instrument for limiting excessive resource consumption from heavy queries.

Statement timeouts could be useful to application developers when creating and debugging complex queries
without advance knowledge of execution time. Testers and others could find them handy for detecting long
running queries and establishing finite run times for test suites.

How the Statement Timeout Works

When the statement starts execution or a cursor is opened, the engine starts a special timer. It is stopped when
the statement compl etes execution or the last record has been fetched by the cursor.

Note
FETCH does not reset this timer.

When the timeout point is reached:

 if statement execution is active, it stops at closest possible moment
 if statement isnot active currently (between fetches, for example), itismarked as cancelled and the next fetch
will actually break execution and return an error

Statement types excluded from timeouts
Statement timeouts are not applicable to some types of statement and will simply be ignored:
e All DDL statements

e All internal queriesissued by the engine itself

20

Changesin the Firebird Engine

Setting a Statement Timeout

Note
Thetimer will not start if the timeout period is set to zero.

A statement timeout can be set:

» at databaselevel, by the database administrator, by setting the configuration parameter StatementTimeout in
firebird.conf or databases.conf, an integer representing the number of secondsafter which statement execution
will be cancelled automatically by the engine. Zero means no timeout is set. A non-zero setting will affect
all statementsin all connections.

» at connection level, using the API and/or the new SQL statement syntax for setting a statement timeout. A
connection-level setting (via SQL or the API) affects all statements for the given connection; Units for the
timeout period at thislevel can be specified to any granularity from hours to milliseconds.

» at statement level, using the API, in milliseconds

Determining the Statement Timeout that is In Effect

The statement timeout value that isin effect is determined whenever a statement starts executing or a cursor is
opened. In searching out the timeout in effect, the engine goes up through the levels, from statement through to
database and/or global levels until it finds a non-zero value. If the value in effect turns out to be zero then no
statement timer is running and no timeout applies.

A statement-level or connection-level timeout can override the value of a database-level setting, aslong as the
period of time for the lower-level setting is no longer than any non-zero timeout that is applicable at database
level.

Important

Take note of the difference between the time units at each level. At database level, in the conf file, the default
unit for StatementTimeout is in seconds but can be configured in hours or minutes. In SQL, the default unit
is seconds but can be expressed in hours, minutes or milliseconds explicitly. At the API level, the unit is
milliseconds.

Absolute precision is not guaranteed in any case, especialy when the system load is high, but timeouts are
guaranteed not to expire earlier than the moment specified.

Whenever a statement times out and is cancelled, the next user API call returns the error isc_cancelled with a
secondary error specifying the exact reason, viz.,

isc_cfg_stmt_timeoult: Config level timeout expired
isc_att stmt_timeoult: Attachment level timeout expired
isc_req_stmt_timeoult: Statement level timeout expired

Notes about Statement Timeouts

1. A client application could wait longer than the time than set by the timeout value if the engine needs to
undo alarge number of actions as aresult of the statement cancellation

21

Changesin the Firebird Engine

2. When the engine runs an EXECUTE STATEMENT statement, it passes the remainder of the currently
active timeout to the new statement. If the external (remote) engine does not support statement timeouts,
the local engine silently ignores any corresponding error.

3. When engine acquires some lock from the lock manager, it tries to lower the value of the lock timeout
using the remainder of the currently active statement timeout, if possible. Due to lock manager internals,
any statement timeout remainder will be rounded up to whole seconds.

SQL Syntax for Setting a Statement Timeout

The statement for setting a statement execution timeout at connection level can run outside transaction control
and takes effect immediately. The statement syntax patternis:

SET STATEMENT TIMEOUT <value> [HOUR | MINUTE | SECOND | MILLISECOND]

If the time part unit is not set, it defaultsto SECOND.

Support for Statement Timeouts at API Level

statement execution timeout at connection level, milliseconds:

i nterface Attachnent
ui nt get St at erent Ti neout (St at us status);
voi d set Statenment Ti meout (Status status, uint tineQut);

Get\set statement execution timeout at statement level, milliseconds:

interface Statenent
ui nt get Ti neout (Status status);
voi d set Ti meout (Status status, uint tinmeQut);

Set statement execution timeout at statement level using ISC API, milliseconds:

| SC_STATUS | SC_EXPORT fb_dsql _set_tinmeout (1 SC_STATUS*, isc_stnt_handle*, |SC ULONG ;

Getting the statement execution timeout at config and\or connection levels can be done using the
i sc_dat abase_i nfo() API function with some new info tags:

fb_info_statement_timeout_db
fb_info_statement_timeout_att

Getting the statement execution timeout at statement level can be done using thei sc_dsql _i nfo() AP
function with some new info tags:

isc_info_sgl_stmt_timeout_user Timeout value of given statement

isc_info_sgl_stmt_timeout_run Actua timeout value of given statement. Valid only
for statements currently executing, i.e., when a time-
out timer is actually running. Evaluated considering the

22

Changesin the Firebird Engine

values set at config, connection and statement levels,
see Determining the Statement Timeout that is In Effect
above.

Notes regar ding remote client implementation
1. Attachment::setStatementTimeout() issuesa“SET STATEMENT TIMEOUT” SQL statement
2. Attachment::getStatementTimeout() callsisc_database info() withthefb_info_statement_timeout_att tag

3. Statement::setTimeout() saves the given timeout value and passes it with op_execute and op_execute2
packets

4. Statement::getTimeout() returns the saved timeout value
5. fb_dsgl_set timeout() isawrapper over Statement::setTimeout()

6. If the protocol of the remote Firebird server islessthan 16, it does not support statement timeouts. If that
isthe case,

o “set” and “get” functionswill return anisc_wish list error

e “info” will return the usua isc_info_error tag in the info buffer

Context Variable relating to Statement Timeouts

The'SYSTEM' context has a new variable: STATEMENT _TI MEQUT. It contains the current value of the state-
ment execution timeout that was set at connection level, or zero, if no timeout was set.

Statement Timeouts in the Monitoring Tables

INn MON$SATTACHMENTS:

MONSSTATEMENT_TIMEOUT Connection level statement timeout
INn MONS$STATEMENTS:

MONSSTATEMENT_TIMEOUT Statement level statement timeout
MONSSTATEMENT_TIMER Timeout timer expiration time

MONSSTATEMENT_TIMEOUT contains timeout value set at connection or statement level, in milliseconds.
Zero, if timeout is not set.

MONS$STATEMENT_TIMER contains NULL if no timeout was set or if atimer is not running.

Support for Statement Timeouts in isql

A new command has been introduced in isgl to enable an execution timeout in milliseconds to be set for the
next statement. The syntax is.

SET LOCAL_TI MEQUT <i nt >

After statement execution, the timer is automatically reset to zero.

23

Changesin the Firebird Engine

Commit Order for Capturing the Database Snapshot

Nickolay Samofatov
Roman Simakov
Vladyslav Khorsun

Tracker ticket CORE-5953

Traditionally, a SNAPSHOT (“concurrency”) transaction takes a private copy of the transaction inventory page
(TIP) at its start and uses it to refer to the state of the latest committed versions of al records in the database,
right up until it commits or rolls back its own changes. Thus, by definition, a SNAPSHOT transaction sees the
database state only as it was at the moment it started.

In the traditional model, a READ COMMITTED transaction does not use a stable snapshot view of database
state and does not keep a private copy of the TIP. Instead, it asks the TIP for the most recent state of a record
committed by another transaction. In Super (“ SuperServer”) mode, the TIP cache is shared to provide optimal
accessto it by READ COMMITTED transactions.

The 'Commit Order' Approach

Firebird 4 takes a new approach to establishing how a transaction captures the state of the most recent write
committed for the record version that the current transaction wants to read, change or delete. This new approach
uses the concept of commit order.

It is sufficient to know the order of commitsin order to capture the state of any transaction at the moment when
asnapshot is created.

Commit Order for Transactions
The elements for establishing and utilising commit order are:
* Initialize a Commit Number (CN) for each database when the database is first opened

» Each time atransaction is committed, the Commit Number for that database isincremented and the new CN
is associated with the specific transaction

» This specific transaction and commit number combination—*transaction CN” are stored in memory and can
be queried subsequently while the database remains active

» A database snapshot isidentified by the value stored for the global CN at moment when the database snapshot
was created

Special Values for the Transaction CN

Possible values for the transaction Commit Number include some special CN values that signify whether the
transaction is active or dead, viz.:

CN_ACTIVE=0
Transaction is active

24

http://tracker.firebirdsql.org/browse/CORE-5953

Changesin the Firebird Engine

CN_PREHISTORIC = 1
Transaction was committed before the database started (i.e., older than OIT)

CN_PREHISTORIC < CN < CN_DEAD
Transaction was committed while the database was working

CN_DEAD = MAX_TRA NUM -2
Dead transaction

CN_LIMBO = MAX_TRA NUM -1
Transactionisin limbo

The Rule for Record Visibility

Supposing database snapshot is the current snapshot in use by the current transaction and other transaction is
the transaction that created the given record version, the rule for determining the visibility of the record version
works likethis:

 If the state of other transaction is 'active', 'dead' or 'in limbo' then the given record version is not visible to
the current transaction

 If the state of other transaction is 'committed' then the visibility of the given record version depends on the
timing of the creation of database snapshot, so

- if it was committed before database snapshot was created, it is visible to the current transaction;
- if it was committed after database snapshot was created, it is not visible to the current transaction.

Thus, aslong asamaintained list of all known transactionswith their associated Commit Numbersisin existence,
it is enough to compare the CN of other transaction with the CN of database snapshot to decide whether the
given record version should be visible within the scope of database snapshot.

Note

The status of an association between a transaction and its CN can be queried using a new built-in function,
RDB$GET_TRANSACTION_CN.

Implementation details

The list of al known transactions with associated Commit Numbers is maintained in shared memory. It is
implemented asan array whoseindex isatransaction | D and itsitem valueisthe corresponding Commit Number.

Thewhole array is split into fixed-size blocks containing the CN'sfor al transactions between the OI T and Next
Transaction markers. When Next Transaction moves out of the scope the highest block, anew block isallocated.
An old block is released when the OI T moves out of the scope of the lowest block.

Block Size

The default size of the TIP page cache block is 4MB, providing capacity for 512 * 1024 transactions. It is
configurableinf i r ebi r d. conf and dat abases. conf using the new parameter TipCacheBlockS ze.

25

Changesin the Firebird Engine

Read Consistency for Statements in Read-Committed Transactions

The existing implementation of READ COMMITTED isolation for transactions suffers from an important prob-
lem: asingle statement, such asa SELECT, could see different views of the same data during execution.

For example, imagine two concurrent transactions, where the first inserts 1000 rows and commits, while the
second runs SELECT COUNT(*) over the same table.

If the isolation level of the second transaction is READ COMMITTED, its result is hard to predict: it could
be any of:

1. the number of rowsin the table before the first transaction started, or
2. thenumber of rowsin the table after the first transaction commited, or

3. any number between those two numbers.
Which of those resultsis actually returned depends on how the two transactions interact:

» CASE 1 would occur if the second transaction finished counting before the first transaction was committed,
since the uncommitted inserts at that point are visible only to the first transaction.

e CASE 2 would occur if the second transaction started after the first had committed all of the inserts.

e CASE 3 occursin any other combination of the conditions. the second transaction sees some but not all of
the inserts during the commit sequence of the first transaction.

CASE 3isthe problem referred to asinconsistent read at the statement level. It matters because, by definition,
each statement inaREAD COMMITTED transaction hasits own distinct view of database state. In the existing
implementation, the statement's view is not certain to remain stable for the duration of its execution: it could
change between the start of execution and the completion.

Statements running in a SNAPSHOT transaction do not have this problem, since every statement runs against
aconsistent view of database state. Also, different statements that run within the same READ COMMITTED
transaction could see different views of database state but this is “as designed” and is not a source of state-
ment-level inconsistency.

Solving the Inconsistent Read Problem
See Tracker ticket CORE-5954.

The obvious solution to the inconsistent read problem is to have the read-committed transaction use a stable
database snapshot during execution of a statement. Each new top-level statement creates its own database snap-
shot that sees the most recently committed data.

With snapshots based on commit order it is a very cheap operation. Nested statements (triggers, nested stored
procedures and functions, dynamic statements, etc.) use the same database snapshot that was created by the top-
level statement.

New Isolation Sub-Level for READ COMMITTED

A new sub-level for transactionsin READ COMMITTED isolationisintroduced: READ COMMITTED READ
CONSISTENCY.

26

http://tracker.firebirdsql.org/browse/CORE-5954

Changesin the Firebird Engine

The existing sub-levels for READ COMMITTED isolation, RECORD VERSION and NO RECORD VER-
SION, are still supported but should be regarded as “legacy”, with the recommendation to avoid them.

In summary, the three variants for transactions in READ COMMITTED isolation are now:

READ COMMITTED READ CONSISTENCY
READ COMMITTED NO RECORD VERSION
READ COMMITTED RECORD VERSION

Handling of Update Conflicts

When a statement executesin a READ COMMITTED READ CONSISTENCY transaction, its database view
isretained in afashion similar to a SNAPSHOT transaction. This makes it pointless to wait for the concurrent
transaction to commit, in the hope of being able to read the newly-committed record version. So, when aREAD
COMMITTED transaction reads the data and finds a primary record version has been created by a concurrently
active transaction, it reads the next back version in the versions chain to check the state of the transaction that
created the back version.

« |f the state is committed then this back version isthe one that is visible to the current transaction.
« |f the state is active, the next backversion is read—until a backversion is found whose transaction is com-
mitted.

A READ COMMITTED transaction using NO RECORD VERSION, on the other hand, does not consider the
back version. Instead, it waits for the state of the conflicting transaction to become inactive, either committed
or dead.

When an update conflict occurs, the behaviour of aREAD COMMITTED READ CONSISTENCY transaction
isdifferent to that of onein READ COMMITTED RECORD VERSION:

* If the concurrent transaction is active, the engine waits for the duration of the transaction lock timeout; if the
concurrent transaction is then still uncommitted, an update conflict error is returned and any changes made
by the statement are undone automatically.

« If the concurrent transaction is committed, then the current statement cannot continue executing because its
own current snapshot would still see the committed transaction as if it were till active. Thus, the statement
has to create a new snapshot to continue executing. For consistency, it must undo all the changes made so
far and start everything again.

Note

The implementation of this restart logic, as at Beta 1, is not ideal and could be changed before the final
release.

Thelogic isvery similar to that commonly employed by user applications for handling update conflicts but it is
alittle more efficient as it does not entail network roundtrips between client and host.

Note

Thisrestart logic is not applied to selectable stored proceduresif the update conflict happens after any records
arereturned to the client application. Inthiscaseani sc_updat e_conf | i ct errorisreturned. For historical
reasons, i sc_updat e_conf | i ct isreported asasecondary error to the primary error i sc_deadl ock.

27

Changesin the Firebird Engine

No Pre-Committed Transactions

In the existing implementation, READ COMMITTED transactionsin READ ONLY mode are marked as com-
mitted when the transaction starts. This provides a benefit in that record versions in such transactions are never
“interesting” from the perspective of garbage collection. It is not aproblem if the transaction has no need for a
database snapshot, i.e., when the isolation sub-level is RECORD VERSION or NO RECORD VERSION.

However, it would defeat statement-level snapshot consistency if the READ COMMITTED READ ONLY trans-
action in the READ CONSISTENCY sub-level were allowed to be pre-committed. Thus, the record versions
involved in this style of transaction remain “interesting”, as do those involved in READ WRITE transactions.

Syntax and Configuration

Support for the new READ COMMITTED READ CONSISTENCY isolation level isfound in SQL syntax, in
the API and in configuration settings.

* SQL Syntax

Where SET TRANSACTION isavailablein SQL, the new isolation sub-level is set as follows:

SET TRANSACTI ON READ COWM TTED READ CONSI STENCY

* New API Constant in the TPB

To start a READ COMMITTED READ CONSISTENCY transaction via the ISC API, use the new constant
i sc_t pb_read_consi st ency inthe Transaction Parameter Buffer.

* Configuration Parameter ReadConsistency

Future versions of Firebird may deprecate the traditional handling of read-committed transactions. For now,
existing applications can be tested with the new READ COMMITTED READ CONSISTENCY isolation level
by setting the new configuration parameter ReadConsistency. Possible values are 1 and 0.

ReadConsistency = 1
(Default) The engine ignores [NO] RECORD VERSION flags and makes al read-committed transactions
READ COMMITTED READ CONSISTENCY.

ReadConsistency = 0
Allows the legacy engine behaviour, with the RECORD VERSION and NO RECORD VERSION sub-

levelsvalid to use. READ COMMITTED READ CONSISTENCY isavailable but needs to be be specified
explicitly.

Garbage Collection

Therecord version visibility rule provides the following logic for identifying record versions as garbage:

28

Changesin the Firebird Engine

 If snapshot CN can see some record version (RV_X) then all snapshots with numbers greater than CN can
asoseeRV_X.

» If all existing snapshots can see RV_X then all its back-versions can be removed, OR
* If the oldest active snapshot can see RV_X then all its back-versions can be removed.

Thelast part of the rule reproduces the legacy rule, whereby all record versions at the tail of the versions chain
start from some “mature” record version. The rule allows that mature record version to be identified so that the
whole tail after it can be cut.

However, with snapshots based on commit-order, version chains can be further shortened because it enables
some record versions located in intermediate positions in the versions chain to be identified as eligible for GC.
Each record version in the chain is marked with the value of the oldest active snapshot that can seeit. If several
consecutive versionsin a chain are marked with the same ol dest active snapshot value, then all those following
the first one can be removed.

The engine performs garbage collection of intermediate record versions during the following processes:
. sweep

* background garbage collection in SuperServer

* inevery user attachment after an updated or delete record is committed

To make it work, the engine maintains in shared memory an array of al active database snapshots. When it
needs to find the oldest active snapshot that can see a given record version, it just searches for the CN of the
transaction that created that record version.

The default initial size of this shared memory block is 64KB but it will grow automatically when required.
The initial block can be set to acustom size in fi rebi rd. conf and/or dat abases. conf using the new
parameter Snapshot sMenti ze.

Precision Improvement for NUMERIC and DECIMAL
Alex Peshkov

Tracker ticket CORE-4409
As a side-effect of implementing DECFLOAT as the basis for fixed-point numerics of more than 18 digits,

some improvements were made to the way Firebird handles the precision of results from calculationsinvolving
NUMERIC and DECIMAL datatypes.

Increased Number of Formats for Views
Adriano dos Santos Fernandes

Tracker ticket CORE-5647

Views are no longer limited to 255 formats (versions) before the database requires a backup and restore. The
new limit is 32,000 versions.

29

http://tracker.firebirdsql.org/browse/CORE-4409
http://tracker.firebirdsql.org/browse/CORE-5647

Changesin the Firebird Engine

Note

This change does not apply to tables.

Optimizer Improvement for GROUP BY

Dmitry Y emanov
Tracker ticket CORE-4529

The improvement allows the use of a DESCENDING index on a column that is specified for GROUP BY .

xinetd Support on Linux Replaced
Alex Peshkov

Tracker ticket CORE-5238

On Linux, Firebird 4 usesthe same network listener process (Firebird) for all architectures. For Classic, themain
(listener) process now starts up viainit/systemd, binds to the 3050 port and spawns aworker firebird process for
every connection—similarly to what happens on Windows.

Support for RISC v.64 Platform
Richard Jones

Tracker ticket CORE-5779

A patch was introduced to compile Firebird 4.0 on the RISC v.64 platform.

30

http://tracker.firebirdsql.org/browse/CORE-4529
http://tracker.firebirdsql.org/browse/CORE-5238
http://tracker.firebirdsql.org/browse/CORE-5779

Changes to the
Firebird APl and ODS

ODS (On-Disk Structure) Changes

New ODS Number

Firebird 4.0 creates databases with an ODS (On-Disk Structure) version of 13.

Application Programming Interfaces

The wire protocol version for the Firebird 4.0 API is 16. Additions include

Services Cleanup
Alex Peshkov

Apart from the widely-known Services Manager (ser vi ce_ngr), Firebird has a group of so-called “version
1" service managers. Backup and gsec are examples, along with a number of other services related to shared
cache control and the unused journalling feature. Since at least Firebird 3 they seem to be in a semi-working
state at best, so they have undergone a cleanup.

A visible effect is that the constant ser vi ce_ngr isno longer required in the connection string for a service
request. The request call will ignore anything in that field, including an empty string. The remote client will do
the right thing just by processing the host name, such aslocalhost:, inet://localhost/ or inet://localhost.

Timeouts for Sessions & Statements

Session Timeouts

See Support for Session Timeouts at API Level in the chapter “Changesin the Firebird Engine’.

Statement Timeouts

See Support for Statement Timeouts at API Level in the chapter “Changesin the Firebird Engine’.

31

Changesto the Firebird APl and ODS

New Isolation Sub-level for READ COMMITTED Transactions

Provides API support for the new READ COMMITTED READ CONSISTENCY isolation sub-level for READ
COMMITTED transactions. To start a READ COMMITTED READ CONSISTENCY transaction viathe ISC
API, usethe new constanti sc_t pb_read_consi st ency inthe Transaction Parameter Buffer.

Support for Batch Insert and Update Operations in the API
Alex Peshkov

The OO-API in Firebird 4 supports execution of statements with more than a single set of parameters—batch
execution. The primary purpose of the batch interface designisto satisfy JDBC requirementsfor batch processing
of prepared statements but it has some fundamental differences:

» Aswith al dataoperationsin Firebird, it is oriented on messages, not on single fields

» Animportant extension of our batch interfaceis support for inline use of BLOBS, which isespecially efficient
when working with small BLOBs

» Theexecut e() method returns not a plain array of integers but the special Bat chConpl eti onSt at e
interface which, depending on the batch creation parameters, can contain both the information about the
update records and the error flag augmented by detailed status vectors for the messages that caused execution
errors

The methods described below illustrate how to implement everything needed for JDBC-style prepared statement
batch operations. Almost all of the methods described are used in 11. bat ch. cpp. Please refer to it to see a
live example of batching in Firebird.

Creating a Batch

Aswith Resul t Set abatch may be created in two ways—using either the St at enent or the At t achnent
interface. In both cases, thecr eat eBat ch() method of appropriate interfaceis called.

For the At t achment case, the text of the SQL statement to be executed in a batch is passed directly to cr e-
ateBatch().

Tuning of the batch operation is performed using the Batch Parameters Block (BPB) whose format is similar to
DPB v.2: beginning with the tag (IBatch:: CURRENT_VERSION) and followed by the set of wide clumplets:
1-byte tag, 4-byte length, length-byte value. Possible tags are described in batch interface.

The recommended (and simplest) way to create a BPB for batch creation is to use the appropriate XpbBuilder
interface:

| XpbBui | der* pb = utl ->get XpbBui | der (&st atus, | XpbBui | der:: BATCH, NULL, O);
pb->i nsertlnt (&status, |Batch:: RECORD _COUNTS, 1);

This usage of the BPB directs the batch to account for a number of updated records on per-message basis.

Creating the Batch Interface

To create the batch interface with the desired parameters, passthe BPB toacr eat eBat ch() cal | :

32

Changesto the Firebird APl and ODS

| Bat ch* batch = att->createBatch(&status, tra, 0, sqgl StntText, SQ._D ALECT_V6, NULL,
pb- >get Buf f er Lengt h(&t at us), pb->getBuffer(&status));

In this sample, the batch interface is created with the default message format because NULL is passed instead
of the input metadata format.

Getting the Message Format

To proceed with the created batch interface, we need to get the format of the messages it contains, using the
get Met adat a() method:

| MessageMet adat a* meta = bat ch- >get Met adat a(&st at us) ;
If you have passed your own format for messages to the batch, of course you can simply use that.

We assume here that some function is present that can fill the buffer “data’ according to the passed format
“metadata’ . For example,

fill Next Message(unsi gned char* data, | MessageMetadata* mnetadata)

A Message Buffer

To work with the messages we need a buffer for our “data’:

unsi gned char* data = new unsi gned char [nmet a- >get MessagelLengt h(&status)];

Now we can add some messages full of datato the batch:

fill Next Message(data, neta);
bat ch- >add(&t atus, 1, data);
fill Next Message(data, neta);
bat ch- >add(&status, 1, data);

Note

An alternative way to work with messagesis to use the FB_ MESSAGE macro. An example of this method can
be found in the batch interface example, 11. bat ch. cpp.

Executing the Batch

The batch is now ready to be executed:

| Bat chConpl eti onSt at e* cs = batch->execute(&status, tra);

We requested accounting of the number of modified records (inserted, updated or deleted) per message. The
interface Bat chConpl et i onSt at e isused to print it. The total number of messages processed by the batch

33

Changesto the Firebird APl and ODS

could be less than the number of messages passed to the batch if an error happened and the option enabling
multiple errors during batch processing was not turned on. To determine the number of messages processed:

unsi gned total = cs->getSize(&status);

Now to print the state of each message:

for (unsigned p = 0; p < total; ++p)
printf("Msg %u state %\ n", p, cs->getState(&status, p));

A complete example of printing the contents of Bat chConpl et i onSt at e isin the function pri nt _cs()
insample 11. bat ch. cpp.

Cleaning Up
Once analysis of the completion state is finished, remember to dispose of it:

cs->di spose();

If you want to empty the batch's buffers without executing it for some reason, such as preparing for anew portion
of messages to process, usethecancel () method:

bat ch- >cancel (&st at us) ;

Being reference-counted, the batch does not have special method to close it—just astandard r el ease() cal:

bat ch->rel ease();

Multiple Messages per Call

More than a single message can be added in one cal to the batch. It is important to remember that messages
should be appropriately aligned for this feature to work correctly. The required alignment and aligned size of
the message should be obtained from the interface MessageMet adat a. For example:

unsi gned al i gned = net a- >get Al i gnedLengt h(&st at us) ;

Later that size will be useful when allocating an array of messages and working with it:

unsi gned char* data = new unsigned char[aligned * N;

/1 Nis the desired nunber of nessages
for (int n =0; n <N, ++n) fill NextMessage(&data[aligned * n], neta);
bat ch- >add(&status, N, data);

After that, the the batch can be executed or the next portion of messages can be added to it.

34

Changesto the Firebird APl and ODS

Passing In-line BLOBs in Batch Operations

As ageneral rule, BLOBs are not compatible with batches. Batching is efficient when alot of small data are
to be passed to the server in single step. BLOBS are treated as large objects so, as arule, it makes no sense to
use them in batches.

Nevertheless, in practiceit often happensthat BLOBs are not too big. When that isthe case, use of thetraditional
BLOB API (create BLOB, pass segments to the server, close BLOB, pass BLOB's ID in the message) kills
performance, especially over a WAN. Firebird's batching therefore supports passing BLOBSs to the server in-
line, along with other messages.

To use the in-line BLOB feature, first a BLOB usage policy has to be set up as an option in the BPB for the
batch being created:

pb->i nsertlnt (&status, |Batch::BLOB IDS, |Batch::BLOB | DS ENG NE);

Inthisexample, for the simplest and fairly common usage scenarios, the Firebird engine generates the temporary
BLOB IDs needed to keep alink between a BLOB and the message where it is used. Imagine that the message
is described as follows:

FB_MESSAGE(Msg, ThrowSt at usW apper,
(FB_VARCHAR(5), id)

(FB_VARCHAR(10), nane)

(FB_BLOB, desc)

) project(&status, master);

Something like the following will send a message to the server containing the BLOB:

project->id = ++i dCounter;

proj ect - >nane. set (current Nane) ;

bat ch- >addBl ob(&st at us, descriptionSi ze, descriptionText, &project->desc);
bat ch- >add(&t atus, 1, project.getData());

Over-sized BLOBs

If some BLOB happensto betoo big to fit into your existing buffer, then, instead of reallocating the buffer, you
can usethe appendBl obDat a() method to append more datato the last added BLOB:

bat ch- >addBl ob(&st at us, descri ptionSi ze, descriptionText, &project->desc, bpbLength, bpb);

After adding the first part of the BLOB, get the next portion of data into descri pti onText, update de-
scri ptionSi ze and then do:

bat ch- >appendBl obDat a(&t at us, descri ptionSi ze, descriptionText);

Y ou can do thiswork in aloop but take care not to overflow the internal batch buffers. Its size is controlled by
the BUFFER_BYTES_SI ZE option when creating the batch interface. The default size is 10MB but it cannot

35

Changesto the Firebird APl and ODS

exceed 40MB. If you need to process a BLOB that is too big, having chosen to use batching on the basis of
datainvolving alot of small BLOBS, just use the standard BLOB API and ther egi st er Bl ob method of the
Batch interface.

User-Supplied BLOB IDs

Another possible choice in the BLOB policy isBLOB_| DS_USER, to supply atemporary BLOB_1D instead of
having one generated by Firebird.

Usageisnot substantially different. Before callingaddBl ob() , place the correct execution ID, which isunigue
per batch, into the memory referenced by the last parameter. Exactly the same ID should be passed in the data
message for the BLOB.

Considering that generation of BLOB IDs by the engineis very fast. such apolicy may seem useless. However,
imagine a case where you get BLOBs and other data in relatively independent streams (blocks in a file, for
example) and some good 1Ds are already present in them. Supplying the BLOB IDs can greatly simplify your
code for such cases.

Streams vs Segments

Be awarethat BLOBs created by the Batch interface are by default streamed, not segmented like BLOBSs created
by meansof cr eat eBl ob() . Segmented BLOBSs provide nothing interesting compared with streamed ones—
we support that format only for backward compatibility and recommend avoiding them in new devel opment.

Overriding to Use Segmented BLOBs

If you really must have segmented BLOBS, you can override the default by calling:

bat ch- >set Def aul t Bpb(&st at us, bpbLength, bpb);

Note

Of course, the passed BPB could contain other BLOB creation parameters, too. Y ou could also pass the BPB
directly to addBl ob() but, if most of the BLOBSs you are going to add have the same non-default format, it
is slightly more efficient to use set Def aul t Bpb() .

A call to addBl ob() will add the first sesgment to the BLOB; successive callsto appendBl obDat a() will
add more segments.

Segment size limit!

Keep in mind that segment sizeislimited to 64KB -1. Attempting to pass more datain asingle call will cause
an error.

Multiple BLOBs Using Streams
Using the method addBI obSt r eam() , it is possible to add more than one BLOB to the batch in asingle call.

A blob stream is a sequence of BLOBS, each starting with a BLOB header which needs to be appropriately
aligned. The Batch interface provides a special call for this purpose:

36

Changesto the Firebird APl and ODS

unsi gned al i gnnent = bat ch->get Bl obAl i gnnent (&st at us) ;

Itisassumed that all componentsof aBL OB stream in abatch will be aligned, at least at the alignment boundary.
This includes the size of stream potions passed to addBl obSt r eam() , which should be a multiple of this
alignment.

The header containsthreefields: an 8-byte BLOB ID (must be non-zero), a4-byte total BLOB size and a4 byte
BPB size. The total BLOB size includes the enclosed BPB, i.e. the next BLOB in the stream will aways be
found in the BLOB-size bytes after the header, taking the alignment into account.

The BPB is present if the BPB sizeis not zero and is placed immediately after the header. The BPB BLOB data
goes next, its format depending upon wehether the BLOB is streamed or segmented:

» For astream BLOB it isa plain sequence of byteswhose sizeis (BLOB-size - BPB-size)

» For a segmented BLOB, things are a bit more compicated: the BLOB data is a set of segments where each
segment has the format: 2-bytes for the size of the segment, aligned at | Bat ch: : BLOB_SEGHDR _ALI GN
boundary, followed by as many bytes as are accounted for by this 2-byte segment size

Bigger BLOBS in the Stream

When a big BLOB is added to the stream, its size is not always known in advance. To avoid having too large
abuffer for that BLOB (recalling that the size has to be provided in the BLOB header, before the BLOB data)
a BLOB continuation record may be used. In the BLOB header, you leave BLOB size at a value known when
creating that header and add a continuation record. The format of the continuation record is identical to the
BLOB header, except that both the BLOB ID and the BPB size must always be zero.

Typically, you will want to have one continuation record per addBl obSt r eant() call.

An example of thisusage can befoundinsanpl e 11. bat ch. cpp.

Registering a Standard BLOB

The last method used to work with BLOBs stands apart from the first three that pass BLOB datainline with the
rest of the batch data. It isrequired for registering in abatch the ID of aBLOB created using the standard BLOB
API. This may be unavoidableif areally big BLOB hasto be passed to the batch.

The ID of such BLOB cannot be used in the batch directly without causing an invalid BLOB ID error during
batch execution. Instead do:

bat ch- >regi st er Bl ob(&t atus, &realld, &nsg->desc);

If the BLOB policy is making the Firebird engine generate BLOB |Ds then this code is enough to correctly
register an existing BLOB in abatch. In other casesyou will haveto assignto neg>>desc thelD that is correct
from the point of view of the batch.

Batch Ops in the Legacy (ISC) API

A word or two about access to batches from the ISC API: a prepared 1SC statement can be executed in batch
mode. The main support for it is present in the Ut i | interface, namely in the methods get Tr ansact i on-

37

Changesto the Firebird APl and ODS

ByHandl e and get St at enent ByHandl e. These methods enable access to the appropriate interfacesin the
same way as to existing ISC handles.

An example of this usage can befoundin12. bat ch_i sc. cpp.

APl Support for Time Zones

Structures (structs)

struct | SC TIME_TZ

| SC_TIME utc_tine;
| SC_USHORT ti me_zone;

b
struct | SC_TI MESTAMP_TZ

| SC_TI MESTAMP ut c_ti mest anp;
| SC_USHORT ti me_zone;

}s

API Functions
(Firebirdinterface.idl—IUtil interface)

voi d decodeTi meTz(
Status status,
const |ISC TIME_TZ* tineTz,
ui nt* hours,
uint* m nutes,
ui nt* seconds,
uint* fractions,
uint timeZoneBufferlLength,
string timeZoneBuffer

)

voi d decodeTi meSt anpTz(
Status status,
const | SC_TI MESTAMP_TZ* ti meStanpTz,
uint* year,
ui nt* nont h,
ui nt* day,
ui nt* hours,
uint* m nutes,
ui nt* seconds,
uint* fractions,
ui nt timeZoneBufferlLength,
string timeZoneBuffer

)

voi d encodeTi meTz(
Status status,
| SC_ TIME TZ* tinmeTz,

38

Changesto the Firebird APl and ODS

ui nt hours,

ui nt mnutes,

ui nt seconds,

uint fractions,

const string timeZone

)

voi d encodeTi meSt anpTz(
Status status,
| SC_TI MESTAMP_TZ* ti neStanpTz,
ui nt year,
ui nt nonth,
ui nt day,
ui nt hours,
ui nt mnutes,
ui nt seconds,
uint fractions,
const string timeZone

39

Chapter 5

Configuration
Additions and Changes

Parameters for Timeouts

Two new parameters are available for globa and per-database configuration, respectively, of server-wide and
database-wide idle session and statement timeouts. They are discussed in detail elsewhere (see links).

ConnectionldleTimeout

The value is integer, expressing minutes. Study the notes on idle session timeouts carefully to understand how
this configuration fits in with related settings via SQL and the API.

See Setting the Session Timeout in the chapter “ Changes to the Firebird Engine”.

StatementTimeout

Thevalueisinteger, expressing seconds. Study the notes on statement timeouts carefully to understand how this
configuration fits in with related settings via SQL and the API.

See Setting a Statement Timeout in the chapter “ Changes to the Firebird Engine”.

Parameters for External Connection Pooling

These parameters enable customization of aspects of pooling external connections.

ExtConnPoolSize

Configures the maximum number of idle connections allowed in the pool. It is an integer, from 0 to 1000. The
installation default is 0, which disables the connection pool.

ExtConnPoolLifetime

Configures the number of seconds a connection should stay available after it has gone idle. The installation
default is 7200 seconds.

40

Configuration Additions and Changes

Parameters to Restrict Length of Object Identifiers

Object identifiersin an ODS 13 database can be up to 63 characters in length and the engine stores them in
UTF-8, not UNICODE_FSS as previously. Two new global or per-database parameters are availableif you need
to restrict either the byte-length or the character-length of object namesin ODS 13 databases for some reason.

Longer object names are optional, of course. Reasons you might need to restrict their length could include:

» Constraintsimposed by the client language interface of existing applications, such as gpre or Delphi

* In-house coding standards

 Interoperability for cross-database applications such as athird-party replication system or an in-house system
that uses multiple versions of Firebird

Thisis not an exhaustive list. It is the responsibility of the developer to test usage of longer object names and

establish whether length restriction is necessary.

Whether setting one or both parameters has exactly the same effect will depend on the characters you use. Any
non-ASCII character requires 2 bytes or more in UTF-8, so one cannot assume that byte-length and charac-
ter-length have a direct relationship in all situations.

The two settings are verified independently and if either constrains the length limit imposed by the other, use
of the longer identifier will be disallowed.

Warning
If you set either parameter globally, i.e., in firebird.conf, it will affect all databases, including the security
database. That has the potential to cause problems!

MaxldentifierByteLength

Sets alimit for the number of bytes allowed in an object identifier. It is an integer, defaulting to 252 bytes, i.e.,
63 characters* 4, 4 being the maximum number of bytes for each character.

To set it to the limit in previous Firebird versions, use 31.

MaxldentifierCharLength

Sets a limit for the number of characters allowed in an object identifier. It is an integer, defaulting to 63, the
new limit implemented in Firebird 4.

Parameters Supporting Read Consistency in Transactions

Firebird 4 takes anew approach to read consi stency within transaction snapshots, enabling, amongst other bene-
fits, asustained consistent read for statements within READ COMMITTED transactions. This group of param-
eters allows for some customisation of the elementsinvolved.

41

Configuration Additions and Changes

TipCacheBlockSize

The list of all known transactions with associated Commit Numbers is maintained in shared memory. It is
implemented asan array whoseindex isatransaction | D and itsitem valueisthe corresponding Commit Number.

Thewhole array is split into fixed-size blocks containing the CN'sfor al transactions between the OI T and Next
Transaction markers. When the “Next Transaction” marker moves out of the scope of the highest block, a new
block is allocated. An old block is released when the “Oldest [Interesting] Transaction” (OIT) marker moves
out of the scope of the lowest block.

The default size for a TIP page cache block is 4MB, providing capacity for 512 * 1024 transactions. Use this
parameter to configure a custom TIP page cache block sizeinf i r ebi r d. conf and/or dat abases. conf .

ReadConsistency

For now, existing applications can be tested with and without the new READ COMMITTED READ CONSIS-
TENCY isolation level by setting this parameter. Possible values are 1 and 0.

ReadConsistency = 1
(Default) The engine ignores [NO] RECORD VERSION flags and makes all read-committed transactions
READ COMMITTED READ CONSISTENCY.

ReadConsistency = 0
Allows the legacy engine behaviour, with the RECORD VERSION and NO RECORD VERSION sub-
levelsvalid to use. READ COMMITTED READ CONSISTENCY isavailable but needs to be be specified
explicitly.

SnapshotsMemSize

To handle garbage collection of record versions younger than the Oldest Snapshot, (“intermediate record ver-
sions’) the engine maintains in shared memory an array that it can search for the Commit Number (CN) of a
particular record version. See the Garbage Collection topic the chapter Changesin the Firebird Engine.

The default initial size of this shared memory block is 64KB but it will grow automatically when required. The
initial block can be set to acustom sizeinfi r ebi rd. conf and/or dat abases. conf .

TempCacheLimit at Database Level
Dmitry Y emanov

See Tracker ticket CORE-5718

TenpCachelLi mi t, for setting the maximum amount of temporary space that can be cached in memory, can
now be configured at database level, i.e., in dat abases. conf . Previoudly, it was available only as a global
setting for all databases.

42

http://tracker.firebirdsql.org/browse/CORE-5718

Chapter 6

Security enhancementsin Firebird 4 include:

Security

Enhanced System Privileges

Alex Peshkov

Tracker ticket CORE-5343

This feature enables granting and revoking some special privileges for regular users to perform tasks that have
been historically limited to SY SDBA only, for example:

* Run utilities such as gbak, gfix, nbackup and so on

» Shut down a database and bring it online

» Trace other users attachments
» Access the monitoring tables
* Run management statements

The implementation involved creating a set of SYSTEM PRIVILEGES, analogous to object privileges, from
which lists of privileged tasks could be assigned to roles.

List of Valid System Privileges

The following table lists the names of the valid system privileges that can be granted and revoked to and from

roles.

USER_MANAGEMENT

Manage users

READ_RAW_PAGES

Read pages in raw format using Attachment::getinfo()

CREATE_USER_TYPES

Add/change/del ete non-system recordsin RDB$TY PES

USE_NBACKUP_UTILITY

Use nbackup to create database copies

CHANGE_SHUTDOWN_MODE

Shut down database and bring online

TRACE_ANY_ATTACHMENT

Trace other users attachments

MONITOR_ANY_ATTACHMENT

Monitor (tables MONS$) other users' attachments

ACCESS SHUTDOWN_DATABASE

Access database when it is shut down

CREATE_DATABASE

Create new databases (given in security.db)

DROP_DATABASE

Drop this database

USE_GBAK_UTILITY

Use appropriate utility

43

http://tracker.firebirdsql.org/browse/CORE-5343

Security

USE _GSTAT_UTILITY

USE_GFIX_UTILITY

IGNORE_DB_TRIGGERS

Instruct engine not to run DB-level triggers

CHANGE_HEADER_SETTINGS

Modify parametersin DB header page

SELECT_ANY_OBJECT IN_DATABASE

Use SELECT for any selectable object

ACCESS ANY_OBJECT_IN_DATABASE

Access (in any possible way) any object

MODIFY_ANY_OBJECT_IN_DATABASE

Modify (up to drop) any object

CHANGE_MAPPING_RULES

Change authentication mappings

USE_GRANTED_BY_CLAUSE

Use GRANTED BY in GRANT and REVOKE opera-
tors

GRANT_REVOKE_ON_ANY_OBJECT

GRANT and REV OKE rights on any object in database

GRANT_REVOKE_ANY_DDL_RIGHT

GRANT and REVOKE any DDL rights

CREATE_PRIVILEGED_ROLES

Use SET SYSTEM PRIVILEGESinroles

MODIFY_EXT_CONN_POOL

Use command ALTER EXTERNAL CONNECTIONS
POOL

New Grantee Type SYSTEM PRIVILEGE

At alower level, anew grantee type SY STEM PRIVILEGE enables the SY SDBA to grant and revoke specific

access privileges on database objects to a named system privilege. For example,

GRANT ALL ON PLGHSRP_VI EW TO SYSTEM PRI VI LEGE USER_NMANAGEMENT

grants to users having USER_ MANAGEMENT privilege al rights to the view that is used in the SRP user

management plug-in.

Assigning System Privileges to a Role

To put al this to use, we have some new clauses in the syntax of the CREATE ROLE and ALTER ROLE
statements for attaching a list of the desired system privileges to a new or existing role.

The SET SYSTEM PRIVILEGES Clause

Tracker ticket CORE-2557

The syntax pattern for setting up or changing these special rolesis as follows:

CREATE ROLE <name> SET SYSTEM PRI VI LEGES TO <privil egel> {,
ALTER RCLE <nane> SET SYSTEM PRI VI LEGES TO <privil egel> {,

<privilege2> {,
<privilege2> {,

<privilegeN> }}
<privilegeN> }}

44

http://tracker.firebirdsql.org/browse/CORE-2557

Security

Both statements assign a non-empty list of system privileges to role <name>. The ALTER ROLE statement
clears privileges previously assigned to the named role, before constructing the new list.

I mportant

Be aware that each system privilege provides a very thin level of control. For some tasks it may be necessary
to give the user more than one privilege to perform some task. For example, add IGNORE_DB_TRIGGERS
to USE_GSTAT _UTILITY because gstat needs to ignore database triggers.

Note that thisfacility provides a solution to an old Tracker request (CORE-2557) to implement permissions on
the monitoring tables:

CREATE ROLE MONI TOR SET SYSTEM PRI VI LEGES TO MONI TOR_ANY_ATTACHVENT;
GRANT MONI TOR TO ROLE MYROLE;

Dropping System Privileges from a Role

This statement is used to clear the list of system privileges from the named role:

ALTER RCLE <nane> DROP SYSTEM PRI VI LECES

The role <name> is not dropped, just the list attached to it.

Function RDB$SYSTEM_PRIVILEGE

To accompany all this delegation of power isanew built-in function, RDB$SY STEM_PRIVILEGE(). It takesa
valid system privilege as an argument and returns True if the current attachment has the given system privilege.

Format:

RDB$SYSTEM PRI VI LEGE(<pri vi | ege>)

Example

sel ect rdb$system privil ege(user _nmanagenent) from rdb$dat abase;

Granting a Role to Another Role
Roman Simakov

Tracker ticket CORE-1815

Firebird 4 allows a role to be granted to another role—a phenomenon that has been nicknamed “ cumulative
roles’. If you hear that term, it isreferring to roles that are embedded within other roles by way of GRANT ROLE
a TO ROLE b, something Firebird would not allow before.

45

http://tracker.firebirdsql.org/browse/CORE-1815

Security

Important

Take careful note that the GRANT ROLE syntax has been extended, along with its effects.

Syntax Pattern

GRANT [DEFAULT] <role nane> TO [USER | ROLE] <user/role nane> [WTH ADM N OPTI ON] ;
REVOKE [DEFAULT] <rol e nane> FROM [USER | ROLE] <user/role name> [WTH ADM N OPTI QN ;

The DEFAULT Keyword

If the optional DEFAULT keyword isincluded, therolewill be used every timethe user logsin, evenif therole
is not specified explicitly in the login credentials. During attachment, the user will get the privileges of al roles
that have been granted to him/her with the DEFAULT property. This set will include all the privileges of all the
embedded roles that have been granted to the <role name> role with the DEFAULT property.

Setting (or not setting) arole in the login does not affect the default role. The set of rights, given (by roles) to
the user after login is the union of the login role (when set), all default roles granted to the user and all roles
granted to this set of roles.

Note
A user gtill cannot acquire any privileges associated with a base role that has not been granted to his account
or has been revoked.

WITH ADMIN OPTION Clause

If auser isto be alowed to grant arole to another user or to another role, the WITH ADMIN OPTION should be
included. Subsequently the user will be able to grant any role in the sequence of roles granted to him, provided
every role in the sequence has WITH ADMIN OPTION.

Example Using a Cumulative Role

CREATE DATABASE ' LOCALHOST: / TMP/ CUMROLES. FDB' ;

CREATE TABLE T(| | NTEGER);

CREATE ROLE TINS;

CREATE ROLE CUMR

GRANT I NSERT ON T TO TINS;

GRANT DEFAULT TINS TO CUMR WTH ADM N OPTI ON;

GRANT CUMR TO USER US W TH ADM N CPTI ON,

CONNECT ' LOCALHOST: / TMP/ CUMROLES. FDB' USER ' US' PASSWORD ' PAS' ;
I NSERT INTO T VALUES (1);

GRANT TINS TO US2;

Revoking the DEFAULT Property of a Role Assignment

Toremovethe DEFAULT property of arole assignment without revoking theroleitself, includethe DEFAULT
keyword in the REVOKE statement:

46

Security

REVOKE DEFAULT ghost FROM USER henry
REVOKE DEFAULT ghost FROM ROLE poltergei st

Otherwise, revoking a role altogether from a user is unchanged. However, now arole can be revoked from a
role. For example,

REVOKE ghost FROM USER henry
REVOKE ghost FROM ROLE pol t er gei st

Function RDB$ROLE_IN_USE
Roman Simakov

Tracker ticket CORE-2762

A new built-in function lets the current user check whether a specific role is available under his/her current
credentials. It takes a single-quoted role name as a string argument of arbitrary length and returns a Boolean
result.

Format

RDB$ROLE_| N_USE(<r ol e_nane>)

List Currently Active Roles
Tracker ticket CORE-751

To get alist of currently active roles you can run:

SELECT * FROM RDB$ROLES WHERE RDB$ROLE_| N_USE(RDB$ROLE_NAME)

SQL SECURITY Feature

Roman Simakov
Tracker ticket CORE-5568

This new feature in Firebird 4 enables executable objects (triggers, stored procedures, stored functions) to be
defined to run in the context of an SQL SECURITY clause, as defined in the SQL standards (2003, 2011).

The SQL SECURITY scenario has two contexts. INVOKER and DEFINER. The INVOKER context corre-
sponds to the privileges currently available to the CURRENT_USER or the calling object, while DEFINER
corresponds to those available to the owner of the object.

The SQL SECURITY property is an optional part of an object's definition that can be applied to the object
with DDL statements. The property cannot be dropped but it can be changed from INVOKER to DEFINER
and vice versa.

47

http://tracker.firebirdsql.org/browse/CORE-2762
http://tracker.firebirdsql.org/browse/CORE-751
http://tracker.firebirdsql.org/browse/CORE-5568

Security

It is not the same thing as SQL privileges, which are applied to users and some database object types to give
them various types of access to database objects. When an executabl e object in Firebird needs access to atable,
aview or another executable object, the target object is not accessibleif the invoker does not have the necessary
privilegesonit. That has been the situation in previous Firebird versionsand remains so in Firebird 4. That is, by
default, all executable objects have the SQL SECURITY INVOKER property in Firebird 4. Any caller lacking
the necessary privileges will be rejected.

If aroutine has the SQL SECURITY DEFINER property applied to it, the invoking user or routine will be able
to executeit if therequired privileges have been granted to its owner, without the need for the caller to be granted
those privileges specifically.

In summary:

* IfINVOKER isset, theaccessrightsfor executing the call to an executable object are determined by checking
the current user's active set of privileges

» If DEFINER is set, the access rights of the object owner will be applied instead, regardless of the current
user's active privilege set

Syntax Patterns

CREATE TABLE <tabl e-name> (...) [SQL SECURI TY {DEFI NER | | NVOKER}]

ALTER TABLE <tabl e-name> ... [{ALTER SQL SECURITY {DEFINER | I NVOKER} | DROP SQ.L SECURI TY}]
CREATE [OR ALTER] FUNCTI ON <function-nane> ... [SQ. SECURI TY {DEFI NER | | NVOKER}] AS ...

CREATE [OR ALTER] PROCEDURE <procedure-name> ... [SQ. SECURI TY {DEFINER | | NVOKER}] AS ...
CREATE [OR ALTER] TRI GGER <trigger-nane> ... [SQ. SECURI TY {DEFI NER | | NVOKER} | DROP SQ. SECURI

CREATE [OR ALTER] PACKAGE <package-name> [SQL SECURI TY {DEFINER | | NVOKER}] AS ...

ALTER DATABASE SET DEFAULT SQL SECURI TY {DEFI NER | | NVOKER}

Packaged Routines

An explicit SQL SECURITY clause is not valid for procedures and functions defined in a package and will
cause an error.

Triggers

Triggers inherit the setting of the SQL SECURITY property from the table, but it can be overriden explicitly.
If the property is changed for atable, triggers that do not carry the overridden property will not see the effect of
the change until next time the trigger is loaded into the metadata cache.

To remove an explicit SQL SECURITY option from atrigger, €.g. one named tr_ins, you can run

alter trigger tr_ins DROP SQL SECURITY;

Tosetit again to SQL SECURITY INVOKER, run

alter trigger tr_ins sqgl security invoker;

48

Security

Examples Using the SQL SECURITY Property

1

With DEFINER set for tablet, user USneedsonly the SELECT privilegeonit. If it were set for INVOKER,
the user would need also the EXECUTE privilege on function f.

set term?”;
create function f() returns int
as
begi n
return 3;
end”
set term ;"
create table t (i integer, ¢ conmputed by (i + f())) SQ SECURI TY DEFI NER
insert intot values (2);
grant select on table t to user us;

comm t;

connect 'local host:/tnp/7.fdb" user us password 'pas’
select * fromt;

With DEFINER set for function f, user US needs only the EXECUTE privilege on it. If it were set for
INVOKER, the user would need aso the INSERT privilege on tablet.

set term?”;
create function f (i integer) returns int SQ SECURI TY DEFI NER
as
begi n
insert intot values (:i);
return i + 1;
end”
set term ;"
grant execute on function f to user us;

comm t;

connect 'l ocal host:/tnp/59.fdb' user us password 'pas'
sel ect f(3) from rdb$dat abase;

With DEFINER set for procedure p, user US needs only the EXECUTE privilege on it. If it were set for
INVOKER, either the user or the procedure would need also the INSERT privilege on tablet.

set term?”;
create procedure p (i integer) SQ. SECURI TY DEFI NER
as
begi n
insert intot values (:i);
end”
set term ;"

grant execute on procedure p to user us;
commit;

49

Security

connect 'l ocal host:/tnp/17.fdb"' user us password 'pas'
execute procedure p(1);

With DEFINER set for trigger tr, user US needs only the INSERT privilegeonit. If it were set for INV OK-
ER, either the user would need also the INSERT privilege on tablet.

create table tr (i integer);
create table t (i integer);
set term?;
create trigger tr_ins for tr after insert SQ SECURI TY DEFI NER
as
begi n
insert intot values (NEWi);
end”
set term;”*
grant insert on table tr to user us;

commit;

connect 'l ocal host:/tnp/29.fdb' user us password 'pas'
insert into tr values(2);

The result would be the same if SQL SECURITY DEFINER were specified for table TR:

create table tr (i integer) SQ SECURI TY DEFI NER
create table t (i integer);
set term*”;
create trigger tr_ins for tr after insert
as
begi n
insert intot values (NEWi);
end”
set term;”
grant insert on table tr to user us;

commit;

connect 'l ocal host:/tnp/29.fdb' user us password 'pas'
insert into tr values(2);

With DEFINER set for package pk, user US needs only the EXECUTE privilege on it. If it were set for
INVOKER, either the user would need also the INSERT privilege on tablet.

create table t (i integer);
set term?”;
create package pk SQ. SECURI TY DEFI NER
as
begi n

function f(i integer) returns int;
end”

creat e package body pk
as
begi n
function f(i integer) returns int

50

Security

as
begi n
insert intot values (:i);
return i + 1;
end
end”
set term;”*
grant execute on package pk to user us;

commit;

connect 'l ocal host:/tnp/69.fdb' user us password 'pas'
sel ect pk.f(3) fromrdb$dat abase

Built-in Cryptographic Functions
Alex Peshkov

Tracker ticket CORE-5970

Firebird 4 introduces eight new built-in functions supporting cryptographic tasks; also two (non-cryptographic)
functions for encoding and decoding between string and Base-64 data and another for getting a CRC32 code
for ablock of data.

ENCRYPT() and DECRYPT()
For encrypting/decrypting data using a symmetric cipher.

Format

{ENCRYPT | DECRYPT} (<string | blob> USING <al gorithnr [MODE <node>] KEY <string>
[1V <string>] [<endianness>] [CTR_LENGTH <smallint>] [COUNTER <bi gi nt>])

algorithm::= { block_cipher | streamcipher }
bl ock_cipher ::= { AES | ANUBIS | BLOANFISH | KHAZAD | RC5 | RC6 | SAFER+ | TWOFI SH | XTEA }
stream ci pher = { CHACHA20 | RC4 | SOBER128 }
node ::={ CBC| CFB| CIR| ECB | OFB }
={ CT

I
endi anness ::= { CTR BIG ENDIAN | CTR LI TTLE_ENDI AN }

51

http://tracker.firebirdsql.org/browse/CORE-5970

Security

Important
» Mode should be specified for block ciphers

« Initialization vector (1V) should be specified for block ciphersin al modes except ECB and all stream
ciphers except RC4

» Endianness may be specified only in CTR mode, default is little endian counter
e Counter length (CTR_LENGTH, bytes) may be specified only in CTR mode, default is the size of 1V
e [|nitia counter value (COUNTER) may be specified only for CHACHAZ20 cipher, default is 0

« Sizes of data strings passed to these functions are in accordance with the selected algorithm and mode
requirements

¢ Functions return BLOB when the first argument is blob and varbinary for al text types.

Examples

sel ect encrypt (' 897897 using sober128 key ' AbcdAbcdAbcdAbcd' iv '01234567")
from r db$dat abase;

sel ect decrypt (x' 0154090759DF' usi ng sober 128 key ' AbcdAbcdAbcdAbcd' iv '01234567")
from r db$dat abase;

sel ect decrypt(secret _field using aes node ofb key '0123456701234567' iv init_vector)
from secure_table;

RSA_PRIVATE()
Returns an RSA private key of specified length (in bytes) in PKCS#1 format as a VARBINARY string.

Format

RSA PRI VATE (<smallint>)

Example

sel ect rdb$set _context (' USER SESSION , 'private_key', rsa_private(256))
from rdb$dat abase;

RSA_PUBLIC()
Returns the RSA public key for a specified RSA private key. Both keys arein PKCS#1 format.

Format

RSA PUBLI C (<private key>)

Example

52

Security

Tip

Run your samples one by one from the RSA_PRIVATE function forward.

sel ect rdb$set context (' USER _SESSI ON', ' public_key',
rsa_public(rdb$get context (' USER_SESSION , 'private_key'))) from rdb$dat abase;

RSA_ENCRYPT()

Pads data using OAEP padding and encrypts it using an RSA public key. Normally used to encrypt short sym-
metric keys which are then used in block ciphersto encrypt a message.

Format

RSA_ENCRYPT (<string> KEY <public key> [LPARAM <string>] [HASH <hash>])

KEY should be avalue returned by the RSA_PUBLIC function. LPARAM is an additional system-specific tag
that can be applied to identify which system encoded the message. Its default valueis NULL.

hash ::={ MD5 | SHAl1 | SHA256 | SHA512 }
Default is SHA256.

Example

Tip

Run your samples one by one from the RSA_PRIVATE function forward.

sel ect rdb$set context (' USER SESSION, 'nsg', rsa_encrypt(' Some nmessage’
key rdb$get context (' USER_SESSION', 'public_key'))) fromrdb$database;

RSA_DECRYPT()

Decrypts using the RSA private key and OAEP de-pads the resulting data.

Format

RSA DECRYPT (<string> KEY <private key> [LPARAM <string>] [HASH <hash>])

KEY should be a value returned by the RSA_PRIVATE function. LPARAM is the same variable passed to
RSA_ENCRYPT. If it does not match what was used during encoding, RSA_DECRY PT will not decrypt the
packet.

hash ::={ MD5 | SHAl1 | SHA256 | SHA512 } Default is SHA256.

53

https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding

Security

Example

Tip

Run your samples one by one from the RSA_PRIVATE function forward.

sel ect rsa_decrypt (rdb$get _context (' USER_SESSI ON' , 'nmnsg')
key rdb$get context (' USER SESSION , 'private_key')) from rdb$dat abase;

RSA_SIGN()

Performs PSS encoding of the message digest to be signed and signs using the RSA private key.

PSS encoding

Probabilistic Signature Scheme (PSS) is a cryptographic signature scheme specifically developed to allow
modern methods of security analysisto provethat its security directly relatesto that of the RSA problem. There
is no such proof for the traditional PKCS#1 v1.5 scheme.

Format

RSA SIGN (<string> KEY <private key> [HASH <hash>] [SALT_LENGIH <smallint>])

KEY should be avalue returned by the RSA_PRIVATE function.

hash ::= { MD5 | SHAL | SHA256 | SHA512 }
Default is SHA256.

SALT_LENGTH indicatesthe length of the desired salt, and should typically be small. A good valueis between
8 and 16.

Example

Tip

Run your samples one by one from the RSA_PRIVATE function forward.

sel ect rdb$set_context (' USER_SESSION , 'nsg', rsa_sign(hash(' Test nmessage' using sha256)
key rdb$get context (' USER SESSION', 'private_key'))) from rdb$database;

RSA_VERIFY()

Performs PSS encoding of message digest to be signed and verifiesitsdigital signatureusing the RSA public key.

54

Security

Format

RSA VERI FY (<string> SI GNATURE <string>
KEY <public key>
[HASH <hash>] [SALT_LENGTH <snallint>])
SIGNATURE should be a value returned by the RSA_SIGN function. KEY should be a value returned by
RSA_PUBLIC function.
hash ::= { MD5 | SHAL | SHA256 | SHA512 }
Default is SHA256.

SALT_LENGTH indicatesthe length of the desired salt, and should typically be small. A good valueis between
8 and 16.

Example

Tip

Run your samples one by one from the RSA_PRIVATE function forward.

sel ect rsa_verify(hash(' Test message' using sha256)
si gnature rdb$get _context (' USER_SESSION , 'nsg')
key rdb$get_context (' USER SESSION, 'public_key'))
from rdb$dat abase;

BASE64 _ENCODE() and BASE64 DECODE()

These two functions are for encoding and decoding input data between string and BA SE64 representation. They
operate with character strings and BLOBs. Considered useful when working with binary objects—with keys,
for example.

Format

BASE64_ENCODE(<bi nary data>)
BASE64_DECODE(<base64 data>)

Example

sel ect base64_encode(public_key) fromclients;

CRC32()

Accepts an argument than can be a field, variable or expression of any type recognised by DSQL/PSQL and
returns a CRC-32 code calculated from the input data with the polynomial 0x04C11DB7. A constant, such as
afile name passed as a string, returns the CRC for only the input.

55

Security

Format

CRC32(<any val ue>)

Example

select crc32(job_title) fromjob;

sel ect crc32(' Firebird-4.0.0.716- Al phal. and64.tar.gz') from rdb$dat abase;

Note

Initially CRC codes were designed as a tool to detect accidental changes to raw data when transferred over
the wire or stored somewhere.

It can be used as a very fast and rather efficient hash function. If the risk of collisionsis not critical, its 32-bit
integer output bestows a significant advantage over the widely-used SHA family of hashesin that it is easier
to use later in various caculations if needed.

Improvements to Security Features

The following improvements were made to existing security features:

User Managing Other Users
Alex Peshkov

Tracker ticket CORE-5770

A user that was created with user account administration privilegesin the security database (viathe. . . GRANT
ADM N ROLE clause) no longer hasto hold the RDB$ADM Nrolein the connected database and passit explicitly
in order to create, ater or drop other users.

Note

Thisimprovement is also backported to Firebird 3.0.5.

56

http://tracker.firebirdsql.org/browse/CORE-5770

Chapter 7

Management Statements

Over the morerecent rel eases of Firebird anew class of DSQL statement has emerged in Firebird's SQL lexicon,
usually for administering aspects of the client/server environment. Typically, such statements commence with
the verb SET, especially those introduced in Firebird 4.

Note

Some statements of thisclass, introduced earlier, use the verb ALTER, although management statements should
not be confused with DDL AL TER statementsthat modify database objectslike tables, views, procedures, roles,
etal.

Use of Management Statements

Management statements can run anywhere DSQL can run but, typically, the developer will want to run a man-
agement statement in a database trigger. In past releases, management statements were treated in PSQL like
DDL, precluding them from running directly inside a PSQL module. From Firebird 4 forward, a pre-determined
set of them can be used directly in PSQL modules without the need to wrap them in an EXECUTE STATEMENT
block. For more details of the current set, see Allow Management Statements in PSQL Blocks in the PSQL
chapter.

Authorization

Most of the management statements introduced in Firebird 4 affect the current connection (“ session”) only, and
do not require any authorization over and abovethelogin privileges of acurrent user without el evated privileges.

Some management statements operate beyond the scope of the current session. Examples are the ALTER
DATABASE . . statementsto control nBackup or the ALTER EXTERNAL CONNECTI ONS POOL statements
introduced in Firebird 4 to manage connection pooling. A new set of system privileges, analogous with SQL
privileges granted for database objects, is provided for assignment to arole, to enable the required authority to
run a specific management statement in this category. For details, refer to Enhanced System Privileges in the
Security chapter.

Management Statements for Use with Connections Pooling

A group of management statements for use with connections pooling.

Authorization

A role carrying the new system privilege MODI FY_EXT_CONN_POCL isrequired to run the statements.

57

Management Statements

ALTER EXTERNAL CONNECTIONS POOL Statement

The new statement ALTER EXTERNAL CONNECTI ONS POOL has been added to the repertoire for managing
the external connections pool.

The syntax is:

ALTER EXTERNAL CONNECTI ONS POCOL { <paraneter variants> }

When prepared it is described like aDDL statement but its effect isimmediate—it is executed immediately and
completely, without waiting for transaction commit.

The statements can be issued from any connection and changes are applied to the in-memory instance of the
pool in the current Firebird process. If the process is a Classic one, a change submitted there does not affect
other Classic processes.

Changes made with ALTER EXTERNAL CONNECTI ONS POOL are not persistent: after arestart, Firebird will
usethe pool settingsconfiguredinfi r ebi r d. conf by Ext ConnPool Si ze and Ext ConnPool Li f eTi ne.

Full Syntax
Full syntax for the variants follows.

To set the maximum number of idle connections:

ALTER EXTERNAL CONNECTI ONS POCL SET SI ZE <int>

Valid values are from 0 to 1000. Setting it to zero disables the pool. The default valueis set using the parameter
Ext ConnPool Si ze infirebird. conf.

To set the lifetime of an idle connection:

ALTER EXTERNAL CONNECTI ONS POCL SET LI FETI ME <int> <tine_part>

where<tine_part>isSECOND | M NUTE | HOUR. Validvaluesarefrom1l SECONDto24 HOUR. The
default value (in seconds) is set using the parameter Ext ConnPool Li feti me infirebird. conf.

To close dl idle connections and instigate dissociation of all active connections immediately they become un-
used:

ALTER EXTERNAL CONNECTI ONS POCL CLEAR ALL

To close expired idle connections:

ALTER EXTERNAL CONNECTI ONS POCOL CLEAR OLDEST

58

Management Statements

ALTER SESSION RESET Statement

The statement ALTER SESSI ON RESET is used to attempt a reset of an unused connection in the pool. For
details, see How the Connection Pool Works in the Engine chapter.

Management Statements Pertaining to Time Zone Support

Statement syntax has been added to support management of the timezone features for the current connection.

SET TIME ZONE
Changes the session time zone.

Syntax

SET TIME ZONE { <tinme zone string> | LOCAL }

Examples

set tinme zone '-02:00';
set time zone 'Anerical Sao_Paul o' ;
set tinme zone | ocal;

SET TIME ZONE BIND

Changes the session time zone bind format for compatibility with old clients. The default is configured as NA-
Tl VE, which meansthat TI ME W TH TI ME ZONE and TI MESTAMP W TH Tl ME ZONE expressions are
returned to the client with the new data types.

Old clients may not understand the new data types, so the bind can be configured as LEGACY to make the ap-
propriate conversion and return the expressionsas TI ME W THOUT Tl ME ZONE and TI MESTAMP W THOUT
TI ME ZONE, respectively.

Note

The bind configuration is a so applicable to input parameters.

Syntax

SET TIME ZONE BI ND { NATIVE | LEGACY }

Examples

59

Management Statements

set time zone bind native;
set time zone bind | egacy;

Management Statements Pertaining to Timeouts

The timeout periods for session and statement timeouts can be managed at session level using the management
statements SET SESSI ON | DLE TI MEOUT and SET STATEMENT Tl MEOUT, respectively.

Statements to Set DECFLOAT Properties

Management statements of the form

SET DECFLOAT <property-nanme> [TQ <val ue>

are available for controlling the properties of the DECFLOAT data type for the current session. For details, see
the topic Session Control Operator SET DECFLOAT in the DDL chapter.

60

Chapter 8

Data Definition
Language (DDL)

Quick Links

» Extended Length for Object Names

» Datatype DECFLOAT

» Increased Precision for NUMERIC and DECIMAL Types
» Data Type Extensions for Time Zone Support

» Aliasesfor Binary String Types

» Extensionsto the IDENTITY Type

Extended Length for Object Names

Adriano dos Santos Fernandes
Tracker ticket CORE-749

The maximum length of objects names from this version forward is 63 characters, up from the previous maxi-
mum of 31 bytes.

Multi-byte identifiers can also be long now. For example, the previouslimit allowed only 15 Cyrillic characters;
now, they could be up to 63.

Note
Double quotes are not counted.

Restricting the Length

If, for some reason, you need to restrict the maximum size of object names, either globally or for individual
databases, two new configuration parameters are available in f i r ebi r d. conf and/or dat abases. conf:
see Parameters to Restrict Length of Object Identifiers in the Configuration chapter for further details.

New Data Types

New data types implemented in Firebired 4.0:

61

http://tracker.firebirdsql.org/browse/CORE-749

Data Definition Language (DDL)

Data type DECFLOAT
Alex Peshkov

Tracker ticket CORE-5525

DECFLOAT isan SQL :2016 standard-compliant numeric type that stores floating-point numbers precisely, un-
like FLOAT or DOUBLE PRECISION that provide abinary approximation of the purported precision. Firebird
4 accords with the |EEE 754-1985 standard types DECIMAL 64 and DECIMAL 128 by providing both 16-digit
and 34-digit precision for this type.

All intermediate calculations are performed with 34-digit values.

16-digit and 34-digit

The “16” and “34” refer to the maximum precision in Base-10 digits. See _https://en/wikipedia.org/wi-
ki/iEEE_754#Basic_and_interchange formatsfor a comprehensive table.

Syntax Rules

DECFLOAT(16)
DECFLOAT(34)
DECFLOAT

The default precision is 34 digits, i.e., if DECFLOAT is declared with no parameter, it will be defined as
DECFLOAT(34). Storage complies with |EEE 754, storing data as 64 and 128 bits, respectively.

Examples

DECLARE VARI ABLE VARL DECFLOAT(34);

CREATE TABLE TABLE1l (FI ELD1 DECFLOAT(16));

Aspects of DECFLOAT Usage

Length of Literals

Thelength of DECFLOAT literals cannot exceed 1024 characters. Scientific notation is required for longer val-
ues. For exampl e, 0.0<1020 zer oes>11 cannot be used asaliteral, the equivalent in scientific notation, 1.1E-1022
isvalid. Similarly, 10<1022 zer oes>0 can be presented as 1.0E1024.

Use with Standard Functions

A number of standard scalar functions can be used with expressions and values of the DECFLOAT type. They
are:

62

http://tracker.firebirdsql.org/browse/CORE-5525
https://en/wikipedia.org/wiki/iEEE_754#Basic_and_interchange_formats
https://en/wikipedia.org/wiki/iEEE_754#Basic_and_interchange_formats

Data Definition Language (DDL)

ABS EXP LN LOG10 SIGN
CEILING FLOOR LOG POWER SORT

The aggregate functions SUM, AVG, MAX and MIN work with DECFLOAT data, as do all of the statistics
aggregates (like but not limited to STDDEV or CORR).

Special Functions for DECFLOAT

Firebird supports four functions, designed to support DECFLOAT data specifically:

« COMPARE_DECFLOAT—comparestwo DECFLOAT valuesto be equal, different or unordered

« NORMALIZE DECFLOAT—takesasingle DECFLOAT argument and returnsit in its smplest form

* QUANTIZE— takes two DECFLOAT arguments and returns the first argument scaled using the second
value as a pattern

* TOTALORDER—performs an exact comparison on two DECFLOAT values

Detailed descriptions are in the DML chapter, in the topic Special Functions for DECFLOAT.

Session Control Operator SET DECFLOAT
Firebird supports the session control operator SET DECFLOAT which has three forms, as follows:

» SET DECFLOAT ROUND <mode> controls the rounding mode used in operations with DECFLOAT val-
ues. Valid modes are:

CEILING towards +infinity

UP away from O

HALF_UP to nearest, if equidistant, then up

HALF_EVEN to nearest, if equidistant, ensure last digit in the result
will be even

HALF_DOWN to nearest, if equidistant, then down

DOWN towards 0

FLOOR towards -infinity

REROUND up if digit to be rounded is 0 or 5, down in other cases

The default rounding mode is HAL F- UP.

o SET DECFLOAT TRAPSTO <comma-separated traps|ist which may be empty> controlswhich exceptional
conditions cause atrap. Valid traps are:

Division_hy zero (set by default)
Inexact
Invalid_operation (set by default)
Overflow (set by default)
Underflow

e SET DECFLOAT BIND <bind-type> controls how DECFLOAT values are represented externaly, i.e. in
messages or in the XSQLDA. The range of bindingsis useful if one plans to use DECFLOAT values with
some old client that does not support the native format. One can choose between strings (ideal precision,
but poor support for further processing), floating point values (ideal support for further processing but poor

63

Data Definition Language (DDL)

precision) or scaled integers (good support for further processing and the required precision but having avery
limited range of values). CHAR binding is a satisfactory choice for most general purpose GUI client tools.

Valid binding types are:

NATIVE Use |EEE754 binary representation

CHAR/CHARACTER Use ASCII string

DOUBLE PRECISION Use the same 8-byte floating-point representation asis
used for DOUBLE PRECISION fidlds

BIGINT As BIGINT, with optional comma-separated SCALE

clause, eg., Bl G NT, 3

Further notes

1. A bound ASCII string will be CHAR(23) for DECFLOAT(16) or CHAR(42) for DECFLOAT(34).
The lengths are simple to verify using isgl or some other SQL client tool.

2. Thestring representation depends on the DECFLOAT value: if it isexponential and precision require-
ments make it possible to display avalue without using scientific notation, the fully written out format
isused; it will bein scientific notation otherwise.

3. Any overflow or underflow will be treated appropriately according to the TRAPS setting.

Note

The precision of the DECFLOAT column or domain is stored in the system table RDB$FI ELDS, in RDB
$FI ELD_PRECI SI ON.

DDL Enhancements

Enhancements have been added to the SQL data definition language lexicon in Firebird 4 include a new, high-
precision floating-point data type and more extensions for the IDENTITY type.

New and extended DDL statements supporting the new security features are described in the Security chapter.

Increased Precision for NUMERIC and DECIMAL Types
Alex Peshkov

Fixed decimal types NUMERIC and DECIMAL can now be defined with up to 34 digits precision. Any value
with precision higher than 18 digits will be stored as a 34-digit number.

Syntax rules

NUMERIC (P [, S|)

DECIMAL (P [, S])

where P is precision (P <= 34, previoudly limited to 18 digits) and the optional Sis scale, as previoudly, i.e.,
the number of digits after the decimal separator.

Storage is 128-bit, format according to | EEE 754.

Data Definition Language (DDL)

Examples

1. Declareavariable of 25 digitsto behave like an integer:

DECLARE VARl ABLE VAR1 DECI MAL(25) ;

2. Define acolumn to accommadate up to 34 digits, with 17 decimal places:

CREATE TABLE TABLE1l (FI ELD1 NUMERI C(34, 17));

Note

Numerics with precision less than 19 digits use SMALLINT, INTEGER, BIGINT or DOUBLE PRECISION
as the base datatype, depending on the number of digits and SQL dialect. When precision is between 19 and
34 digits DECFLOAT(34) is used as the base and the actual precision is always extended to the full 34 digits.

For complex calculations, those digits are cast internaly, in a trivial way, to DECFLOAT(34). The result
of various mathematical operations, such as LOG(), EXP() and so on, and aggregate functions using a high
precision numeric argument, will be DECFLOAT(34).

Data Type Extensions for Time Zone Support

The syntax for declaring the datatypes TI MESTAMP and Tl MVE has been extended to include arguments defining
whether the column, domain, parameter or variable should be defined with or without time zone adjustments, i.e.,

TIME[{ WTHOUT | WTH } TIME ZONE]

TIMESTAMP [{ WTHOUT | WTH } TIME ZONE]

| mportant

For a summary of the effects of time zone support on existing data and application code, refer to Changesin
DDL and DML Due to Timezone Support in the Compatibility chapter.

Storage

Dataof typesTI ME/ TI MESTAMP W TH Tl ME ZONE are stored respectively with the same storage as Tl ME/
TI MESTAMP W THOUT TI ME ZONE plus two extra bytes for the time zone identifier or displacement.

» Thetime/timestamp parts, translated from the informed time zone, are stored in UTC.

» Time zone identifiers (from regions) are put directly in the time_zone bytes. They start from 65535, for the
GMT code, decreasing as new time zones are added.

Thetime zoneliterals, together with their time zoneidentifiers, arelisted in the Appendix Time Zone Regions
at the end of these release notes.

65

Data Definition Language (DDL)

e Time zonedisplacements(+/ - HH MM areencodedwith(sign * (HH * 60 + MM) + 1439.

For example, a00: 00 displacementisencodedas(1 * (0 * 60 + 0)) + 1439 = 1439 and-02: 00
as(-1* (2 * 60 + 0)) + 1439 = 1319

The default for both TI ME and TI MESTAMP isW THOUT Tl ME ZONE.

See also Management Statements Pertaining to Time Zone Support in the Management Statements chapter.

Aliases for Binary String Types
Dimitry Sibiryakov

Tracker ticket CORE-5064

Data types named BINARY (n), VARBINARY (n) and BINARY VARY ING(n) have been added to the lexicon
as optional aliases for defining string columnsin CHARACTER SET OCTETS.

BINARY(n) is an alias for CHAR(n) CHARACTER SET OCTETS, while VARBINARY (n) and BINARY
VARYING(n) are aliases for VARCHAR(n) CHARACTER SET OCTETS and for each other.

Extensions to the IDENTITY Type

Adriano dos Santos Fernandes

AnIDENTITY column isonethat is formally associated with an internal sequence generator and has its value
set automatically when omitted from an INSERT statement.

The IDENTITY sub-type was introduced in Firebird 3 and has undergone a number of extensionsin V.4, in-
cluding implementation of DROP IDENTITY, the GENERATED ALWAY S and OVERRIDE directives and
the INCREMENT BY option.

Extended Syntax for Managing IDENTITY Columns

<colum definition> ::=

<nane> <type> GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(<identity columm option>...

<identity columm option> ::=
START WTH <value> | |INCREMENT [BY] <val ue>

<alter colum definition> ::=
<nane> <set identity columm generation clause> [<alter identity colum option>. ..]
<nanme> <alter identity colum option>. .. |
<name> DROP | DENTI TY

<set identity colum generation clause> ::=
SET GENERATED { ALWAYS | BY DEFAULT }

<alter identity colum option> ::=
RESTART [WTH <value>] | SET INCREMENT [BY] <val ue>

Rules and Char acteristics

66

http://tracker.firebirdsql.org/browse/CORE-5064

Data Definition Language (DDL)

» The type of an identity column must be an exact number type with zero scale, comprising SMALLINT,
INTEGER, BIGINT, NUMERIC(s,0) and DECIMAL(s,0).

* ldentity columns cannot have a DEFAULT value or be defined as COMPUTED BY <expr>
» A regular column cannot be altered to be an identity column
 Identity columns cannot be defined or made non-nullable

» The engine does not enforce uniqueness automatically. A unique constraint or index of the required kind
must be defined explicitly.

e AnINCREMENT value cannot be zero

The Firebird 4 Extensions to IDENTITY

The Firebird 3 implementation was minimal, effectively formalizing the traditional way of implementing gen-
erated keysin Firebird, without many options. Firebird 4 puts some meat on those bones.

The GENERATED ALWAYS and BY DEFAULT Directives
Tracker ticket CORE-5463

The earlier implementation behaved like the traditional Firebird setup for generating integer keys automatically
when the column was omitted from theinsert operation'scolumnlist. If thecolumnwasnot listed, theIDENTITY
generator would supply the value.

A GENERATED BY clauseismandatory. The GENERATED BY DEFAULT directive, present in the Firebird
3 syntax, implemented this behaviour formally without the alternative GENERATED ALWAY Soption, :

create table objects (

idinteger generated BY DEFAULT as
identity primary key,

nanme var char (15)

);

insert into objects (nane) values (' Table');
insert into objects (nane) values ('Book');
insert into objects (id, nanme) values (10, 'Conputer');

select * fromobjects order by id;

conm t;

1 Table
2 Book
10 Conputer

The GENERATED ALWAY S directive introduces alternative behaviour that enforces the use of the identity
generator, whether or not the user supplies avalue.

67

http://tracker.firebirdsql.org/browse/CORE-5463

Data Definition Language (DDL)

Overriding the defined behaviour

For one-off casesthis enforcement can be overriddenin DML by including an OVERRIDING SY STEM VAL-
UE clause.

On the other hand, for one-off cases where you want to override the defined action for a column defined with
the GENERATED BY DEFAULT directive to behave as though it were defined as GENERATED ALWAY S
and ignore any DML -supplied value, the clause OVERRIDING USER VALUE isavailable.

For more details, see OVERRIDING Clause for IDENTITY Columnsin the DML chapter.

Changing the Defined Behaviour

The ALTER COLUMN clause of ALTER TABLE now has syntax for changing the default GENERATED
behaviour from BY DEFAULT to ALWAYS, or vice versa:

alter table objects
alter id
SET GENERATED ALWAYS;

DROP IDENTITY Clause
Tracker ticket CORE-5431

For a situation where you want to drop the IDENTITY property from a column but retain the data, the DROP
IDENTITY clauseisavailableto the ALTER TABLE statement:

alter table objects
alter id
DROP | DENTI TY;

INCREMENT BY Option for IDENTITY Columns
Tracker ticket CORE-5430

By default, identity columns start at 1 and increment by 1. The INCREMENT BY option can now be used to
set the increment for some positive step, i.e., 1 or more:

create table objects (
idinteger generated BY DEFAULT as
identity (START W TH 10000 | NCREMENT BY 10)
primary key,
nanme var char (15)

)

Changing the Increment (Step) Value

For changing the step value of the sequence produced by an IDENTITY generator, the SET INCREMENT
clauseisavailablein the latest ALTER TABLE statement syntax:

68

http://tracker.firebirdsql.org/browse/CORE-5431
http://tracker.firebirdsql.org/browse/CORE-5430

Data Definition Language (DDL)

alter table objects
alter id SET | NCREMENT BY 5;

Note

1. Changing the step value does not affect existing data.
2. Itisnot necessary to specify SET INCREMENT BY 1 for a new column, nor for one that has not been

altered previously, as the default step is 1.

Implementation

Two columns have been inserted in RDBSRELATION_FIELDS: RDB$GENERATOR_NAME and RDB
$IDENTITY_TYPE. RDB$GENERATOR_NAME stores the automatically created generator for the column.

In RDB$GENERATORS, the value of RDB$SYSTEM_FLAG of that generator will be 6. RDB
SIDENTITY _TY PE storesthevalue 0 for GENERATED ALWAYS, 1 for GENERATED BY DEFAULT, and

NULL for non-identity columns.

69

Data Manipulation
Language (DML)

In this chapter are the additions and improvements that have been added to the SQL data manipulation language
subset in Firebird 4.0.

Quick Links

» DEFAULT Context Value for Inserting and Updating
* OVERRIDING Clause for IDENTITY Columns

* Framesfor Window Functions

» Named Windows

* More Window Functions

» FILTER Clause for Aggregate Functions

» Optional AUTOCOMMIT for SET TRANSACTION
» Expressions and Built-in Functions

» UDF Changes

» Improved Error Message for an Invalid Write Operation
* Improved Failure Messages for Expression Indexes

* RETURNING * Now Supported

DEFAULT Context Value for Inserting and Updating

Adriano dos Santos Fernandes
Tracker ticket CORE-5449

Support has beenimplemented to enablethe declared default val uefor acolumn or domain to beincluded directly
in INSERT, UPDATE, MERGE and UPDATE OR INSERT statements by use of the keyword DEFAULT in
the column's position. If DEFAULT appears in the position of a column that has no default value defined, the
engine will attempt to write NULL to that column.

The featureis defined in (SQL:2011): 6.5 <contextually typed value specification>.

Simple Examples

insert into sonetable (id, columl)
val ues (DEFAULT, 'nane')

updat e sonet abl e
set columl = "a', colum2 = default

70

http://tracker.firebirdsql.org/browse/CORE-5449

Data Manipulation Language (DML)

Notes

If id is an identity column, the identity value will be generated, even if thereisan UPDATE ... SET command
associated with the column.

If DEFAULT is specified on a computed column, the parser will alow it but it will have no effect.

In columns populated by triggers in the traditional way, the value from DEFAULT enters the NEW context
variable of any BEFORE INSERT or BEFORE UPDATE trigger.

DEFAULT vs DEFAULT VALUES

Since v.2.1, Firebird has supported the DEFAULT VALUES clause. The two clauses are not the same. The
DEFAULT VALUES clauseisan dternativeto the VALUES clause and can be used only when all of the colums
specified in the column list have been defined with default values.

OVERRIDING Clause for IDENTITY Columns

Adriano dos Santos Fernandes
Tracker ticket CORE-5463

Identity columns defined with the BY DEFAULT attibute can be overriden in statements that insert rows (IN-
SERT, UPDATE OR INSERT, MERGE ... WHEN NOT MATCHED) just by specifying the value in the values
list. For identity columns defined withthe GENERATE ALWAY Sattribute, that kind of overrideisnot alowed.

Making the value passed in the INSERT statement for an ALWAY S column acceptable to the engine requires
use of the OVERRIDING clause with the SYSTEM VALUE sub-clause, as illustrated below:

insert into objects (id, name)
OVERRI DI NG SYSTEM VALUE val ues (11, 'Laptop');

OVERRIDING supports another sub-clause, USER VALUE, for usewith BY DEFAULT columnsto direct the
engine to ignore the value passed in INSERT and use the sequence defined for the identity column:

insert into objects (id, nane)
OVERRI DI NG USER VALUE val ues (12, 'Laptop'); ~-- 12 is not used

Extension of SQL Windowing Features
Adriano dos Santos Fernandes

The OVER clause for Window functions in Firebird now supports not just the sub-clauses PARTITION and
ORDER subclauses but aso frames and windows with names that can be re-used in the same query.

Syntax Pattern

The pattern for Firebird 4 windowing syntax is as follows:

71

http://tracker.firebirdsql.org/browse/CORE-5463

Data Manipulation Language (DML)

<wi ndow function> ::=
<wi ndow function name>([<expr> [, <expr> ...]])
OVER {<wi ndow specification> | <existing wi ndow name>}

<wi ndow specification> ::=
([<existing wi ndow nane>] [<wi ndow partition>] [<w ndow order>] [<wi ndow franme>])

<wi ndow partition> ::=
PARTI TI ON BY <expr> [, <expr> ...]

<wi ndow order> ::=

ORDER BY <expr> [<direction>] [<nulls placenent>] [, <expr> [<direction>] [<nulls placenment>]]

<wi ndow frame> ::=
{RANCE | ROWS} <wi ndow franme extent>

<wi ndow frane extent> ::=
{<wi ndow frane start> | <w ndow frane between>}

<wi ndow franme start> ::=
{ UNBOUNDED PRECEDI NG | <expr> PRECEDI NG | CURRENT ROW

<wi ndow franme between> ::=

BETVWEEN { UNBOUNDED PRECEDI NG | <expr> PRECEDI NG | <expr> FOLLOWN NG | CURRENT ROW AND

{ UNBOUNDED FOLLOW NG | <expr> PRECEDI NG | <expr> FOLLON NG | CURRENT ROW

<direction> ::=
{ASC | DESC}

<null's placenment> ::=
NULLS {FI RST | LAST}

<query spec> ::=
SELECT
[<limt clause>]
[<di stinct clause>]
<select list>
<from cl ause>
[<where cl ause>]
[<group cl ause>]
[<havi ng cl ause>]
[<nanmed wi ndows cl ause>]
[<pl an cl ause>]

<nanmed w ndows cl ause> ::=
W NDOW <wi ndow definition> [, <w ndow definition>]

<wi ndow definition> ::=
<new w ndow name> AS <w ndow specification>

Frames for Window Functions

Tracker ticket CORE-3647

A frame can be specified, within which certain window functions are to work.
Syntax Elements for Frames

The following extract from the syntax pattern above explains the elements that affect frames:

72

http://tracker.firebirdsql.org/browse/CORE-3647

Data Manipulation Language (DML)

<wi ndow frame> ::=
{RANCE | ROWS} <wi ndow franme extent>

<wi ndow frane extent> ::=
{<wi ndow frane start> | <w ndow frane between>}

<wi ndow frame start> ::=
{ UNBOUNDED PRECEDI NG | <expr> PRECEDI NG | CURRENT ROW

<wi ndow franme between> ::=
BETVWEEN { UNBOUNDED PRECEDI NG | <expr> PRECEDI NG | <expr> FOLLOW NG | CURRENT ROW AND
{ UNBOUNDED FOLLOWN NG | <expr> PRECEDI NG | <expr> FOLLON NG | CURRENT ROW

The frame comprises three pieces: unit, start bound and end bound. The unit can be RANGE or ROWS and
defines how the bounds will work. The bounds are:

<expr> PRECEDING
<expr> FOLLOWING
CURRENT ROW

» With RANGE, the ORDER BY should specify only one expression, and that expression should be of a nu-
meric, date, time or timestamp type. For <expr> PRECEDING and <expr> FOLLOWING bounds, <expr>is
subtracted from the order expression in the case of PRECEDING and added to it in the case of FOLLOWING.
For CURRENT ROW, the order expression is used as-is.

All rowsinside the partition that are between the bounds are considered part of the resulting window frame.

» With ROWS, order expressions are not limited by number or type. For this unit, <expr> PRECEDING,
<expr> FOLLOWING and CURRENT ROW relate to the row position under the partition, and not to the
values of the ordering keys.

UNBOUNDED PRECEDING and UNBOUNDED FOLLOWING work identically with RANGE and ROWS.
UNBOUNDED PRECEDING looks for the first rov and UNBOUNDED FOLLOWING the last one, always
inside the partition.

The frame syntax with <window frame start> specifies the start frame, with the end frame being CURRENT
ROW.

Some window functions discard frames:

* ROW_NUMBER, LAG and LEAD awayswork as ROWS BETWEEN UNBOUNDED PRECEDING AND
CURRENT ROW

 DENSE_RANK, RANK, PERCENT_RANK and CUME_DIST aways work as RANGE BETWEEN UN-
BOUNDED PRECEDING AND CURRENT ROW.

* FIRST_VALUE, LAST _VALUE and NTH_VALUE respect frames, but the RANGE unit behaviour isiden-
tical to ROWS.

Navigational Functions with Frames

Navigational functions, implemented in Firebird 3, get the simple (non-aggregated) val ue of an expression from
another row that is within the same partition. They can operate on frames. These are the syntax patterns:

<navi gati onal wi ndow function> ::=

73

Data Manipulation Language (DML)

FI RST_VALUE(<expr>) |
LAST_VALUE(<expr>) |
NTH_VALUE(<expr >,
LAG(<expr> [[,
LEAD(<expr> [[,

<of f set >)
<of fset> |
<of fset> [,

[FROM FI RST | FROM LAST]
<default>1 1)
<default>1]])

The default frame is RANGE BETVEEN UNBOUNDED PRECEDI NG AND CURRENT ROWwhich might
produce strange results when a frame with these propertiesis operated on by FI RST_VALUE, NTH_VALUE or,

particularly, LAST VALUE.

Example Using Frames

When the ORDER BY window clause is used but a frame clause is omitted, the default frame just described
causes the query below to produce weird behaviour for the sum sal ar y column. It sums from the partition
start to the current key, instead of summing the whole partition.

sel ect
id,
sal ary,

sun{sal ary) over (order by salary) sumsalary

from enpl oyee
order by sal ary;

Result:

| id | salary | sumsalary
R EEEEEE R
| 3| 8.00 | 8. 00
| 4] 9.00 | 17.00
| 1] 10.00 | 37.00
| 5] 10.00 | 37.00
| 2| 12.00 | 49. 00

A frame can be set explicitly to sum the whole partition, as follows:

sel ect
id,
sal ary,
sum(sal ary) over (
order by salary

RONS BETVEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOW NG
) sum sal ary

from enpl oyee
order by sal ary;

Result:

| id | salary | sumsalary
EEEIRREEE e
| 3] 8.00 | 49. 00
| 4] 9.00 | 49. 00
| 1| 10.00 | 49. 00
| 5] 10.00 | 49. 00
| 2| 12.00 | 49. 00

This query “fixes’ the weird nature of the default frame clause, producing a result similar to a smple OVER

() clause without ORDER BY.

74

Data Manipulation Language (DML)

We can use a range frame to compute the count of employees with salaries between (an employee's salary - 1)
and (his salary + 1) with this query:

sel ect
id,
sal ary,
count (*) over (
order by salary
RANGE BETWEEN 1 PRECEDI NG AND 1 FOLLOW NG
) range_count
from enpl oyee
order by sal ary;

Result:

id | salary | range_count |

NOFRB~W

I I 2 |
I I 4|
| 10.00 | 3|
I I 3|
I I 1]

Named Windows
Tracker ticket CORE-5346

In a query with the WINDOW clause, a window can be explicitly named to avoid repetitive or confusing ex-
pressions.

A named window can be used

1. inthe OVER édement to reference awindow definition, e.g. OVER <window-name>

2. asabase window of another named or inline (OVER) window, if it is not awindow with aframe (ROWS
or RANGE clauses).

Note
a window with a base window cannot have PARTITION BY, nor override the ordering (ORDER BY
sequence) of a base window.

In a query with multiple SELECT and WINDOW clauses (for example, with subqueries), the scope of the
window name is confined to its query context. That means a window name from an inner context cannot be
used in an outer context, nor vice versa. However, the same window name definition can be used independently
in different contexts.

Example Using Named Windows

sel ect
id,
depart nent,
sal ary
count (*) over wi,
first_val ue(sal ary) over w2,

75

http://tracker.firebirdsql.org/browse/CORE-5346

Data Manipulation Language (DML)

| ast _val ue(sal ary) over w2
from enpl oyee
wi ndow wl as (partition by departnent),
w2 as (wl order by salary)
order by departnent, salary;

More Window Functions

Adriano dos Santos Fernandes
Hajime Nakagami

Tracker ticket CORE-1688

More ANSI SQL:2003 window functions—the ranking functions PERCENT_RANK, CUME _DIST and
NTILE.

Ranking Functions

<ranki ng wi ndow function> ::=
DENSE_RANK() |
RANK() |
PERCENT_RANK() |
CUME_DI ST() |
NTI LE(<expr>) |
ROW NUMBER()

Ranking functions compute the ordinal rank of a row within the window partition. The basic functions in this
category, present since Firebird 3, are DENSE_RANK, RANK and ROW_NUMBER. These function enable
creation of various types of incremental counters to generate sets in ways that are analogous with operations
such as SUM(1) OVER (ORDER BY SALARY).

The new functions implemented in Firebird 4 are;

 PERCENT_RANK isaratio of RANK to group count.

» CUME_DIST isthe cumulative distribution of avaluein agroup.

» NTILE takes an argument and distributes the rows into the specified number of groups. The argument is
restricted to integral positive literal, variable (:var) and DSQL parameter (?).

Simple Example

The following example illustrates the behaviour of ranking functions. SUM isincluded for comparison.

sel ect

id,
sal ary,
dense_rank() over (order by salary),
rank() over (order by salary),
percent _rank() over (order by salary),
cune_di st() over (order by salary),
ntile(3) over (order by salary),
row_nunber () over (order by salary),
sun(1) over (order by salary)

from enpl oyee

order by sal ary;

76

http://tracker.firebirdsql.org/browse/CORE-1688

Data Manipulation Language (DML)

The result set looks something like the following, although trailing zeroes have been truncated here in order to

fit the lines to the document page:

i sal ary dense_rank r ank percent _rank cune_di st ntile row_numrber sum
3 8.00 1 1 0. 0000000 0.20000000 1 1 1
4 9.00 2 2 0. 2500000 0.40000000 1 2 2
1 10. 00 3 3 0. 5000000 0.80000000 2 3 4
5 10. 00 3 3 0. 5000000 0.80000000 2 4 4
2 12.00 4 5 1. 0000000 1.00000000 3 5 5

FILTER Clause for Aggregate Functions

Adriano dos Santos Fernandes
Tracker ticket CORE-5768

The FILTER clause extends aggregate functions (sum, avg, count, etc.) by an additional WHERE clause. The
set returned is the aggregate of the rows that satisfy the conditions of both the main WHERE clause and those
inside the FILTER clause(s).

It can be thought of as a shortcut for situations where one would use an aggregate function with some condition
(decode, casg, iif) to ignore some of the values that would be considered by the aggregation.

The clause can be used with any aggregate functions in aggregate or windowed (OVER) statements, but not
with window-only functions like DENSE_RANK.

Example

Suppose you have a query where you want to count the number of status = 'A' and the number of status = 'E'
as different columns. The old way to do it would be:

sel ect count(decode(status, "A,
count (decode(status, 'E,
from dat a;

1)) status_a,
1)) status_e

The FILTER clause lets you express those conditions more compactly:

select count(*) filter (where status
count(*) filter (where status
from dat a;

"A') status_a,
'"E') status_e

Tip

Y ou can use more than one FILTER modifier in an aggregate query. Y ou could, for example, use 12 filterson
totals aggregating sales for a year to produce monthly figures for a pivot set

Syntax for FILTER Clauses

aggregate_function [FILTER (WHERE <condition>)] [OVER (<w ndow>)]

77

http://tracker.firebirdsql.org/browse/CORE-5768

Data Manipulation Language (DML)

Optional AUTOCOMMIT for SET TRANSACTION

Dmitry Y emanov
Tracker ticket CORE-5119
Autocommit mode is now supported in the SET TRANSACTION statement syntax.

Example

SET TRANSACTI ON SNAPSHOT NO WAI T AUTO COW T;

Expressions and Built-in Functions

Additions and changes to the sets of built-in functions and expressionsin Firebird 4.

New Functions and Expressions

Built-in functions and expressions added in Firebird 4.0.

Functions & Expressions for Timezone Operations
Adriano dos Santos Fernandes

Expressions and built-in functions for timezone operations.

AT Expression

Tranglates a time/timestamp value to its corresponding value in another time zone. If LOCAL is used, the value
is converted to the session time zone.

Syntax

<at expr> ::= <expr> AT { TIME ZONE <time zone string> | LOCAL }

Examples

select tinme '12:00 GVI' at tinme zone '-03'" from rdb$dat abase;
select current_tinmestanp at tine zone ' Anerical/ Sao_Paul o' from rdb$dat abase;
select timestanp '2018-01-01 12: 00 GMI' at | ocal from rdb$dat abase;

LOCALTIME Expression

Returnsthe current timeasa Tl ME W THOUT Tl ME ZONE, i.e., in the session time zone.

78

http://tracker.firebirdsql.org/browse/CORE-5119

Data Manipulation Language (DML)

Example

sel ect localtine fromrdb$dat abase;

LOCALTIMESTAMP Expression

Returns the current timestamp asa TI MESTAMP W THOUT Tl ME ZONE, i.e., in the session time zone.

Example

sel ect localtinmestanp fromrdb$dat abase;

Two New Date/Time Functions
Adriano dos Santos Fernandes

FIRST_DAY
Returns a date or timestamp (as appropriate) with the first day of the year | month | week of a given date
or timestamp value.

Format:

FIRST_DAY(OF { YEAR | MONTH | WEEK } FROM <date_or _ti mestamp>)
1. Thefirst day of the week is considered as Sunday, following the same rules as for EXTRACT with
WEEKDAY
2. When atimestamp is passed the return value preserves the time part

Examples

sel ect first_day(of nonth fromcurrent_date) fromrdb$database;
sel ect first_day(of year fromcurrent_timestanp) from rdb$dat abase;
sel ect first_day(of week fromdate '2017-11-01') from rdb$dat abase;

LAST DAY
Returns a date or timestamp (as appropriate) with the last day of the year | month | week of a given date
or timestamp value.

Format:
LAST_DAY(OF { YEAR | MONTH | WEEK } FROM <date_or_ti nestanp>)

1. Thelastt day of the week is considered as Saturday, following the same rules as for EXTRACT with
WEEKDAY

2. When atimestamp is passed the return val ue preserves the time part
Examples

79

Data Manipulation Language (DML)

sel ect last_day(of nmonth fromcurrent_date) from rdb$dat abase;
sel ect |ast_day(of year fromcurrent _tinestanp) from rdb$dat abase;
sel ect |ast_day(of week fromdate '2017-11-01') from rdb$dat abase;

Security Functions

Two new built-in functions were added to support the new security features. They are not described here—the
descriptions are located in the Security chapter. They are:

 RDB$SYSTEM_PRIVILEGE

« RDB$ROLE_IN_USE

A number of cryptographic functions was added, viz.,
« ENCRYPT() and DECRY PT()

« RSA_PRIVATE()

« RSA_PUBLIC()

« RSA_ENCRYPT()

« RSA_DECRYPT()

* RSA_SIGN()

« RSA_VERIFY()

Also, three related non-cryptographic functions:

« BASE64 ENCODE() and BASE64 DECODE

. CRC32()

Special Functions for DECFLOAT

Firebird supports four functions, designed to support DECFLOAT data specifically:

» COMPARE_DECFLOAT—comparestwo DECFLOAT valuesto be equal, different or unordered. Returns
aSMALLINT vaue, one of:

Vaues are equal

First valueis less than second

First value is greater than second

Wi NN| | O

Values are unordered, i.e., one or both is NAN / SNAN

80

Data Manipulation Language (DML)

Unlike the comparison operators ('<', '=', '>', etc.) comparison is exact: COVPARE_DECFLOAT(2. 17,
2. 170) returns 2, not 0.

* NORMALIZE _DECFLOAT—takesasingle DECFLOAT argument and returnsit in its simplest form. That
means that for any non-zero value, trailing zeros are removed with appropriate correction of the exponent.

For example, NORMALI ZE_DECFLQOAT(12. 00) returns 12 and NORMALI ZE_DECFLOAT(120) returns
1.2E+2.

* QUANTIZE— takestwo DECFLOAT arguments. The returned value is the first argument scaled using the
second value as a pattern.

For example, QUANTI ZE(1234, 9. 999) returns 1234.000.

Thereareamost no retrictions on the pattern. However, in almost all usages, SNaN will produce an exception,
NULL will make the function return NULL, and so on.

SQL> select v, pic, quantize(v, pic) from exanples;

\Y Pl C QUANTI ZE
3.16 0.001 3.160
3.16 0.01 3.16
3.16 0.1 3.2
3.16 1 3
3.16 1E+1 OE+1

0.11 0

0 1E+5 0OE+5
316 0.1 316.0
316 1 316
316 1E+1 3. 2E+2
316 1E+2 3E+2

Note

1. If scaling like the example produces aresult that would exceed the precision, the error “ Decimal float
invalid operation” is returned.

2. A known bug (CORE-5697), can sometimes cause the use of literalsin QUANTIZE to produce strange
results. A workaround in Beta 1 isto useastring literal, i.e., enclose the DECFLOAT number in single
quotes.

» TOTALORDER—comparestwo DECFLOAT valuesincluding any specia value. The comparison is exact.
Returnsa SMALLINT value, one of:

-1 First value is less than second
0 Vaues are equal
1 First value is greater than second

For TOTALORDER comparisons, DECFLOAT values are ordered as follows:

81

http://tracker.firebirdsql.org/browse/CORE-5697

Data Manipulation Language (DML)

-nan < -snan < -inf <-0.1<-0.10<-0<0<0.10< 0.1 <inf < snan < nan

Function RDB$SGET_TRANSACTION_CN
Supporting Snapshots Based on Commit Order
Vlad Khorsun

See Tracker ticket CORE-5921. For the background, see Commit Order for Capturing the Database Snapshot
in the Engine chapter.

Returns the commit number (“ CN")of the supplied transaction. Result typeis BIGINT.

Format

RDB$GET_TRANSACTI ON_CN(<t ransacti on nunber>)
If the value returned is greater than 1, it will be the actual CN of the transaction if it was committed after the
database was started.
The function could return one of the following results instead, indicating the commit status of the transaction:
e -2—Transaction isdead (rolled back)
e -1—Transactionisinlimbo
* O—Transactionis still active

* 1 —Transaction committed before the database started or less than the Oldest Interesting Transaction for
the database

* NULL—Transaction number supplied isNULL or greater than Next Transaction for the database

Note about the numerics

Internally, the engine uses unsigned 8-byte integer for commit numbers and unsigned 6-byte inte-
ger for transaction numbers. Thus, athough the SQL language has no unsigned integers and RDB
$GET_TRANSACTION_CN returns asigned BIGINT, a negative commit number will never be returned ex-
cept for the special values returned for uncommitted transactions.

Examples

sel ect rdb$get _transacti on_cn(current_transacti on) from rdb$dat abase;
sel ect rdb$get _transacti on_cn(123) from rdb$dat abase;

Cryptographic Functions
Alex Peshkov

Eight new functions are introduced supporting cryptographic operations. Follow the linksto the Security chapter
for syntax and usage details.

82

http://tracker.firebirdsql.org/browse/CORE-5921

Data Manipulation Language (DML)

ENCRYPT() and DECRYPT()
For encrypting/decrypting data using a symmetric cipher.

RSA_PRIVATE()
Returns an RSA private key of specified length (in bytes) in PKCS#1 format asaVARBINARY string.

RSA_PUBLIC()
Returns the RSA public key for a specified RSA private key. Both keys are in PK CS#1 format.

RSA_ENCRYPT()
Pads data using OAEP padding and encrypts it using an RSA public key. Normally used to encrypt short
symmetric keys which are then used in block ciphers to encrypt a message.

RSA_DECRYPTY()
Decrypts using the RSA private key and OAEP de-pads the resulting data.

RSA_SIGN()
Performs PSS encoding of message digest to be signed and signs using the RSA private key.

RSA VERIFY()
Performs PSS encoding of message digest to be signed and verifiesitsdigital signature using the RSA public

key.

Changes to Built-in Functions and Expressions

Functions changed or extended in this release:

Changes Arising from Timezone Support

EXTRACT Expressions
Two new arguments have been added to the EXTRACT expression:
* Tl MEZONE_HOUR: extracts the time zone hours displacement

* TI MEZONE_M NUTE: extracts the time zone minutes displacement

Examples

sel ect extract(timezone_hour fromcurrent_tine) fromrdb$dat abase;
sel ect extract(tinmezone_mnute fromcurrent _tinmestanp) from rdb$dat abase;

Changes in CURRENT_TIME and CURRENT_TIMESTAMP

Inversion 4.0, CURRENT _TI ME and CURRENT _TI MESTAMP are changed: they now return TI ME W TH TI ME
ZONE and TI MESTAMP W TH TI ME ZONE, with the time zone set by the session time zone. In previous
versions, CURRENT _TI ME and CURRENT _TI MESTAMP returned the respective types according to the system
clock, i.e., without any time zone.

83

Data Manipulation Language (DML)

Toeasethetransition, LOCALTI ME and LOCALTI MESTAMP were added at v3.0.4, allowing devel opersto adjust
application code without any functional changes, before migrating to Firebird 4.

I mportant

See also Changesin DDL and DML Due to Timezone Support in the Compatibility chapter.

HASH()
Adriano dos Santos Fernandes

Tracker ticket CORE-4436

Returns a hash for a string using a specified algorithm. Format is:

HASH(<string> [USING <algorithm])

algorithm::={ MD5 | SHAl | SHA256 | SHA512 }

The syntax with the optional USING clause isintroduced in FB 4.0 and returns VARCHAR strings in character
set OCTETS.

Important

The syntax without the USING clause is still supported. It uses the 64-bit variation of the non-cryptographic
PJW hash function (also known as ELF64):

https.//en.wikipedia.org/wiki/PJW_hash_function

whichisvery fast and can be used for general purposes (hash tables, etc), but its collision quality is sub-optimal .
Other hash functions (specified explicitly in the USING clause) should be used for more reliable hashing.

Examples

sel ect hash(x using sha256) fromy;

sel ect hash(x) fromy; -- not recomended

SUBSTRING()

A SUBSTRING start position smaller than 1 is now alowed. It has some properties that need to be taken into
consideration for predicting the end of the string value returned.

Examples

sel ect substring('abcdef' from Q) fromrdb$database

Expected result: ‘abcdef’

http://tracker.firebirdsql.org/browse/CORE-4436
https://en.wikipedia.org/wiki/PJW_hash_function

Data Manipulation Language (DML)

sel ect substring('abcdef' fromO for 2) fromrdb$dat abase

Expected result: 'a’ (and NOT 'ab’, because there is “nothing” at position 0)

sel ect substring('abcdef' from-5 for 2) from rdb$dat abase
Expected result: "

Those last two examples might not be what you expect. Thef or <l engt h> is considered from the specified
from <st art > position, not the start of the string, so the string returned could be shorter than the specified
<length>, or even empty.

UDF Changes

Many of the UDFsin previous versions became built-in functions. The UDF feature itself is heavily deprecated
in Firebird 4—see External Functions (UDFs) Feature Deprecated in the Engine chapter. Most of the remaining
UDFsinthei b_udf andf budf libraries now have analogs, either as UDRs in the new library udf _conpat
or as precompiled PSQL functions.

A script in the / m sc/ upgr ade/ 4. 0/ sub-directory of your installation provides an easy way to upgrade
existing UDF declarationsto the safe form that is avail able for each respective UDF. For detail sand instructions,
see Deprecation of External Functions (UDFs) in the Compatibility chapter.

New UDR GetExactTimestampUTC

The new UDR Get Exact Ti nest anpUTC, inthe udf _conpat library, takes no input argument and returns
the TIMESTAMP WITH TIME ZONE value at the moment the function is called.

The older function, Get Exact Ti nest anp has been refactored as a stored function, returning, as before, the
TIMESTAMP WITHOUT TIME ZONE value at the moment the function is called.

Miscellaneous DML Improvements

Improvements to behaviour and performance in DML include:

Improve Error Message for an Invalid Write Operation
Adriano dos Santos Fernandes

See Tracker ticket CORE-5874.

When aread-only column isincorrectly targeted in an UPDATE ... SET xXxXx operation, the error message
now provides the name of the affected column.

Improved Failure Messages for Expression Indexes
Adriano dos Santos Fernandes

85

http://tracker.firebirdsql.org/browse/CORE-5874

Data Manipulation Language (DML)

Tracker ticket CORE-5606

If computation of an expression index fails, the exception message will now include the name of the index.

RETURNING * Now Supported

Adriano dos Santos Fernandes
Tracker ticket CORE-3808

The engine now supports RETURNI NG * syntax, and variants, to return a complete set of field values after
committing a row that has been inserted, updated or deleted. The syntax and semantics of RETURNI NG * are
similar to SELECT *.

Examples

I NSERT INTO T1 (F1, F2) VALUES (:F1, :F2) RETURNI NG *
DELETE FROM T1 WHERE F1 = 1 RETURNI NG *

UPDATE T1 SET F2 = F2 * 10 RETURNING OLD. *, NEW *

86

http://tracker.firebirdsql.org/browse/CORE-5606
http://tracker.firebirdsql.org/browse/CORE-3803

Chapter 10

Procedural SQL (PSQL)

Recursion is now supported in sub-routines. A few improvements have been implemented to help in logging
exceptions from the various error contexts supported in PSQL.

Recursion for subroutines
Adriano dos Santos Fernandes

Tracker ticket CORE-5380
Starting in FB 4, subroutines may be recursive or call other subroutines.
Examples

A couple of recursive sub-functionsin EXECUTE BLOCK:

execute block returns (i integer, o integer)

as
-- Recursive function w thout forward decl arati on.
decl are function fibonacci(n integer) returns integer
as
begin
if (n=0o0r n=1) then
return n;
el se
return fibonacci(n - 1) + fibonacci(n - 2);
end
begin
i = 0;
while (i < 10)
do
begin
o = fibonacci (i);
suspend;
i =i + 1;
end
end

-- Wth forward decl aration and paraneter with default val ues

execute block returns (o integer)
as
-- Forward declaration of P1
decl are procedure pl(i integer = 1) returns (o integer);

-- Forward declaration of P2.
decl are procedure p2(i integer) returns (o integer);

87

http://tracker.firebirdsql.org/browse/CORE-5380

Procedural SQL (PSQL)

-- Implementation of Pl should not re-declare paraneter default val ue.
decl are procedure pl(i integer) returns (o integer)
as
begi n
execute procedure p2(i) returning_val ues o;
end

decl are procedure p2(i integer) returns (o integer)
as
begi n
0 =1i,;
end
begi n
execute procedure pl returning_val ues o;
suspend;
end

A Helper for Logging Context Errors

A new system function enables the modul e to pass explicit context information from the error block to alogging
routine.

System Function RDB$SERROR()

Dmitry Y emanov

Tracker tickets CORE-2040 and CORE-1132

The function RDB$ERROR() takes a PSQL error context asinput and returns the specific context of the active
exception. Its scope is confined to the context of the exception-handling block in PSQL. Outside the exception
handling block, RDB$ERROR aways returns NULL.

The type of the return value depends on the context.

Syntax Rules

RDB$ERROR (context)

context ::= { GDSCODE | SQLCODE | SQLSTATE | EXCEPTI ON | MESSAGE }
Contexts
GDSCODE INTEGER Context variable: refer to doc-
umentation
SQLCODE INTEGER Context variable: refer to doc-
umentation
SQLSTATE CHAR(5) CHARACTER | Context variable: refer to doc-
SET ASCII umentation

88

http://tracker.firebirdsql.org/browse/CORE-2040
http://tracker.firebirdsql.org/browse/CORE-1132

Procedural SQL (PSQL)

EXCEPTION VARCHAR(63) CHAR-

ACTER SET UTF8

Returns name of the active us-
er-defined exception or NULL
if the active exceptionisa sys-
tem one

MESSAGE VARCHAR(1024)

CHARACTER SET UTF8

Returns interpreted text for the
active exception

Note

For descriptions of the context variables GDSCODE, SQL CODE and SQLSTATE, refer to the Context Vari-

ables topic in the Firebird 2.5 Language Reference.

Example

BEG

N

WHEN ANY DO
EXECUTE PROCEDURE P_LOG EXCEPTI ON(RDB$SERROR(MESSAGE)) ;

END

Allow Management Statements in PSQL Blocks

Adriano dos Santos Fernandes

See Tracker ticket CORE-5887.

In prior Firebird versions, management statements were not alowed inside PSQL blocks. They were allowed
only as top-level SQL statements, or as the top-level statement of an EXECUTE STATEMENT embedded in

aPSQL block.

Now they can be used directly in PSQL blocks (triggers, procedures, EXECUTE BLOCK), which is especialy
helpful for applications that need some management statements to beissued at the start of a session, specifically

in ON CONNECT triggers.

The management statements permitted for this usage are:

ALTER SESSI ON RESET

SET
SET
SET
SET
SET
SET
SET
SET
SET

Example

DECFLOAT ROUND
DECFLOAT TRAPS TO
DECFLOAT BI ND

ROLE

SESSI ON | DLE TI MEQUT
STATEMENT Tl MEQUT

TI ME ZONE

TI ME ZONE Bl ND
TRUSTED ROLE

89

https://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25-functions-contextvars.html
https://firebirdsql.org/file/documentation/reference_manuals/fblangref25-en/html/fblangref25-functions-contextvars.html
http://tracker.firebirdsql.org/browse/CORE-5887

Procedural SQL (PSQL)

create or alter trigger on_connect on connect
as
begi n
set decfl oat bind doubl e precision;
set time zone ' Anerical/ Sao_Paul o' ;
end

90

Monitoring &
Command-line Utilities

Improvements and additions to the Firebird utilities continue.

Monitoring

Additionsto MONSATTACHMENTS and MON$STATEMENTS to report on timeouts and wire status. Refer
to Timeouts at Two levelsin the chapter “ Changes in the Firebird Engine” for details.

New columnsin the tables;

* INMONS$ATTACHMENTS:

MONS$IDLE_TIMEOUT Connection level idle timeout

MONSIDLE _TIMER Idle timer expiration time
MONSSTATEMENT_TIMEOUT Connection level statement timeout
MONS$WIRE_COMPRESSED Wire compression enabled = 1, disabled = 0
MONS$WIRE_ENCRYPTED Wire encryption enabled = 1, disabled = 0

* INMONS$STATEMENTS:

MONSSTATEMENT_TIMEOUT Connection level statement timeout
MONSSTATEMENT_TIMER Timeout timer expiration time

nBackup: UUID-based Backup and In-Place Merge

Roman Simakov
Vlad Khorsun

Tracker ticket CORE-2216

The nBackup utility in Firebird 4 can perform aphysical backup that uses the GUID (UUID) of the most recent
backup of aread-only standby database to establish the backup target file. Incrementsfrom the <source database>
can be applied continuously to the standby database, €liminating the need to keep and apply all increments since
the last full backup.

The new style of “warm” backup and merge to a standby database can be run without affecting an existing
multilevel backup scheme on the live database.

91

http://tracker.firebirdsql.org/browse/CORE-2216

Monitoring & Command-line Utilities

Making Backups

The syntax pattern for this form of backup with nBackup is as follows:

nbackup -B[ACKUP] <level > | <GJ D> <source database> [<backup fil e>]

Merging-in-Place from the Backup

The syntax pattern for an in-place “restore” to merge the incremental backup file with the standby database is:

nbackup -1[NPLACE] - R ESTORE] <standby dat abase> <backup fil e>

Note
“Restore” here means merging the increment from the backup file with the standby database.

Switch names may change before the final release.

Example of an On-line Backup and Restore

1. Usegdtat to get the UUID of the standby database:
gstat -h <standby dat abase>

Vari abl e header dat a:
Dat abase backup GUI D. {8C519E3A- FC64- 4414- 72A8- 1B456C91D82C}

2. Usethe backup UUID to produce an incremental backup:

nbackup -B {8C519E3A- FC64-4414- 72A8- 1B456C91D82C} <source dat abase> <backup fil e>

3. Apply increment to the standby database:

nbackup -1 -R <standby dat abase> <backup file>

isql: Support for Statement Timeouts

A new command has been introduced in isgl to enable an execution timeout in milliseconds to be set for the
next statement. The syntax is.

SET LOCAL_TI MEQUT <i nt >

92

Monitoring & Command-line Utilities

After statement execution, the timer is automatically reset to zero.

gbak
Alex Peshkov

Backup and Restore with Encryption
Tracker ticket CORE-5808

With an encrypted database, sooner or later it will need to be backed up and restored. It is not unreasonable
to want the database backup to be encrypted as well. If the encryption key is delivered to the plug-in by some
means that does not require input from the client application, it is not a big problem. However, if the server
expects the key to be delivered from the client side, that could become a problem.

The introduction of keysto gbak in Firebird 4 provides a solution.

Prerequisites

A keyholder plug-in is required, that is able to load keys from some external source, such as a configuration
file, and deliver them using the call

| Crypt KeyCal | back* | KeyHol der Pl ugi n: : chai nHandl e(1 St at us* st at us)

That key holder and the dbcrypt plug-ins that work with it should be installed on the workstation that will be
used to perform backups.

New Switches for Encrypted Backups & Restores
With the prerequisitesin place, the following new switches are available for use. They are case-insensitive.

Table 11.1. Switchesfor Encrypted Backups/Restor es

Switch What it Does
-KEYHOLDER Thisisthe main switch necessary for gbak to access an encrypted database.
-KEYNAME Available to name the key explicitly, in place of the default key specified in the

original database (when backing up) or in the backup file (when restoring).

-CRYPT Available to name the plug-in to use to encrypt the backup file or restored
database in place of the default plug-in. It can also be used in combination with
the -KEY NAME switch to encrypt the backup of a non-encrypted database or to
encrypt a database restored from a non-encrypted backup. See example below.

-ZIP Only for a backup, to compress the backup file before encrypting it. The switch
is necessary because the usual approach of compressing the backup file with
some favoured compression routine after gbak, perhaps using pipe, does not
work with encrypted backups because they are not compressible. The -ZIP
switch is unnecessary for arestore because the format is detected automatically.

93

http://tracker.firebirdsql.org/browse/CORE-5808

Monitoring & Command-line Utilities

Usage and Examples

To back up an encrypted database do something like this:

gbak -b -keyhol der MyKeyHol der Pl ugi n host: dbnanme backup_fil e_nane

The backup file will be encrypted using the same crypt plug-in and key that are used for database encryption.
Thisensures that it will not be any easier to steal datafrom your backup file than from the database.

To restore a database that was previously backed up encrypted:

gbak -c -keyhol der MyKeyHol der Pl ugi n backup_fil e_nane host: dbname

The restored database will be encrypted using the same plug-in and key as the backup file. Using the backup
example above, of course this means the same plug-in and key as the original database.

Note

Thedatabaseisfirst encrypted right after creation and only after the encryption dataare restored into the header.
Thisisabit faster than a“restore-then-encrypt” approach but, mainly, it isto avoid having non-encrypted data
on the server during the restore process.

The next example will either

* restore the database from abackup file made using non-default Crypt and Keyholder plug-ins, using the same
Keyname as was used for the backup; OR
* restore anon-encrypted backup as an encrypted database

gbak -c -keyhol der MyKeyHol der Pl ugi n -crypt MyDbCrypt Pl ugi n
-keynane SoneKey non_encrypted_backup_fil e host:dbnane

The restored database will encrypted by MyDbCryptPlugin using SomeKey.

To make an encrypted backup of a non-encrypted database:

gbak -b -keyhol der MyKeyHol der Pl ugi n -crypt MyDbCrypt Pl ugi n
- keynane SoneKey host:dbname encrypted_backup_file

Take note:

Attempts to create a hon-encrypted backup of an encrypted database or to restore an encrypted backup to a
non-encrypted database will fail. Such operations are intentionally disallowed to avoid foolish operator errors
that would expose critcal datain non-encrypted form.

To create a compressed, encrypted backup:

gbak -b -keyhol der MyKeyHol der Pl ugi n -zi p host:dbnanme backup_file_nane

94

Monitoring & Command-line Utilities

The backup file will be compressed after it is encrypted, using the same crypt plug-in and same key that are
used for the database encryption. ZLib is used to compress the backup file content and the appropriate record
is added to its header.

Compressing Non-Encrypted Databases

The -ZIP switch is also available for compressing a non-encrypted database. It is important to understand that
the format of a backup file thus created is not the same as one created by compressing a backup file with a
utility such as 7Zip. It can be decompressed only by a gbak restore.

Note

At this point (Beta 1), this feature is not supported in the Services API.

Enhanced Restore Performance
Tracker ticket CORE-5952

The new Batch API is used to enhance the performance of restoring from backup.

Friendlier “-fix_fss *’ Messages
Tracker ticket CORE-5741

The messagesin the verbose output from arestore using the“-fix_fss *" switches now usetheword “adjusting”
instead of “fixing”.

The same change was backported to V. 3.0.5.

gfix
The dfix repertoire now includesthe new - r epl i ca switch for configuring and managing Firebird replication.
For more detail, see the topic Creating a Replica Database. It takes one of three arguments (case-insensitive):
» read-only Setsthe database copy as aread-only replica, usualy for a high-availability solution.

» read-write Sets the database copy as aread-write replica, for asynchronous replication.

» none Converts the replica to a regular database, “switching off” replication to a read-write replica when
conditionscall for replication flow to be discontinued for somereason. Typically, it would be used to promote
the replicato become the master database after afailure; or to make physical backup copiesfrom thereplica

95

http://tracker.firebirdsql.org/browse/CORE-5952
http://tracker.firebirdsql.org/browse/CORE-5741

Chapter 12

Compatibility Issues

In this section are features and modifications that might affect the way you have installed and used Firebird
in earlier releases.

SQL

Changes that may affect existing SQL code:

Deprecation of External Functions (UDFs)

Support for the external function (UDF) feature is deprecated in Firebird 4. Itsimmediate effect, out of the box,
isthat UDFs cannot be used with the default configuration, where the parameter Udf Access infi rebi rd.
conf isset to NONE) and the UDF librariesi b_udf and f budf are withdrawn from the distribution.

Most of the functionsin those libraries were already deprecated in previous Firebird versions and replaced with
built-in analogs. Safe replacementsfor afew of the remaining functionsare now available, either inanew library
of user-defined routines (UDRs) named [| i b] udf _conpat.[dl |/ so/dyli b], or asscripted conversions
to PSQL stored functions. They are listed below; those marked with asterisks (*) are the UDR conversions.

ADDDAY () *DOW() ROUND()
ADDDAY2() DPOWER() RTRIM()
ADDHOUR() GETEXACTTIMESTAMP * SDOW()
ADDMILLISECOND() *GETEXACTTIMESTAMPUTC SNULLIF()
ADDMINUTE() I64NULLIF() SNVL()
ADDMONTH() 164NV/L() SRIGHT()
ADDSECOND() |64ROUND() STRING2BLOB()
ADDWEEK () I64TRUNCATE() STRLEN()
ADDYEAR() INULLIF() SUBSTR()
*DIV() INVL() SUBSTRLEN()
DNULLIF() ISLEAPYEAR() TRUNCATE()
DNVL() LTRIM(*UDF_FRAC() or *FRAC()

The Firebird 4 distribution contains a script to migrate al (or any) of those UDF declarations. You can edit
and extract from it to suit, if you wish, but you must keep the respective re-declarations and conversions intact
as scripted.

The UDF Migration Script

The SQL script that you can use to upgrade the declarations for the UDFs listed above to the analog UDRSs or
stored functions is located beneath the Firebird root, in m sc/ upgr ade/ v4. 0/ udf _repl ace. sql .

96

Compatibility Issues

How to Work with the Script

During the restore of your Firebird 3 backup, gbak will issue warnings about any UDFs that are affected but
the restore will proceed. It would be useful to output the - ver bose reporting to afileif you want alist of the
affected function declarations. Y ou will noteitemslike

gbak: WARNI NG function UDF_FRAC is not defined
gbak: WARNI NG nodul e name or entrypoint could not be found

It means you have a UDF that is declared in the database but whose library is missing—which, of course, we
know istrue.

Running the Script

From the command shell:
i sql -user sysdba -pas masterkey -i udf_replace.sql {your-database}
REMINDER

This script will have no effect on declarations for UDFs from third-party libraries!

What If You MUST Use a UDF?

Inthe short term, if you absolutely cannot avoid retai ning the use of aUDF, you must configurethe Udf Access
parameterto Restrict <pat h-1i st >. Thedefault<pat h-1i st > pointsto the UDF sub-directory beneath
the Firebird root. The (uncommented!) linein firebird.conf should be:

Udf Access = Restrict UDF

Thelibraries[1'i b] i b_udf.[dl | /so/dylib] and[lib]fbudf.[dll/so/dylib] thatweredistribut-
ed with Firebird 3 were tested to work with Firebird 4. No tests were done for any third-party or custom UDF
libraries but, considering that nothing changed in the way Firebird works with UDFs, other than the default
value for Udf Access, they should also work.

I mportant

The recommended long-term solution for any UDFs which you absolutely must use is to replace them with
UDRSs or stored functions.

Changes in DDL and DML Due to Timezone Support

Timezone support introduces some changes in DDL and DML which could affect compatibility with existing
databases and applications.

97

Compatibility Issues

Changes to Data Types TIMESTAMP and TIME

The syntax for declaring the datatypes TI MESTAMP and Tl ME has been extended to include arguments defining
whether the column, domain, parameter or variable should be defined with or without time zone adjustments, i .e.,

TIME[{ WTHOUT | WTH } TIME ZONE]

TIMESTAMP [{ WTHOUT | WTH } TIME ZONE]

The default in both casesisW THOUT TI ME ZONE. If you are shifting migrated databases and/or applications
to use the zoned date/time features, it is advisable to run reality checks on any calculations, computed fields,
domains, query sets ordered or grouped by dates or timestamps, €tc.

For more details, see Data Type Extensions for Time Zone Support in the DDL chapter.

CURRENT_TIME and CURRENT_TIMESTAMP

Inversion 4.0, CURRENT_TI ME and CURRENT_TI MESTAMP are changed: they now return TI ME W TH TI ME
ZONE and TI MESTAMP W TH TI ME ZONE, with the time zone set by the session time zone. In previous
versions, CURRENT _TI MVE and CURRENT _TI MESTAMP returned the respective types according to the system
clock, i.e., without any time zone.

The expressions LOCALTI MESTAMP and LOCALTI ME now replace the former functionality of
CURRENT _TI MESTAMP and CURRENT _TI ME, respectively.

Firebird 3.04 LOCALTIME and LOCALTIMESTAMP

To ease the transition, LOCALTI ME and LOCALTI MESTAMP were added at v3.0.4, allowing developers to
adjust application and PSQL code without any functional changes, before migrating to Firebird 4.

Prefaced Implicit Date/Time Literals Now Rejected

The literal date/time preface syntax (DATE, TIME or TIMESTAMP prefacing the quoted value) used together
with the implict date/time literal expressions (NOW', TODAY", etc.) was known to eval uate those expressions
in ways that would produce unexpected results, often undetected:

» In stored procedures and functions, evaluation would occur at compile time but not during the procedure or
function call, storing the result in BLR and retrieving that stale value at runtime

» InDSQL, this style of usage in DSQL causes the evaluation to occur st prepare time, not at each iteration of
the statement as would be expected with correct usage of the implicit date/time literals. The time difference
between statement preparation and execution may betoo small to discover theissue, particularly with'NOW',
which is atimestamp. Users could have been misled thinking the expression was evaluated at each iteration
of the statement at runtime, when in fact it happened at prepare time.

If something like TI MESTAMP ' NOW has been used in DSQL queries in application code or in migrated

PSQL, there will be a compatibility issue with Firebird 4.

98

Compatibility Issues

The behaviour was considered undesirable—the Firebird 4.0 engine and above will now reject such expressions
in both PSQL and DSQL.

Example of such usage that will now be rejected:

DECLARE VARI ABLE nonent TI MESTAMP;

SELECT TI MESTAMP(' NOW) FROM RDB$DATABASE | NTO : noment ;
/* here, the variable :nmoment will 'frozen' as the tinestanp at the nonent
the procedure or function was |ast conpiled */

TI MESTAMP ' <const ant >' isfor explict date/time literals, e.g. DATE ' 2019. 02. 20" islega. Theim-
plicit date/time literals, such as'NOW' or 'YESTERDAY' are for use in expressions. Enforcemnt of the appro-
priate usage means that attempting to combine both becomes explicitly invalid syntax.

Existing code where usage does not break the rule remains unaffected. Both * NOW and CAST(' NOW AS
TI MESTAMP) continueto work as before, aswell as code that correctly usesthe date/time prefaceswith explicit
literas, like DATE ' 2019. 02. 20' .

99

Chapter 13

Bugs Fixed

Firebird 4.0 Beta 1 Release: Bug Fixes

The following bug-fixes since the Alpha rel ease are noted:

Core Engine

(CORE-5986) Evaluation of NULL IS[NOT] FALSE | TRUE was incorrect. Same fix was backported
to Firebird 3.0.5.

fixed by A. dos Santos Fernandes

(CORE-5985) Regression: ROLE was not being passed to ES/EDS: specifying it in the statement was
ignored. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5982) An error involving read permission for a BLOB field was being thrown when the BLOB
was an input or output parameter for a procedure. Same fix was backported to Firebird 3.0.5.

fixed by D. Sarodubov
(CORE-5974) SELECT DISTINCT with adecfloat/timezone/collated column was producing wrong results.
fixed by A. dos Santos Fernandes

(CORE-5973) Improvement: Fixed-point overflow in a DOUBLE PRECISION value converted from
DECFLOAT isnow handled properly.

fixed by A. Peshkov

(CORE-5965) The optimizer was choosing aless efficient plan in Fb4 and Fb3 than the FB2.5 optimizer.
Same fix was backported to Firebird 3.0.5.

100

http://tracker.firebirdsql.org/browse/CORE-5986
http://tracker.firebirdsql.org/browse/CORE-5985
http://tracker.firebirdsql.org/browse/CORE-5982
http://tracker.firebirdsql.org/browse/CORE-5974
http://tracker.firebirdsql.org/browse/CORE-5973
http://tracker.firebirdsql.org/browse/CORE-5965

Bugs Fixed

fixed by D. Yemanov

(CORE-5959) Firebird would return the wrong time after a change of time zone. Same fix was backported
to Firebird 3.0.5.

fixed by V. Khorsun

(CORE-5950) Deadlock could occur when attaching to a bugchecked database. Same fix was backported
to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5949) Bugcheck could happen when a read-only database with non-zero linger was set to read-
write mode. Same fix was backported to Firebird 3.0.5.

fixed by V. Khorsun

(CORE-5935) Bugcheck 165 (cannot find TIP page). Same fix was backported to Firebird 3.0.5.
fixed by V. Khorsun

(CORE-5930) Bugcheck with message “incorrect snapshot deallocation - too few sots’.

fixed by V. Khorsun

(CORE-5918) Memory pool statistics were inaccurate. Same fix was backported to Firebird 3.0.5.
fixed by A. Peshkov

(CORE-5896) A NOT NULL constraint was hot being synchronized after the column was renamed.
fixed by A. dos Santos Fernandes

(CORE-5785) An ORDER BY clause on a compound index could disable usage of other indices. Same
fix was backported to Firebird 3.0.5.

fixed by D. Yemanov

(CORE-5871) Incorrect caching of the result of asubqguery result in aprocedure call fromaSELECT query.

101

http://tracker.firebirdsql.org/browse/CORE-5959
http://tracker.firebirdsql.org/browse/CORE-5950
http://tracker.firebirdsql.org/browse/CORE-5949
http://tracker.firebirdsql.org/browse/CORE-5935
http://tracker.firebirdsql.org/browse/CORE-5930
http://tracker.firebirdsql.org/browse/CORE-5918
http://tracker.firebirdsql.org/browse/CORE-5896
http://tracker.firebirdsql.org/browse/CORE-5785
http://tracker.firebirdsql.org/browse/CORE-5871

Bugs Fixed

fixed by A. dos Santos Fernandes

(CORE-5862) RDB$CHARACTER_LENGTH in RDB$FIELDS was not being populated when the
column was a computed VARCHAR without an explicit type.

fixed by A. dos Santos Fernandes

(CORE-5750) Date-time parsing needed strengthening.

fixed by A. dos Santos Fernandes

(CORE-5728) The field subtype of DEC_FIXED columns was not being returned by
i sc_info_sql _sub_type.

fixed by A. Peshkov

(CORE-5726) The error message when inserting a value exceeding the maximum value of DEC_FIXED
decimal was unclear.

fixed by A. Peshkov

(CORE-5717) The literal date/time preface syntax (DATE, TIME or TIMESTAMP prefix before the
guoted value) used together with the implict date/time literal expressions ‘(NOW', ' TODAY", etc.) was known
to evaluate those expressions in ways that would produce unexpected results, often undetected. This behaviour
was considered undesirable—the Firebird 4.0 engine and above will now reject them everywhere.

For details, see Prefaced Implicit Date/Time Literals Now Rejected in the Compatibility chapter.

fixed by A. dos Santos Fernandes

(CORE-5710) Datatype declaration DECFLOAT without precision should be using a default precision.
fixed by A. Peshkov

(CORE-5700) DECFLOAT underflow should yield zero instead of an error.

fixed by A. Peshkov

(CORE-5699) DECFLOAT should not throw exceptions when +/-NaN, +/-sNaN and +/-Infinity is used
in comparisons.

102

http://tracker.firebirdsql.org/browse/CORE-5862
http://tracker.firebirdsql.org/browse/CORE-5750
http://tracker.firebirdsql.org/browse/CORE-5728
http://tracker.firebirdsql.org/browse/CORE-5726
http://tracker.firebirdsql.org/browse/CORE-5717
http://tracker.firebirdsql.org/browse/CORE-5710
http://tracker.firebirdsql.org/browse/CORE-5700
http://tracker.firebirdsql.org/browse/CORE-5699

Bugs Fixed

fixed by A. Peshkov

(CORE-5646) A parse error when compiling a statement would cause a memory leak until the attachment
was disconnected.

fixed by A. dos Santos Fernandes

(CORE-5612) View operations (create, recreate or drop) were exhibiting gradual slow-down.
fixed by D. Yemanov

(CORE-5611) Memory consumption for prepared statements was higher.

fixed by A. dos Santos Fernandes

(CORE-5593) and also CORE-5518 The system function RDBSROLE_| N_USE could not take long role
names.

fixed by A. Peshkov

(CORE-5480) A SUBSTRING start position smaller than 1 should be allowed.

fixed by A. dos Santos Fernandes

(CORE-1592) Altering procedure parameters could lead to an unrestorable database.

fixed by A. dos Santos Fernandes

Server Crashes/Hang-ups

(CORE-5980) Firebird would crash due to concurrent operations with expression indices. Same fix was
backported to Firebird 3.0.5.

fixed by V. Khorsun
(CORE-5972) External engine trigger could crash the server if the table had a computed field.

fixed by A. dos Santos Fernandes

103

http://tracker.firebirdsql.org/browse/CORE-5646
http://tracker.firebirdsql.org/browse/CORE-5612
http://tracker.firebirdsql.org/browse/CORE-5611
http://tracker.firebirdsql.org/browse/CORE-5593
http://tracker.firebirdsql.org/browse/CORE-5480
http://tracker.firebirdsql.org/browse/CORE-1592
http://tracker.firebirdsql.org/browse/CORE-5980
http://tracker.firebirdsql.org/browse/CORE-5972

Bugs Fixed

(CORE-5943) The server could crash while preparing a query with both DISTINCT/ORDER BY and a
non-field expression in the select list. Same fix was backported to Firebird 3.0.5.

fixed by D. Yemanov

(CORE-5936) The server could segfault at the end of a database backup.

fixed by V. Khorsun

Security

(CORE-5927) With some non-standard authentication plugins, traffic would remain unencrypted despite
providing the correct crypt key. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5926) An attempt to create a mapping with a non-ASCII user name that was encoded in a
SINGLE-BY TE codepage (WIN1251) would lead to a '‘Malformed string' error. Same fix was backported to
Firebird 3.0.5.

fixed by A. Peshkov

(CORE-5861) New objects and some old objectsin a database could not be granted the GRANT OPTION
viarole privileges.

fixed by R. Smakov

(CORE-5657) Attended to various UDF-related security vulnerabilities, resulting in aggressive deprecation
of support for the use of UDFs as external functions. See also External Functions (UDFs) Feature Deprecated
in the the chapter Changes to the Firebird Engine and Deprecation of External Functions (UDFs) in the Com-
patibility chapter.

fixed by A. Peshkov

(CORE-5639) Mapping rule using WIN_SSPI plugin: Windows user group conversion to Firebird role
was not working.

fixed by A. Peshkov

(CORE-5518) Firebird UDF st ri ng2bl ob() could alow remote code execution.

104

http://tracker.firebirdsql.org/browse/CORE-5943
http://tracker.firebirdsql.org/browse/CORE-5936
http://tracker.firebirdsql.org/browse/CORE-5927
http://tracker.firebirdsql.org/browse/CORE-5926
http://tracker.firebirdsql.org/browse/CORE-5861
http://tracker.firebirdsql.org/browse/CORE-5657
http://tracker.firebirdsql.org/browse/CORE-5639
http://tracker.firebirdsql.org/browse/CORE-5518

Bugs Fixed

fixed by A. Peshkov

Utilities

gbak
(CORE-5855) A database with generators contai ning space charactersin their names could not be backed up.
fixed by A. Peshkov

(CORE-5800) After backup/restore, expression indexes on computed fields would not work properly.
Same fix was backported to Firebird 3.0.5.

fixed by D. Yemanov
(CORE-5637) A string right truncation error was occurring on restore of the security database.

fixed by A. Peshkov

gpre

(CORE-5834) gpr e_boot was failing to link using cmake, giving undefined reference 'dladdr' and
‘dierror'. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

trace

(CORE-5907) Regression: Trace could not belaunched if its'database’ section contained aregular expression
pattern with curvy brackets to enclose a quantifier. Same fix was backported to Firebird 3.0.5.

fixed by A. Peshkov

Build Issues

(CORE-5989) Some build issues involving iconv / libiconv 1.15 vs libc / libiconv_open | com-
mon/isc_file.cpp. Same fix was backported to Firebird 3.0.5.

105

http://tracker.firebirdsql.org/browse/CORE-5855
http://tracker.firebirdsql.org/browse/CORE-5800
http://tracker.firebirdsql.org/browse/CORE-5637
http://tracker.firebirdsql.org/browse/CORE-5934
http://tracker.firebirdsql.org/browse/CORE-5907
http://tracker.firebirdsql.org/browse/CORE-5989

Bugs Fixed

fixed by A. Peshkov

(CORE-5955) Static linking problem with Id >= 2.31. Same fix was backported to Firebird 3.0.5.

fixed by R. Smakov

Firebird 4.0 Alpha 1 Release: Bug Fixes

The following fixes to pre-existent bugs are noted:

(CORE-5545) Using the POSITION parameter with the [RE]CREATE TRIGGER syntax would cause an
“unknown token” error if POSITION waswritten in thelogically correct place, i.e., after the main clauses of the
statement. For example, the following should work because POSITION comes after the other specifications:

RECREATE TRI GGER T1
BEFORE | NSERT

ON t bl

PCSI TION 1 AS

BEG N

END

However, it would exhibit the error, while the following would succeed:

RECREATE TRI GGER T1
BEFORE | NSERT

POSI TI ON 1

ON t bl

AS

BEG N

END

The fix makes the first example correct and the second should throw the error.

fixed by A. dos Santos Fernandes

(CORE-5454) Inserting into an updatable view without an explicit column list would fail.

fixed by A. dos Santos Fernandes

(CORE-5408) The result of a Boolean expression could not be concatenated with a string literal.

fixed by A. dos Santos Fernandes

106

http://tracker.firebirdsql.org/browse/CORE-5955
http://tracker.firebirdsql.org/browse/CORE-5545
http://tracker.firebirdsql.org/browse/CORE-5454
http://tracker.firebirdsql.org/browse/CORE-5408

Bugs Fixed

(CORE-5404) Inconsistent column and line references were being returned in error messages for faulty
PSQL definitions.

fixed by A. dos Santos Fernandes

(CORE-5237) Processing of the include clause in configuration files was mishandling dot (.) and asterisk
(*) charactersin the file name and path of the included file.

fixed by D. Sbiryakov

(CORE-5223) Double dotsin file names for databases were prohibited if the DatabaseAccess configuration
parameter was set to restrict accessto alist of directories.

fixed by D. Shiryakov

(CORE-5141) Field definition would allow multiple NOT NULL clauses. For example,

create table t (a integer not null not null not null)
The fix makes the behaviour consistent with CREATE DOMAIN behaviour and the example will return the
error “ Duplicate specification of NOT NULL - not supported”.
fixed by D. Shbiryakov
(CORE-4985) A non-privileged user could implicitly count records in arestricted table.
fixed by D. Yemanov
(CORE-4701) Garbage collection for indexes and BL OBswas not taking datain the Undo log into account.
fixed by D. Shiryakov

(CORE-4483) In PSQL, data changed by executing a procedure was not visible to the WHEN handler
if the exception occurred in the called procedure.

fixed by D. Shiryakov

(CORE-4424) In PSQL, execution flow would roll back to the wrong savepoint if multiple exception
handlers were executed at the same level.

107

http://tracker.firebirdsql.org/browse/CORE-5404
http://tracker.firebirdsql.org/browse/CORE-5237
http://tracker.firebirdsql.org/browse/CORE-5223
http://tracker.firebirdsql.org/browse/CORE-5141
http://tracker.firebirdsql.org/browse/CORE-4985
http://tracker.firebirdsql.org/browse/CORE-4701
http://tracker.firebirdsql.org/browse/CORE-4483
http://tracker.firebirdsql.org/browse/CORE-4424

Bugs Fixed

fixed by D. Shbiryakov

108

Chapter 14

Firebird 4.0 Project Teams

Table 14.1. Firebird Development Teams

Developer Country Major Tasks
Dmitry Y emanov Russian Full-time database engineer/implementor, core team |leader
Federation
Alex Peshkov Russian Full-time security features coordinator; buildmaster; porting
Federation | authority
Vladyslav Khorsun Ukraine Full-time DB engineer, SQL feature designer/implementor
Adriano dos San- Brazil International character-set handling; text and text BLOB en-
tos Fernandes hancements; new DSQL features; code scrutineering
Roman Simakov Russian Engine contributions
Federation
Paul Beach France Release Manager; HP-UX builds; MacOS Builds; Solaris
Builds
Pavel Cisar Czech Re- | QA tools designer/coordinator; Firebird Butler coordinator;
public Python driver devel oper
Pavel Zotov Russian QA tester and tools devel oper
Federation
Philippe Makowski France QA tester and maintainer of EPEL kits
Paul Reeves France Windows installers and builds
Mark Rotteveel The Nether- | Jaybird implementer and co-coordinator
lands
Jiri Cincura Czech Re- | Developer and coordinator of .NET providers
public
Martin Koeditz Germany | Developer and coordinator of PHP driver
Alexander Potapchenko Russian Developer and coordinator of ODBC/JDBC driver for Fire-
Federation | bird
Alexey Kovyazin Russian Website coordinator
Federation
Paul Vinkenoog The Nether- | Coordinator, Firebird documentation project; documentation
lands writer and tools devel oper/implementor
Norman Dunbar U.K. Documentation writer

109

Firebird 4.0 Project Teams

Developer Country Major Tasks
Tomneko Hayashi Japan Documentation translator
Martin Koeditz Germany | Documentation translator
Helen Borrie Australia | Release notes editor; Chief of Thought Police

110

Appendix A:
Licence Notice

The contents of this Documentation are subject to the Public Documentation License Version 1.0 (the “Li-
cense’); you may only use this Documentation if you comply with the terms of this Licence. Copies of the
Licence are available at http://www.firebirdsgl.org/pdfmanual/pdl.pdf (PDF) and http://www.firebirdsgl.org/
manual/pdl.html (HTML).

The Original Documentation is entitled Firebird 3.0 Release Notes.

The Initial Writer of the Original Documentation is: Helen Borrie. Persons named in attributions are Contrib-
utors.

Copyright (C) 2004-2015. All Rights Reserved. Initial Writer contact: helebor at users dot sourceforge dot net.

111

http://www.firebirdsql.org/pdfmanual/pdl.pdf
http://www.firebirdsql.org/manual/pdl.html
http://www.firebirdsql.org/manual/pdl.html

Appendix B:
Time Zone Regions

The following lists the time zone region names and their IDs. Quick links:

Africa| America| Antarctica| Arctic| Asia| Atlantic| Austraia| BET| BST| Brazil| CAT| CET
| CNT| CST| CST6CDT| CTT| Canada| Chile| Cuba| EST| ECT| EET| EST| ESTS5EDT |
Egypt| Etc| Europe| GB| GMT | Greenwich| HST| HongKong| IET| IST| lIceland| Indian
| lran| lsrael | JST | Jamaica| Kwajalein| Libya| MET| MIT| MST| MST7MDT | Mexico |
NET | NST| New Zealand & ChathamIs.| Navajo| PLT| PNT| PRC| PRT| PST| PST8PDT
| Pecific| Poland| Portugal | ROC| SST| Singapore| SystemV | Turkey| UCT| US| UTC|
Universal | VST | W-SU| WET| Zulu

GMT (65535)

ACT (65534)

AET (65533)

AGT (65532)

ART (65531)

AST (65530)
AfricalAbidjan (65529)
AfricalAccra (65528)
AfricalAddis_Ababa (65527)
AfricalAlgiers (65526)
AfricalAsmara (65525)
AfricalAsmera (65524)
AfricalBamako (65523)
Africa/lBangui (65522)
Africa/lBanjul (65521)
Africa/Bissau (65520)
Africa/Blantyre (65519)
Africa/Brazzaville (65518)
Africa/Bujumbura (65517)
AfricalCairo (65516)
Africa/Casablanca (65515)
Africa/Ceuta (65514)
Africa/lConakry (65513)
AfricalDakar (65512)
AfricalDar_es Salaam (65511)
Africa/Djibouti (65510)
Africa/Douala (65509)
AfricalEl_Aaiun (65508)
AfricalFreetown (65507)
AfricalGaborone (65506)
Africa/lHarare (65505)
Africa/Johannesburg (65504)
AfricalJuba (65503)
AfricalKampala (65502)

112

Time Zone Regions

Africa/lK hartoum (65501)
AfricalKigali (65500)
AfricalKinshasa (65499)
AfricallLagos (65498)
AfricalLibreville (65497)
Africa/lLome (65496)

Africa/Luanda (65495)
Africa/lLubumbashi (65494)
Africallusaka (65493)
AfricalMalabo (65492)
AfricalMaputo (65491)
AfricalMaseru (65490)
AfricalMbabane (65489)

Africa/M ogadishu (65488)
AfricalMonrovia (65487)
Africa/lNairobi (65486)
Africa/Ndjamena (65485)
Africa/lNiamey (65484)
AfricalNouakchott (65483)
Africa/lOuagadougou (65482)
Africa/Porto-Novo (65481)
AfricalSao_Tome (65480)
AfricalTimbuktu (65479)
AfricalTripoli (65478)

AfricalTunis (65477)
AfricalWindhoek (65476)
AmericalAdak (65475)
AmericalAnchorage (65474)
AmericalAnguilla (65473)
AmericalAntigua (65472)
America/lAraguaina (65471)
AmericalArgentina/lBuenos_Aires (65470)
AmericalArgentina/Catamarca (65469)
AmericalArgentina/ComodRivadavia (65468)
AmericalArgentina/Cordoba (65467)
AmericalArgentina/Jujuy (65466)
America/Argentina/La_Rioja (65465)
America/lArgentina/M endoza (65464)
America/Argentina/Rio_Gallegos (65463)
America/lArgentina/Salta (65462)
America/Argentina/San_Juan (65461)
America/Argentina/San_L uis (65460)
America/Argentina/ Tucuman (65459)
AmericalArgentina/lUshuaia (65458)
America/Aruba (65457)
America/Asuncion (65456)
America/Atikokan (65455)
AmericalAtka (65454)
America/Bahia (65453)

America/Bahia Banderas (65452)
America/Barbados (65451)
America/Belem (65450)

113

Time Zone Regions

America/Belize (65449)
America/Blanc-Sablon (65448)
America/Boa Vista (65447)
America/Bogota (65446)
America/Boise (65445)
America/Buenos_Aires (65444)
America/Cambridge Bay (65443)
America/Campo_Grande (65442)
America/Cancun (65441)
Americal/Caracas (65440)
America/Catamarca (65439)
America/Cayenne (65438)
America/Cayman (65437)
America/Chicago (65436)
America/Chihuahua (65435)
America/Coral_Harbour (65434)
America/Cordoba (65433)
America/Costa_Rica (65432)
America/Creston (65431)
America/Cuiaba (65430)
America/Curacao (65429)
America/Danmarkshavn (65428)
America/Dawson (65427)
America/Dawson_Creek (65426)
America/Denver (65425)
America/Detroit (65424)
America/Dominica (65423)
America/Edmonton (65422)
America/lEirunepe (65421)
America/El_Salvador (65420)
America/lEnsenada (65419)
America/lFort_Nelson (65418)
America/lFort Wayne (65417)
America/Fortaleza (65416)
America/Glace Bay (65415)
America/Godthab (65414)
America/Goose Bay (65413)
America/Grand_Turk (65412)
America/Grenada (65411)
America/Guadel oupe (65410)
America/Guatemala (65409)
America/Guayaquil (65408)
America/Guyana (65407)
America/Halifax (65406)
America/Havana (65405)
AmericalHermosillo (65404)
Americal/lndiana/lndianapolis (65403)
Americallndiana’lK nox (65402)
Americal/lndiana/Marengo (65401)
Americall ndiana/Petersburg (65400)
Americal/lndianalTell_City (65399)
Americal/lndiana/Vevay (65398)

114

Time Zone Regions

America/lndiana/Vincennes (65397)
America/lndiana/Winamac (65396)
America/lndianapolis (65395)
Americal/lnuvik (65394)
America/lgaluit (65393)
AmericalJamaica (65392)
Americaldujuy (65391)
Americal/Juneau (65390)
America/lKentucky/Louisville (65389)
America/Kentucky/Monticello (65388)
AmericalKnox_IN (65387)
America/Kralendijk (65386)
America/lLa Paz (65385)
America/lLima (65384)
America/lLos Angeles (65383)
America/lLouisville (65382)
America/Lower_Princes (65381)
America/lMaceio (65380)
America/lManagua (65379)
AmericalManaus (65378)
AmericalMarigot (65377)
America/Martinique (65376)
America/Matamoros (65375)
America/Mazatlan (65374)
AmericalMendoza (65373)
AmericalMenominee (65372)
America/Merida (65371)
America/Metlakatla (65370)
AmericalMexico_City (65369)
AmericalMiguelon (65368)
America/lMoncton (65367)
America/lMonterrey (65366)
America/Montevideo (65365)
America/lMontreal (65364)
AmericalMontserrat (65363)
America/Nassau (65362)
America/lNew_Y ork (65361)
America/Nipigon (65360)
America/lNome (65359)
America/Noronha (65358)
America/North_Dakota/Beulah (65357)
America/North_Dakota/Center (65356)
America/North_Dakota/New_Salem (65355)
America/lOjinaga (65354)
America/Panama (65353)
America/Pangnirtung (65352)
America/Paramaribo (65351)
America/Phoenix (65350)
AmericalPort-au-Prince (65349)
America/lPort_of Spain (65348)
America/lPorto_Acre (65347)
America/lPorto_Velho (65346)

115

Time Zone Regions

America/lPuerto_Rico (65345)
America/Punta_Arenas (65344)
America/Rainy_River (65343)
America/Rankin_Inlet (65342)
America/Recife (65341)
America/Regina (65340)
America/Resolute (65339)
America/Rio_Branco (65338)
America/Rosario (65337)
AmericalSanta_|sabel (65336)
Americal/Santarem (65335)
Americal/Santiago (65334)
America/Santo_Domingo (65333)
America/Sao_Paulo (65332)
AmericalScoresbysund (65331)
Americal/Shiprock (65330)
AmericalSitka (65329)
America/St_Barthelemy (65328)
AmericalSt_Johns (65327)
AmericalSt_Kitts (65326)
America/lSt_Lucia (65325)
AmericalSt_Thomas (65324)
AmericalSt_Vincent (65323)
America/Swift_Current (65322)
America/Tegucigalpa (65321)
America/Thule (65320)
AmericalThunder_Bay (65319)
AmericalTijuana (65318)
America/Toronto (65317)
America/Tortola (65316)
Americal\Vancouver (65315)
AmericalVirgin (65314)
America/Whitehorse (65313)
America/Winnipeg (65312)
AmericalY akutat (65311)
AmericalY ellowknife (65310)
Antarctica/Casey (65309)
Antarctica/Davis (65308)
Antarctica’DumontDUrville (65307)
Antarctica/Macquarie (65306)
Antarctica/Mawson (65305)
AntarcticalMcMurdo (65304)
Antarctica/Palmer (65303)
Antarctica/Rothera (65302)
Antarctica/South_Pole (65301)
Antarctica/Syowa (65300)
Antarctica/Troll (65299)
Antarctica/V ostok (65298)
Arctic/Longyearbyen (65297)
Asia/Aden (65296)
Asia/Almaty (65295)
Asiad/Amman (65294)

116

Time Zone Regions

Asia/Anadyr (65293)
Asia/Aqtau (65292)
Asia/Agtobe (65291)
Asia/Ashgabat (65290)
Asia/Ashkhabad (65289)
AsialAtyrau (65288)
Asia/lBaghdad (65287)
Asia/Bahrain (65286)
Asia/Baku (65285)
Asia/Bangkok (65284)
Asia/lBarnaul (65283)
Asia/Beirut (65282)
Asia/Bishkek (65281)
Asia/Brunel (65280)
Asia/Calcutta (65279)
Asia/Chita (65278)
Asia/Choibalsan (65277)
Asia/Chongging (65276)
Asia/Chungking (65275)
Asia/Colombo (65274)
Asia/lDacca (65273)
Asia/Damascus (65272)
Asia/Dhaka (65271)
Asia/Dili (65270)
Asia/Dubai (65269)
Asia/Dushanbe (65268)
Asia/lFamagusta (65267)
Asia/lGaza (65266)
Asia/lHarbin (65265)
Asia/lHebron (65264)
Asia/Ho_Chi_Minh (65263)
AsialHong_Kong (65262)
Asia/lHovd (65261)
Asia/lrkutsk (65260)
Asiad/lstanbul (65259)
AsialJakarta (65258)
AsialJayapura (65257)
AsialJerusalem (65256)
Asia/lKabul (65255)
Asia/lKamchatka (65254)
Asia/lKarachi (65253)
Asia/lKashgar (65252)
Asia/Kathmandu (65251)
Asia/lKatmandu (65250)
Asia/Khandyga (65249)
Asia/Kolkata (65248)
AsialKrasnoyarsk (65247)
AsialKuala Lumpur (65246)
Asia/lKuching (65245)
AsialKuwait (65244)
AsialMacao (65243)
AsialMacau (65242)

117

Time Zone Regions

AsialMagadan (65241)
Asia/Makassar (65240)
Asia/Manila (65239)
Asia/Muscat (65238)
Asia/Nicosia (65237)
Asia/Novokuznetsk (65236)
Asia/Novosibirsk (65235)
Asia/Omsk (65234)
Asia/Oral (65233)
Asia/lPhnom_Penh (65232)
Asia/Pontianak (65231)
Asia/lPyongyang (65230)
Asia/Qatar (65229)
Asia/lQyzylorda (65228)
Asia/Rangoon (65227)
Asia/Riyadh (65226)
Asia/Saigon (65225)
Asia/Sakhalin (65224)
Asia/Samarkand (65223)
Asia/Seoul (65222)
Asia/Shanghai (65221)
Asia/Singapore (65220)
Asia/Srednekolymsk (65219)
AsialTaipei (65218)
Asia/Tashkent (65217)
AsialThilisi (65216)
Asia/Tehran (65215)
AsialTel_Aviv (65214)
Asia/Thimbu (65213)
Asia/Thimphu (65212)
AsialTokyo (65211)
Asia'Tomsk (65210)
Asia/lUjung_Pandang (65209)
Asia/lUlaanbaatar (65208)
Asia/lUlan_Bator (65207)
AsialUrumgi (65206)
Asia/lUst-Nera (65205)
Asia/Vientiane (65204)
Asia/Vladivostok (65203)
AsialY akutsk (65202)
Asia'Y angon (65201)
AsialY ekaterinburg (65200)
AsiaY erevan (65199)
Atlantic/Azores (65198)
Atlantic/Bermuda (65197)
Atlantic/Canary (65196)
Atlantic/Cape Verde (65195)
Atlantic/Faeroe (65194)
Atlantic/Faroe (65193)
Atlantic/Jan_Mayen (65192)
Atlantic/Madeira (65191)
Atlantic/Reykjavik (65190)

118

Time Zone Regions

Atlantic/South_Georgia (65189)
Atlantic/St_Helena (65188)
Atlantic/Stanley (65187)
AustraliaddACT (65186)
Australia/Adelaide (65185)
Australia/Brishane (65184)
Australia/lBroken_Hill (65183)
Australia/Canberra (65182)
Australia/Currie (65181)
Australia/Darwin (65180)
Australia/lEucla (65179)
Australia/Hobart (65178)
Australia/lLHI (65177)
Audtralia/lLindeman (65176)
Australia/lLord_Howe (65175)
Australia/Melbourne (65174)
AustraliadNSW (65173)
Australia/North (65172)
Australia/Perth (65171)
Australia/lQueensland (65170)
Australia/South (65169)
Australia/Sydney (65168)
AustraliaiTasmania (65167)
AustralialVictoria (65166)
Australia/West (65165)
AustralialY ancowinna (65164)
BET (65163)

BST (65162)

Brazil/Acre (65161)
Brazil/DeNoronha (65160)
Brazil/East (65159)
Brazil/West (65158)

CAT (65157)

CET (65156)

CNT (65155)

CST (65154)

CST6CDT (65153)

CTT (65152)

Canada/Atlantic (65151)
Canada/Central (65150)
Canada/East-Saskatchewan (65149)
Canada/Eastern (65148)
Canada/Mountain (65147)
Canada/Newfoundland (65146)
Canada/Pacific (65145)
Canada/Saskatchewan (65144)
Canada/Y ukon (65143)
Chile/Continental (65142)
Chile/Easterlsland (65141)
Cuba (65140)

EAT (65139)

ECT (65138)

119

Time Zone Regions

EET (65137)

EST (65136)

EST5EDT (65135)

Egypt (65134)

Eire (65133)

Etc/GMT (65132)
Etc/GMT+0 (65131)
Etc/GMT+1 (65130)
Etc/GMT+10 (65129)
Etc/GMT+11 (65128)
Etc/GMT+12 (65127)
Etc/GMT+2 (65126)
Etc/GMT+3 (65125)
Etc/GMT+4 (65124)
Etc/GMT+5 (65123)
Etc/GMT+6 (65122)
Etc/GMT+7 (65121)
Etc/GMT+8 (65120)
Etc/GMT+9 (65119)
Etc/GMT-0 (65118)
Etc/GMT-1 (65117)
Etc/GMT-10 (65116)
Etc/GMT-11 (65115)
Etc/GMT-12 (65114)
Etc/GMT-13 (65113)
Etc/GMT-14 (65112)
Etc/GMT-2 (65111)
Etc/GMT-3 (65110)
Etc/GMT-4 (65109)
Etc/GMT-5 (65108)
Etc/GMT-6 (65107)
Etc/GMT-7 (65106)
Etc/GMT-8 (65105)
Etc/GMT-9 (65104)
Etc/GMTO (65103)
Etc/Greenwich (65102)
Etc/UCT (65101)
Etc/UTC (65100)
Etc/Universal (65099)
Etc/Zulu (65098)
Europe/Amsterdam (65097)
Europe/Andorra (65096)
Europe/Astrakhan (65095)
Europe/Athens (65094)
Europe/Belfast (65093)
Europe/Belgrade (65092)
Europe/Berlin (65091)
Europe/Bratidava (65090)
Europe/Brussels (65089)
Europe/Bucharest (65088)
Europe/Budapest (65087)
Europe/Busingen (65086)

120

Time Zone Regions

Europe/Chisinau (65085)
Europe/Copenhagen (65084)
Europe/Dublin (65083)
Europe/Gibraltar (65082)
Europe/Guernsey (65081)
Europe/Helsinki (65080)
Europe/lsle of Man (65079)
Europe/lstanbul (65078)
Europel/Jersey (65077)
Europe/Kaliningrad (65076)
Europe/Kiev (65075)
Europe/Kirov (65074)
Europe/Lisbon (65073)
Europe/Ljubljana (65072)
Europe/London (65071)
Europe/L uxembourg (65070)
Europe/Madrid (65069)
Europe/Malta (65068)
Europe/Mariehamn (65067)
Europe/Minsk (65066)
Europe/M onaco (65065)
Europe/M oscow (65064)
Europe/Nicosia (65063)
Europe/Oslo (65062)
Europe/Paris (65061)
Europe/Podgorica (65060)
Europe/Prague (65059)
Europe/Riga (65058)
Europe/Rome (65057)
Europe/Samara (65056)
Europe/San_Marino (65055)
Europe/Sarajevo (65054)
Europe/Saratov (65053)
Europe/Simferopol (65052)
Europe/Skopje (65051)
Europe/Sofia (65050)
Europe/Stockholm (65049)
Europe/Tallinn (65048)
Europe/Tirane (65047)
Europe/Tiraspol (65046)
Europe/Ulyanovsk (65045)
Europe/Uzhgorod (65044)
Europe/Vaduz (65043)
Europe/V atican (65042)
Europe/Vienna (65041)
Europe/Vilnius (65040)
Europe/Volgograd (65039)
Europe/Warsaw (65038)
Europe/Zagreb (65037)
Europe/Zaporozhye (65036)
Europe/Zurich (65035)
Factory (65034)

121

Time Zone Regions

GB (65033)

GB-Eire (65032)

GMT+0 (65031)

GMT-0 (65030)

GMTO (65029)
Greenwich (65028)

HST (65027)

Hongkong (65026)

|ET (65025)

IST (65024)

Iceland (65023)
Indian/Antananarivo (65022)
Indian/Chagos (65021)
Indian/Christmas (65020)
Indian/Cocos (65019)
Indian/Comoro (65018)
Indian/Kerguelen (65017)
Indian/Mahe (65016)
Indian/Maldives (65015)
Indian/Mauritius (65014)
Indian/Mayotte (65013)
Indian/Reunion (65012)
Iran (65011)

Israel (65010)

JST (65009)

Jamaica (65008)

Japan (65007)

Kwajalein (65006)

Libya (65005)

MET (65004)

MIT (65003)

MST (65002)
MST7MDT (65001)
Mexico/BajaNorte (65000)
Mexico/BajaSur (64999)
Mexico/General (64998)
NET (64997)

NST (64996)

NZ (64995)

NZ-CHAT (64994)
Navajo (64993)

PLT (64992)

PNT (64991)

PRC (64990)

PRT (64989)

PST (64988)

PST8PDT (64987)
Pacific/Apia (64986)
Pacific/Auckland (64985)
Pacific/Bougainville (64984)
Pacific/Chatham (64983)
Pacific/Chuuk (64982)

122

Time Zone Regions

Pacific/Easter (64981)
Pacific/Efate (64980)
Pacific/Enderbury (64979)
Pacific/Fakaofo (64978)
Pacific/Fiji (64977)
Pacific/Funafuti (64976)
Pacific/Galapagos (64975)
Pacific/Gambier (64974)
Pacific/Guadal canal (64973)
Pacific/Guam (64972)
Pacific/Honolulu (64971)
Pacific/Johnston (64970)
Pacific/Kiritimati (64969)
Pacific/K osrae (64968)
Pacific/Kwaja ein (64967)
Pacific/Majuro (64966)
Pacific/Marquesas (64965)
Pacific/Midway (64964)
Pacific/Nauru (64963)
Pacific/Niue (64962)
Pacific/Norfolk (64961)
Pacific/Noumea (64960)
Pacific/Pago_Pago (64959)
Pacific/Palau (64958)
Pacific/Pitcairn (64957)
Pacific/Pohnpel (64956)
Pacific/Ponape (64955)
Pacific/Port_Moreshy (64954)
Pacific/Rarotonga (64953)
Pacific/Saipan (64952)
Pacific/Samoa (64951)
Pacific/Tahiti (64950)
Pacific/Tarawa (64949)
Pacific/Tongatapu (64948)
Pacific/Truk (64947)
Pacific/Wake (64946)
Pacific/Wallis (64945)
Pacific/Y ap (64944)
Poland (64943)

Portugal (64942)

ROC (64941)

ROK (64940)

SST (64939)

Singapore (64938)
SystemV/AST4 (64937)
SystemV/AST4ADT (64936)
SystemV/CST6 (64935)
SystemV/CST6CDT (64934)
SystemV/EST5 (64933)
SystemV/EST5EDT (64932)
SystemV/HST10 (64931)
SystemV/MST7 (64930)

123

Time Zone Regions

SystemV/MST7MDT (64929)
SystemV/PST8 (64928)
SystemV/PST8PDT (64927)
SystemV/Y ST9 (64926)
SystemV/Y STOYDT (64925)
Turkey (64924)

UCT (64923)

US/Alaska (64922)
US/Aleutian (64921)
US/Arizona (64920)
US/Centra (64919)
US/East-Indiana (64918)
US/Eastern (64917)
US/Hawaii (64916)
US/Indiana-Starke (64915)
US/Michigan (64914)
US/Mountain (64913)
US/Pacific (64912)
US/Pacific-New (64911)
US/Samoa (64910)

UTC (64909)

Universal (64908)

VST (64907)

W-SU (64906)

WET (64905)

Zulu (64904)

124

	Firebird 4.0 Release Notes
	Table of Contents
	General Notes
	Bug Reporting
	Documentation

	New In Firebird 4.0
	Summary of New Features
	Complete In Beta 1
	Compatibility with Older Versions

	Changes in the Firebird Engine
	Extended Maximum Page Size
	External Functions (UDFs) Feature Deprecated
	Support for International Time Zones
	Session Time Zone
	Time Zone Format
	Data Types for Time Zone Support
	API Support for Time Zones
	Time Zone Statements and Expressions
	Virtual table RDB$TIME_ZONES
	Package RDB$TIME_ZONE_UTIL
	Function DATABASE_VERSION
	Procedure TRANSITIONS

	Updating the Time Zone Database

	Firebird Replication
	Replication Modes
	Synchronous Mode
	Asynchronous Mode

	Access Modes
	Journalling
	About the LSS and OSS

	Error Reporting
	Setting Up Replication
	Setting Up the Master Side
	Defining a Custom Replication Set
	Synchronous/Asynchronous Modes
	A Minimal Configuration
	Applying the Master Side Settings

	Setting Up the Replica Side
	A Sample Replica Setup
	Applying the Replica Side Settings
	Creating a Replica Database

	Pooling of External Connections
	Key Characteristics of Connection Pooling
	How the Connection Pool Works
	New Connections

	Managing the Connection Pool
	Querying the Connection Pool
	Parameters for Configuring the Connection Pool

	Timeouts at Two levels
	Idle Session Timeouts
	How the Idle Session Timeout Works
	Setting the Idle Session Timeout
	Determining the Timeout that is In Effect
	SQL Syntax for Setting an Idle Session Timeout
	Support at API Level

	Context Variable Relating to Idle Session Timeouts
	Idle Session Timeouts in the Monitoring Tables

	Statement Timeouts
	How the Statement Timeout Works
	Setting a Statement Timeout
	Determining the Statement Timeout that is In Effect
	Notes about Statement Timeouts
	SQL Syntax for Setting a Statement Timeout
	Support for Statement Timeouts at API Level

	Context Variable relating to Statement Timeouts
	Statement Timeouts in the Monitoring Tables
	Support for Statement Timeouts in isql

	Commit Order for Capturing the Database Snapshot
	The 'Commit Order' Approach
	Commit Order for Transactions
	Special Values for the Transaction CN
	The Rule for Record Visibility
	Implementation details
	Block Size

	Read Consistency for Statements in Read-Committed
 Transactions
	Solving the Inconsistent Read Problem
	New Isolation Sub-Level for READ COMMITTED
	Handling of Update Conflicts
	No Pre-Committed Transactions
	Syntax and Configuration
	* SQL Syntax
	* New API Constant in the TPB
	* Configuration Parameter ReadConsistency

	Garbage Collection

	Precision Improvement for NUMERIC and DECIMAL
	Increased Number of Formats for Views
	Optimizer Improvement for GROUP BY
	xinetd Support on Linux Replaced
	Support for RISC v.64 Platform

	Changes to the Firebird API and ODS
	ODS (On-Disk Structure) Changes
	New ODS Number

	Application Programming Interfaces
	Services Cleanup
	Timeouts for Sessions & Statements
	Session Timeouts
	Statement Timeouts

	New Isolation Sub-level for READ COMMITTED
 Transactions
	Support for Batch Insert and Update Operations in the
 API
	Creating a Batch
	Creating the Batch Interface
	Getting the Message Format
	A Message Buffer

	Executing the Batch
	Cleaning Up

	Multiple Messages per Call
	Passing In-line BLOBs in Batch Operations
	
	Over-sized BLOBs
	User-Supplied BLOB IDs

	Streams vs Segments
	Overriding to Use Segmented BLOBs
	Multiple BLOBs Using Streams
	Bigger BLOBS in the Stream

	Registering a Standard BLOB

	Batch Ops in the Legacy (ISC) API

	API Support for Time Zones
	Structures (structs)
	API Functions

	Configuration Additions and Changes
	Parameters for Timeouts
	ConnectionIdleTimeout
	StatementTimeout

	Parameters for External Connection Pooling
	ExtConnPoolSize
	ExtConnPoolLifetime

	Parameters to Restrict Length of Object Identifiers
	MaxIdentifierByteLength
	MaxIdentifierCharLength

	Parameters Supporting Read Consistency in
 Transactions
	TipCacheBlockSize
	ReadConsistency
	SnapshotsMemSize

	TempCacheLimit at Database Level

	Security
	Enhanced System Privileges
	List of Valid System Privileges
	New Grantee Type SYSTEM PRIVILEGE
	Assigning System Privileges to a Role
	The SET SYSTEM PRIVILEGES Clause
	Dropping System Privileges from a Role

	Function RDB$SYSTEM_PRIVILEGE

	Granting a Role to Another Role
	The DEFAULT Keyword
	WITH ADMIN OPTION Clause
	Example Using a Cumulative Role
	Revoking the DEFAULT Property of a Role Assignment
	Function RDB$ROLE_IN_USE
	List Currently Active Roles

	SQL SECURITY Feature
	Triggers
	Examples Using the SQL SECURITY Property

	Built-in Cryptographic Functions
	ENCRYPT() and DECRYPT()
	RSA_PRIVATE()
	RSA_PUBLIC()
	RSA_ENCRYPT()
	RSA_DECRYPT()
	RSA_SIGN()
	RSA_VERIFY()
	BASE64_ENCODE() and BASE64_DECODE()
	CRC32()

	Improvements to Security Features
	User Managing Other Users

	Management Statements
	Use of Management Statements
	Authorization
	Management Statements for Use with Connections
 Pooling
	ALTER EXTERNAL CONNECTIONS POOL Statement
	ALTER SESSION RESET Statement

	Management Statements Pertaining to Time Zone Support
	SET TIME ZONE
	SET TIME ZONE BIND

	Management Statements Pertaining to Timeouts
	Statements to Set DECFLOAT Properties

	Data Definition Language (DDL)
	Quick Links
	Extended Length for Object Names
	Restricting the Length

	New Data Types
	Data type DECFLOAT
	Aspects of DECFLOAT Usage
	Length of Literals
	Use with Standard Functions
	Special Functions for DECFLOAT
	Session Control Operator SET DECFLOAT

	DDL Enhancements
	Increased Precision for NUMERIC and DECIMAL Types
	Data Type Extensions for Time Zone Support
	Aliases for Binary String Types
	Extensions to the IDENTITY Type
	Extended Syntax for Managing IDENTITY Columns
	The Firebird 4 Extensions to IDENTITY
	The GENERATED ALWAYS and BY DEFAULT Directives
	Changing the Defined Behaviour

	DROP IDENTITY Clause
	INCREMENT BY Option for IDENTITY Columns
	Changing the Increment (Step) Value

	Implementation

	Data Manipulation Language (DML)
	Quick Links
	DEFAULT Context Value for Inserting and Updating
	DEFAULT vs DEFAULT VALUES

	OVERRIDING Clause for IDENTITY Columns
	Extension of SQL Windowing Features
	Frames for Window Functions
	Navigational Functions with Frames

	Named Windows
	More Window Functions

	FILTER Clause for Aggregate Functions
	Syntax for FILTER Clauses

	Optional AUTOCOMMIT for SET TRANSACTION
	Expressions and Built-in Functions
	New Functions and Expressions
	Functions & Expressions for Timezone Operations
	AT Expression
	LOCALTIME Expression
	LOCALTIMESTAMP Expression

	Two New Date/Time Functions
	Security Functions
	Special Functions for DECFLOAT
	Function RDB$GET_TRANSACTION_CN
	Cryptographic Functions

	Changes to Built-in Functions and Expressions
	Changes Arising from Timezone Support
	EXTRACT Expressions
	Changes in CURRENT_TIME and CURRENT_TIMESTAMP

	HASH()

	SUBSTRING()
	UDF Changes
	New UDR GetExactTimestampUTC

	Miscellaneous DML Improvements
	Improve Error Message for an Invalid Write Operation
	Improved Failure Messages for Expression Indexes
	RETURNING * Now Supported

	Procedural SQL (PSQL)
	Recursion for subroutines
	A Helper for Logging Context Errors
	System Function RDB$ERROR()
	Contexts

	Allow Management Statements in PSQL Blocks

	Monitoring & Command-line Utilities
	Monitoring
	nBackup: UUID-based Backup and In-Place Merge
	Making Backups
	Merging-in-Place from the Backup
	Example of an On-line Backup and Restore

	isql: Support for Statement Timeouts
	gbak
	Backup and Restore with Encryption
	Prerequisites
	New Switches for Encrypted Backups & Restores
	Usage and Examples

	Enhanced Restore Performance
	Friendlier “-fix_fss_*” Messages

	gfix

	Compatibility Issues
	SQL
	Deprecation of External Functions (UDFs)
	The UDF Migration Script
	How to Work with the Script

	What If You MUST Use a UDF?

	Changes in DDL and DML Due to Timezone Support
	Changes to Data Types TIMESTAMP and TIME
	CURRENT_TIME and CURRENT_TIMESTAMP

	Prefaced Implicit Date/Time Literals Now Rejected

	Bugs Fixed
	Firebird 4.0 Beta 1 Release: Bug Fixes
	Core Engine
	Server Crashes/Hang-ups
	Security
	Utilities
	gbak
	gpre
	trace

	Build Issues

	Firebird 4.0 Alpha 1 Release: Bug Fixes

	Firebird 4.0 Project Teams
	A. Licence Notice
	B. Time Zone Regions

